Potensfunktioner, Eksponentialfunktioner og Logaritmer

Størrelse: px
Starte visningen fra side:

Download "Potensfunktioner, Eksponentialfunktioner og Logaritmer"

Transkript

1 Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 25. februar 2014 Dette dokument er en del af MatBog.dk IT Teaching Tools. ISBN-13: Se yderligere betingelser for brug her.

2 Indhold 1 Introduktion 1 2 Potensfunktioner Godt at vide om dem Potensudviklinger Hvor forekommer de? Eksponentialfunktioner Godt at vide om dem Hvor forekommer de? Den naturlige eksponentialfunktion Eksponentielle udviklinger Logaritmer Godt at vide om dem Den naturlige logaritme Hvor forekommer de? Logaritmeregnereglerne En smart anvendelse af logaritmer

3 Resumé I dette dokument ser vi på hele tre funktionsfamilier, nemlig potensfunktioner, eksponentialfunktioner og logaritmer. Vi ser på den naturlige eksponentialfunktion og logaritme, på sammenhænge mellem de tre funktionstyper og på et par nært beslægtede funktionstyper. 1 Introduktion Vi skal nu se på tre forskellige funktionsfamilier. De bliver gennemgået i en meget velovervejet rækkefølge Forudsætninger For at læse dette dokument bør du være ret fortrolig med funktionsbegrebet, og du skal vide hvordan man tegner grafer for funktioner. Desuden skal vi bruge potensregnereglerne hele tiden, så dem må du også hellere have i nærheden 1 mens du læser. 1 Du kan finde en oversigt over potensregnereglerne her side 1

4 2 Potensfunktioner Den første funktionstype kan man næsten gætte hvad er ud fra navnet. Det er en type funktioner som du sikkert allerede kender en masse af. Definition 1. En potensfunktion er en funktion, f, som er givet ved en forskrift af typen: f(x) = x a hvor a kan være et hvilket som helst reelt tal. Eksempel 2. De nemmeste potensfunktioner at forstå er dem hvor a er et naturligt tal. Du kender sikkert allerede følgende potensfunktioner meget godt: f(x) = x 2 og g(x) = x 3 h(x) = x 1 = x En potensfunktion er altså en funktion som opløfter i en (fast) potens. Bemærk at de fleste polynomier ikke er potensfunktioner, men at de består af flere forskellige potensfunktioner som er ganget med hver sin konstant og lagt sammen. Potensfunktioner kan dog noget som polynomier ikke kan, fordi vi kan opløfte i potenser som ikke er naturlige tal. Nogle af de allervigtigste potensfunktioner fremkommer på denne måde: Eksempel 3. Reciprokfunktionen er også en potensfunktion. Den er nemlig givet ved: f(x) = x 1 = 1 x side 2

5 Kvadratrodsfunktionen er også en potensfunktion. Den er nemlig givet ved: g(x) = x 1 2 = x Faktisk er alle rødder potensfunktioner. Kubikroden, f.eks: h(x) = x 1 3 = 3 x Bemærk at dette er et godt sted tidspunkt til at holde op med at tænke på potenser som at ting er ganget med sig selv. Det giver jo ingen mening at tage enten 1 eller 1 kopier af x og gange dem med 2 hinanden. Husk at de facts som står i sidste eksempel ganske enkelt er definitioner af hvad potenser betyder når de ikke er naturlige tal. Og det kan skam blive endnu værre: Eksempel 4. Man kan også lave helt tossede potensfunktioner. F.eks kan vi sagtens vælge a = 22 og definere potensfunktionen f ved: 7 f(x) = x 22 7 Hvis man så lige husker sine definitioner, så ved man at dette er den samme funktion som: f(x) = x 22 7 = 7 x 22 Det bliver helt vildt hvis vi vælger a til at være et irrationelt tal, f.eks. g(x) = x π Faktisk er der stor sandsynlighed for at du ikke aner hvad dette betyder. Det er nemlig meget svært at definere hvad potensopløftning i en irrationel potens skal betyde. Men for nu at gøre dette eksempel under 50 sider langt, håber jeg at du er tilfreds med følgende forklaring. side 3

6 Men kan ikke umiddelbart definere hvad x π skal betyde. Men vi kan hurtigt lave funktionen: Og vi kan også lave funktionen: og funktionen: g 1 (x) = x 3,14 = x = 100 x 314 g 2 (x) = x 3,141 = x = 1000 x 3141 g 3 (x) = x 3,1415 = x = x Hvis du forestiller dig alle disse (uendeligt mange) funktioner stillet op ved siden af hinanden, så er g(x) = x π på en måde den funktion som er ude for enden af den uendeligt lange kø. Dette er mere korrekt end man skulle tro, men samtidigt er det meget sværere at gøre præcist end man tror. Jeg håber at du bare kan trække på skuldrene og sige ok, så kan man åbenbart også opløfte ting i π te potens. For det kan man. Til sidst skal vi lige se på en helt speciel potensfunktion, som du nok vil få en slags had kærlighedsforhold til i løbet af dette dokument: Eksempel 5. Her er verdens dummeste potensfunktion: f(x) = x 0 = 1 Den er bare konstant lig med 1, uanset hvilket x der sættes ind i den. Fordi vi simpelt hen har defineret at opløftning i nul te potens altid giver 1. Bemærk at vi sågar (af tekniske grunde) har defineret at 0 0 = 1 side 4

7 så det er endda rigtigt hvis man sætter nul ind i den! Hvis du kigger lidt på grafen for f, så kan du få en ide om hvorfor dette valg er fornuftigt. På mange måder er det irriterende at denne potensfunktion findes. Den er nemlig så forskellig fra alle de andre potensfunktioner at vi hele tiden kommer til at skulle lave den til en undtagelse når vi taler generelt om potensfunktioner. Det ville dog være endnu mere irriterende ikke at kalde den en potensfunktion, så den er altså med uanset om vi kan lide den eller ej. 2.1 Godt at vide om dem Her er de vigtigste ting at huske på når man arbejder med potensfunktioner. Definitionsmængde og værdimængde Det er ikke helt nemt at se hvilke reelle tal, x som kan sættes ind i en potensfunktion, og hvilke funktionsværdier der kan komme ud af det. Det afhænger nemlig meget af hvilken potens, a man har med at gøre. Hele den indviklede historie står i følgende afskyelige sætning. Bare rolig: Du skal ikke lære denne sætning uden ad! Du skal bare se hvor grim den er, sådan at du kan blive glad for den definition som kommer lige bagefter. Sætning 6 (Definitions- og værdimængde). Hvis f er en potensfunktion givet ved: så gælder: f(x) = x a Hvis a = 0 så er Dm(f) = R og Vm(f) = {1} side 5

8 Hvis a {2, 4, 6,...} så er Dm(f) = R og Vm(f) = [0; [ Hvis a {1, 3, 5,...} så er Dm(f) = R og Vm(f) = R Hvis a { 2, 4, 6, } så er Dm(f) = R \ {0} og Vm(f) = ]0; [ Hvis a { 1, 3, 5,...} så erdm(f) = R \ {0} og Vm(f) = R \ {0} Hvis a er en positiv brøk hvor nævneren er lige, så er Dm(f) = [0; [ og Vm(f) = [0; [ Hvis a er en negativ brøk hvor nævneren er lige, så er Dm(f) = ]0; [ og Vm(f) =]0; [ Hvis a er en positiv brøk hvor nævneren er ulige, så er Dm(f) = R og Vm(f) = R Hvis a er en negativ brøk hvor nævneren er ulige, så er Dm(f) = R \ {0} og Vm(f) = R \ {0} Hvis a er irrationelt og positivt, så er Dm(f) = [0; [ og Vm(f) = [0; [ Hvis a er irrationelt og negativt, så er Dm(f) =]0; [ og Vm(f) = ]0; [ Øvelse 7. Glem alt om at lære ovenstående facts udenad! Prøv i stedet om du kan regne ud hvorfor hver af de forskellige værdier af a giver den den definitionsmængde og den værdimængde som sætningen påstår. F.eks. skulle du gerne kunne se hvorfor potensfunktionen med a = 1 ikke så godt kan lide at man sætter nul ind i den. Vær også helt sikker på at du indser at sætningen behandler alle muligheder for hvad a kan være, og at den samme mulighed ikke er nævnt flere gange. For at gøre alting meget nemmere, vælger man dog meget ofte en nemmere udvej: Nemlig at vedtage følgende dejlige definition: side 6

9 Definition 8. Når man taler om potensfunktioner, så går man ud fra at definitionenmængden er de positive reelle tal. Også selvom den eventuelt kunne være større. Altså: Hvis f(x) = x a hvor a R, så er: Dm(f) = R + Dette betyder desværre lidt forvirring, fordi selv de velkendte funktioner: f(x) = x 1 (reciprokfunktionen), f(x) = x 1 2 (kvadratroden) og selv f(x) = x 1 (identitetsfunktionen) pludselig kun bliver defineret i positive reelle tal når man tænker på dem som potensfunktioner. Det er lidt dumt, men fordelene er meget større end ulemperne. Det vil du se mere til i de næste afsnit. I første omgang bliver det meget nemmere at tale om deres værdimængder. Der er nemlig kun en enkelt dum undtagelse som man ikke må glemme: Sætning 9. Hvis f er en potensfunktion givet ved: så er værdimængden givet ved: f(x) = x a, x > 0 Vm(f) = R + Hvis vel at mærke a 0. Hvis a skulle være lig med nul, så er værdimængden i stedet: Vm(f) = {1} side 7

10 Grafer Graferne for vores potensfunktioner kan se ud på lidt forskellige måder, alt efter hvilken potens a man har med at gøre. I første omgang ved du sikkert allerede hvad der sker når a er et natuligt tal Figur 1: Grafer for nogle forskellige potensfunktioner hvor potensen er et naturligt tal. Hvis vi i stedet lader a være et negativt tal eller en brøk, så kommer der (som vi allerede har set) nogle andre spændende funktioner frem. På figur 2 nedenfor er et par af deres grafer:. Til sidst er det en god ide at forstå hvordan a faktisk kan være et hvilket som helst reelt tal. Øvelse 10. Hvis vi gradvist ændrer a, så ændrer vi selvfølgelig også funktionen og dens graf. Men de ændrer sig på en naturlig måde. Prøv at starte dit grafprogram og tegn grafer for følgende funkside 8

11 Figur 2: Grafer for nogle potensfunktioner hvor potensen er negativ eller en brøk. tioner (vælg et grafudsnit som går fra cirka 0 til 3 på x-aksen): g 1 (x) = x 2 g 2 (x) = x 3 g 3 (x) = x 3,1 g 4 (x) = x 3,14159 g 5 (x) = x π Sammensætninger En sjov ting ved potensfunktioner er at man kan gøre flere forskellige ting ved dem, og så bliver de til nye potensfunktioner. Sagt lidt mere teknisk, så er de stabile under flere forskellige operationer. side 9

12 Eksempel 11 (Multiplikation og division). Lad os starte med to forskellige potensfunktioner, f og g, givet ved: og f(x) = x 4 g(x) = x 3 Hvis vi ganger dem med hinanden, så får vi en ny funktion, h = f g givet ved: h(x) = f(x) g(x) = x 4 x 3 Men takket være vores potensregneregler, kan dette omskrives til: h(x) = x 3+4 = x 7 Vi kan også dividere de to funktioner med hinanden. Det giver en funktion k f, givet ved: g k(x) = f(x) g(x) = x4 x 3 Og igen kan vores potensregneregler hjælpe os med at skrive resultatet som: k(x) = x 4 3 = x 1 Bemærk forresten at vi ikke skal være bekymrede over at dividere med g(x), fordi vi har været smarte nok til at begrænse definitionsmængden og dermed sørge for at g(x) aldrig giver nul! Generelt giver multiplikationer og divisioner af potensfunktioner bare nogle andre potensfunktioner. Nu til et meget vigtigt eksempel som vi skal se mere på i næste afsnit: side 10

13 Eksempel 12 (Sammensætning). Lad os igen starte med to potensfunktioner, f og g, givet ved: og f(x) = x 7 g(x) = x 1 2 Lad os nu prøve at sammensætte de to funktioner. Husk, at det kan man gøre på to forskellige måder: Enten til h 1 = f g eller til h 2 = g f. De er givet ved: og h 1 (x) = f(g(x)) = ( x 7) 1 2 h 2 (x) = g(f(x)) = ( x 1 2 Men takket være potensregnereglerne, kan vi indse noget meget pænt om sammensætning af potensfunktioner. Vi kan nemlig omskrive: h 1 (x) = ( x 7) 1 2 = x = x 2 og ) 7 h 2 (x) = ( x 7) 1 2 = x = x 7 2 Heraf kan vi se to generelle facts som bliver meget gode at have i næste afsnit: Når man sammensætter to potensfunktioner, så får man en ny potensfunktion, hvis potens a bare er de to oprindelige funktioners potenser ganget med hinanden. Det giver den samme funktion uanset hvilken rækkefølge vi sammensætter to potensfunktioner i. side 11

14 Monotoni, injektivitet og inverse Fordi vi har begrænset definitionsmængden, så bliver alle 2 potensfuntioner injektive! Hvis du kigger på deres grafer, kan du se at de faktisk bliver monotone, hvilket jo garanterer at de bliver injektive. Det skriver vi lige op i en sætning: Sætning 13. Hvis f er en potensfunktion, givet ved f(x) = x a, så gælder følgende: Hvis a = 0 så er f konstant. Hvis a > 0 så er f voksende. Derfor er den også injektiv. Hvis a < 0 så er f aftagende. Derfor er den også injektiv. Eftersom (næsten) alle potensfunktioner er injektive, har de også inverse funktioner. Her er potensfunktionerne meget hyggelige. De er nemlig hinandens inverse funktioner på følgende måde: Sætning 14 (Inverse til potensfunktioner). Hvis f er en potensfunktion, givet ved forskriften: f(x) = x a, x R + hvor a er et reelt tal, som ikke er nul, så er f injektiv, og dens inverse funktion er givet ved: f 1 (x) = x 1 a Bevis. Husk hvad vi opdagede i sidste afsnit: Når man sammensætter to potensfunktioner, så ender man bare med at gange de to potenser med hinanden. Så hvis f(x) = x a og g(x) = x b, så er (g f)(x) = (x a ) b = x a b 2 Undtagen en eneste af dem... Gæt engang hvilken! side 12

15 og (f g)(x) = ( x b) a = x a b Så hvis b = 1, giver sammensætningen a x1, som bare er identitetsfunktionen. Og det er jo præcis hvad det betyder at være den inverse funktion: At man får identitetsfunktionen når man sammensætter de to. Eller sagt med andre ord: Hvis man først bruger den ene funktion på et tal, x, og bagefter bruger den anden funktion på resultatet, så ender man med det x som man startede med. 2.2 Potensudviklinger Der findes en slags mutationer af potensfunktioner som optræder så ofte at de har fået deres eget navn: Definition 15. En potensudvikling er en funktion, f, som er givet ved en forskrift af typen: f(x) = b x a hvor a og b er to reelle konstanter som kan have en hvilken som helst værdi. Man tillader altså bare et en potensfunktion er ganget med en ekstra konstant. Det er ikke særligt mystisk hvad dette gør ved funktionen. Især ikke hvis man har læse dokumentet om grafmanipulation 3. Det strækker jo bare grafen langs y-aksen (hvis b > 1 blive grafen strakt, og hvis b < 1 bliver den trukket sammen.) Ligninger med potensfunktioner Potensfunktioner er nemme at håndtere i forbindelse med at løse ligninger. Husk at når man løser ligninger, så svarer det næsten altid 3 Læs om grafmanipulation her side 13

16 footnotemere præcist: Når man løser ligninger med en enkelt ukendt størrelse. til at man står med en funktion, f, og et tal, y, og man ved at f(x) = y men man vil gerne kende værdien af x. Altså: Man vil så gerne finde en (eller flere!) værdier af tallet x, sådan at f(x) giver tallet y. Husk også at når f er en injektiv funktion, så er dette dejligt nemt. I så fald er der nemlig højst en enkelt løsning, x, og den kan findes ved at udregne: x = f 1 (y) Eftersom vi kender de inverse til alle potensfunktioner, så er det altså dejligt nemt at håndtere ligninger hvor de optræder i. Eksempel 16. Betragt ligningen: x π = 17 Den kan løses i et snuptag ved at vi bruger den inverse potensfunktion: x = 17 1 π Advarsel: Dette lyder næsten for nemt, gør det ikke? Grunden til at det er så nemt er at vi har smidt alle de negative tal ud af vores definitionsmængder til potensfunktionerne. Derfor er det meget behageligt at arbejde med ligninger som kommer fra potensfunktioner, fordi vi er fuldkommen ligeglade med eventuelle negative løsninger. Men pas nu på: Det er ikke alle potens agtige ligninger som kommer fra en potensfunktion. Eksempel 17. Hvad nu med ligningen: x 2 = 16 Hvad hvis vi faktisk var interesserede i at finde alle reelle tal som opfylder denne ligning? side 14

17 Så er vi nødt at huske at f(x) = x 2 sagtens kan defineres i alle reelle tal. Dermed er den bare ikke det som vi kalder en potensfunktion længere! Og den er ikke længere injektiv, og den har ikke en invers funktion. Og så har vi alt besværet med at bruge kvadratroden (en såkaldt sektion) til at finde en løsning, og derefter bruge ekstra viden om funktionen til at finde den anden (negative) løsning. 2.3 Hvor forekommer de? Lad os se på nogle eksempler på anvendelser af potensfunktioner til at beskrive virkelige sammenhænge: Eksempel 18. Rittersport er som bekendt kvadratiske, og de forekommer i forskellige størrelser. Hvis x angiver sidelængden (f.eks. målt som hvor mange stykker cholokade der er i en række), og f(x) angiver antallet af chokoladestykker i hele Rittersportpakken, så er: f(x) = x 2 Hvis f.eks. x = 2 (de små pakker), så er antallet af chokoladestykker: f(2) = 2 2 = 4 Mens de store pakker indeholder noget i stil med: stykker. f(5) = 2 5 = 32 Potensfunktioner i sig selv er ikke særligt nyttige. Til gengæld er potensudviklinger ret almindelige i alle mulige videnskaber. Her er et par eksempler: side 15

18 Eksempel 19 (Zipfs lov). Nok den underligste potsensudvikling jeg nogensinde har set optræder i studier af hvordan sprog er struktureret. Tro det eller lad være, man kan bruge matematik til at måle hvornår noget er et rigtigt sprog. Det viser sig nemlig at hvis man optæller hvor ofte forskellige ord bliver brugt, så er nogle ord selvfølgelig mere hyppige end andre. Hvis man ordner ordene efter hyppighed, altså sådan at nummer nummer 1 er det mest hyppige, nummer 2 er det næsthyppigste, o.s.v. 3 Eksponentialfunktioner Nu til en anden slags funktioner: Eksponentialfunktioner. Grunden til at jeg tager dem i samme dokument som potensfunktionerne (se sidste afsnit) er at de to typer kan være svære at se forkel på. Her er hvad en eksponentialfunktion er: Definition 20. En eksponentialfunktion er en funktion, defineret ved en forskrift af typen: hvor a er et positivt reelt tal. f(x) = a x, x R Kig lige på definition 1 igen. Og kig så på definition 20. Kan du se hvorfor mange kommer til at forveksle dem? Forskellen er at de to bogstaver i definitionen har byttet plads! Men eftersom de spiller meget forskellige roller (x er den variabel som er sat ind i funktionen, mens a er en konstant som hører med til funktionen), giver det to meget forskellige slags funktioner. Vi skal se lidt på forskellene i det næste afsnit. Her er en god huskeregel hvis du vil undgå at bytte om på dem. side 16

19 For at undgå at bytte om på potensfunktioner og eksponentialfunktioner, så tænk på de potensfunktioner som du har kendt superlænge, f.eks. f(x) = x 2 og g(x) = x 3 De hedder potensfunktioner, fordi det er præcis hvad de gør ved x: Opløfter det i en (fast) potens. Og tænk derefter på at eksponentialfunktioner er dem hvor potensen er vendt på hovedet, altså f.eks. h(x) = 2 x og k(x) = 3 x 3.1 Godt at vide om dem Lad os se på nogle egenskaber ved eksponentialfunktionerne Hvorfor skal a være positiv? Konstanten a kaldes nogle gange for grundtallet, og i andre sammenhænge (se næste afsnit) for fremskrivningsfaktoren. Den skal være positiv af omtrent samme grund som problemerne med definitionsmængden for potensfunktioner: Vi har ikke lyst til at risikere at a skulle være f.eks. 1, og at nogen så satte x til at være f.eks Så ville der nemlig stå noget som svarer til kvadratroden af 1, og den findes jo ikke. side 17

20 3.1.2 Grafer for eksponentialfunktioner Lad os tegne grafen for en konkret eksponentialfunktion. Vi sætter a = 2. Dermed er vores funktion givet ved: f 1 (x) = 2 x Vi kan udregne nogle hurtige funktionsværdier (idet vi husker hvad det betyder at opløfte i nogle vigtige potenser): f 1 (0) = 2 0 = 1 f 1 (1) = 2 1 = 2 f 1 (3) = 2 3 = 8 ( ) 1 f 1 = = 2 1, f 1 ( 1) = 2 1 = 1 2 = 0,5 f 1 ( 3) = 2 3 = = 1 8 = 0,125 Hver af disse udregninger giver et punkt på grafen, og når man tegner dem, kan man tydeligt se en tendens (se figur 3). Vi kunne selvfølgelig også have valgt en anden værdi af grundtallet a. Hvis vi f.eks. sætter a = 1, så har vi en anden eksponentialfunktion, nemlig: 2 ( 1 x f 2 (x) = 2) Her er det lidt vildere at udregne funktionsværdier, fordi vi skal bruge lidt flere potensregneregler De vokser vildt hurtigt! Eksponentialfunktioner er monotone, undtagen hvis a = 1. Hvis a > 1, så er de voksende, og hvis a ]0; 1[, så er de aftagende. Det betyder at grafen går opad, enten når man går til højre eller til venstre i side 18

21 Figur 3: Grafen for eksponentialfunktionen f 1 defineret ovenfor. Punkterne svarende til de udregnede funktionsværdier er indtegnet (og et par ekstra). koordinatsystemet. En sjov ting ved eksponentialfunktioner er at den gør det helt vildt hurtigt. Så hurtigt at en hvilken som helst ekponentialfunktion vil overhale en hvilken som helst potensfunktion på et eller andet tidspunkt. Det viser jeg lige et eksempel på: Eksempel 21. Betragt potensfunktionen f, givet ved: f(x) = x 100 Det er en meget vild funktion som ret hurtigt laver vildt store funktionsværdier. Prøv at tegne dens graf og se efter. Du skal nok vælge et grafudsnit hvor x-aksen går fra 2 til 2, og hvor y-aksen går meget højt op. Betragt nu den ganske uskyldige eksponentialfunktion g, givet side 19

22 ved: g(x) = 2 x Den er også voksende, men ser ud til at gå meget langsommere. Du kan uden problemer tegne dens graf med x-koordinater mellem 10 og 10. Umiddelbart ser det ud til at f vokser meget hurtigere end g. Men hvad sker der lidt længere ude af x-aksen? Det er lidt svært at zoom e så langt ud i et grafprogram, men inde i vores hoveder er det faktisk ret nemt. Lad os forestille os at vi går ud til x = Hvor højt oppe er de to grafer så? Jo, grafen for f er oppe i højden: f(10 000) = = ( (10) 4) 100 = (Vi brugte lige en potensregneregel, så du det?). Det er sindssygt højt oppe. Men hvor højt oppe er grafen for g mon? Jo, den er i højden: g(10 000) = = = ( 2 4) 2500 = For det første er grundtallet i denne beregning 16, hvor det før var 10. Men antallet af gange som det bliver ganget med sig selv er over 6 gange så stort. Grafen for g er vildt meget højere oppe end grafen for f. Det er åbenbart fordi eksponentialfunktionen på et tidspunkt (lige omkring x = 1000, faktisk) har overhalet potensfunktionen. Grunden til den vilde vækst hænger sammen med en egenskab som vi skal se nærmere på i næste afsnit. side 20

23 3.1.4 Fordoblingskonstant og halveringskonstant 3.2 Hvor forekommer de? 3.3 Den naturlige eksponentialfunktion 3.4 Eksponentielle udviklinger 4 Logaritmer 4.1 Godt at vide om dem 4.2 Den naturlige logaritme 4.3 Hvor forekommer de? 4.4 Logaritmeregnereglerne 4.5 En smart anvendelse af logaritmer side 21

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 23. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 3. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 17. februar 2015 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 28. april 2015 Dette dokument er en del af MatBog.dk 2008. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 17. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 8. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 2. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Funktionsfamilier. Frank Villa. 19. august 2012

Funktionsfamilier. Frank Villa. 19. august 2012 Funktionsfamilier Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere

Læs mere

Funktionsfamilier. Frank Nasser. 12. april 2011

Funktionsfamilier. Frank Nasser. 12. april 2011 Funktionsfamilier Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Polynomier. Frank Villa. 26. marts 2012

Polynomier. Frank Villa. 26. marts 2012 Polynomier Frank Villa 26. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion 2

Læs mere

Funktionsterminologi

Funktionsterminologi Funktionsterminologi Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Polynomiumsbrøker og asymptoter

Polynomiumsbrøker og asymptoter Polynomiumsbrøker og asymptoter Frank Villa 9. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Pointen med Funktioner

Pointen med Funktioner Pointen med Funktioner Frank Nasser 0. april 0 c 0080. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en

Læs mere

Funktionsterminologi

Funktionsterminologi Funktionsterminologi Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Grafmanipulation. Frank Nasser. 14. april 2011

Grafmanipulation. Frank Nasser. 14. april 2011 Grafmanipulation Frank Nasser 14. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Mike Vandal Auerbach. Funktioner.

Mike Vandal Auerbach. Funktioner. Mike Vandal Auerbach Funktioner y f g x www.mathematicus.dk Funktioner. udgave, 208 Disse noter er skrevet til undervisning i matematik på stx A- og B-niveau. Det indledende kapitel beskriver selve funktionsbegrebet,

Læs mere

Pointen med Differentiation

Pointen med Differentiation Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Differentiation af Potensfunktioner

Differentiation af Potensfunktioner Differentiation af Potensfunktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Differentiation i praksis

Differentiation i praksis Differentiation i praksis Frank Villa 7. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Diskriminantformlen. Frank Nasser. 11. juli 2011

Diskriminantformlen. Frank Nasser. 11. juli 2011 Diskriminantformlen Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Omskrivningsregler. Frank Nasser. 10. december 2011

Omskrivningsregler. Frank Nasser. 10. december 2011 Omskrivningsregler Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Afstande, skæringer og vinkler i rummet

Afstande, skæringer og vinkler i rummet Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Andengradsligninger. Frank Nasser. 12. april 2011

Andengradsligninger. Frank Nasser. 12. april 2011 Andengradsligninger Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Afstandsformlen og Cirklens Ligning

Afstandsformlen og Cirklens Ligning Afstandsformlen og Cirklens Ligning Frank Villa 19. august 2012 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk.

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Villa 3. august 13 Dette dokument er en del af MatBog.dk 8-1. IT Teaching Tools. ISBN-13: 978-87-9775--9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Omskrivningsgymnastik

Omskrivningsgymnastik Omskrivningsgymnastik Frank Villa 29. december 2013 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Funktioner. Frank Villa. 23. januar 2014

Funktioner. Frank Villa. 23. januar 2014 Funktioner Frank Villa 23. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 2

Læs mere

Grænseværdier og Kontinuitet

Grænseværdier og Kontinuitet Grænseværdier og Kontinuitet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Funktioner. Frank Nasser. 12. april 2011

Funktioner. Frank Nasser. 12. april 2011 Funktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er en arkiveret

Læs mere

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul

Asymptoter. for standardforsøgene i matematik i gymnasiet. 2003 Karsten Juul Asymptoter for standardforsøgene i matematik i gymnasiet 2003 Karsten Juul Indledning om lodrette asymptoter Lad f være funktionen bestemt ved =, 2. 2 Vi udregner funktionsværdierne i nogle -værdier der

Læs mere

Grænseværdier og Kontinuitet

Grænseværdier og Kontinuitet Grænseværdier og Kontinuitet Frank Villa 11. august 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Grænseværdier og Kontinuitet

Grænseværdier og Kontinuitet Grænseværdier og Kontinuitet Frank Villa 17. marts 2015 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1

Læs mere

Implikationer og Negationer

Implikationer og Negationer Implikationer og Negationer Frank Villa 5. april 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Stamfunktionsproblemet

Stamfunktionsproblemet Stamfunktionsproblemet Frank Villa 19. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Lektion 3 Sammensætning af regnearterne

Lektion 3 Sammensætning af regnearterne Lektion Sammensætning af regnearterne Indholdsfortegnelse Indholdsfortegnelse... Plus, minus, gange og division... Negative tal... Parenteser og brøkstreger... Potenser og rødder... Lektion Side 1 Plus,

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 23. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1 Side 1 Funktion Opgaverne med svar starter på side 2, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 3 med et s foran nummeret. 1001 Figuren viser grafen

Læs mere

Elementær Matematik. Funktioner og deres grafer

Elementær Matematik. Funktioner og deres grafer Elementær Matematik Funktioner og deres grafer Ole Witt-Hansen 0 Indhold. Funktioner.... Grafen for en funktion...3. grafers skæring med koordinat akser...4. To grafers skæringspunkter...4 3. Egenskaber

Læs mere

Stamfunktionsproblemet

Stamfunktionsproblemet Stamfunktionsproblemet Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen

Matema10k. Matematik for hhx C-niveau. Arbejdsark til kapitlerne i bogen Matema10k Matematik for hhx C-niveau Arbejdsark til kapitlerne i bogen De følgende sider er arbejdsark og opgaver som kan bruges som introduktion til mange af bogens kapitler og underemner. De kan bruges

Læs mere

Oprids over grundforløbet i matematik

Oprids over grundforløbet i matematik Oprids over grundforløbet i matematik Dette oprids er tænkt som en meget kort gennemgang af de vigtigste hovedpointer vi har gennemgået i grundforløbet i matematik. Det er en kombination af at repetere

Læs mere

Archimedes Princip. Frank Nasser. 12. april 2011

Archimedes Princip. Frank Nasser. 12. april 2011 Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Differentiation af Trigonometriske Funktioner

Differentiation af Trigonometriske Funktioner Differentiation af Trigonometriske Funktioner Frank Villa 15. oktober 01 Dette dokument er en del af MatBog.dk 008-01. IT Teaching Tools. ISBN-13: 978-87-9775-00-9. Se yderligere betingelser for brug her.

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

User s guide til cosinus og sinusrelationen

User s guide til cosinus og sinusrelationen User s guide til cosinus og sinusrelationen Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Ting man gør med Vektorfunktioner

Ting man gør med Vektorfunktioner Ting man gør med Vektorfunktioner Frank Nasser. april 11 c 8-11. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere

Flere ligninger med flere ukendte

Flere ligninger med flere ukendte Flere ligninger med flere ukendte Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Omskrivningsgymnastik

Omskrivningsgymnastik Omskrivningsgymnastik Frank Villa 16. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Æstetik og reduktioner Matematisk takt og tone. Mikkel Findinge

Æstetik og reduktioner Matematisk takt og tone. Mikkel Findinge Æstetik og reduktioner Matematisk takt og tone Mikkel Findinge Indhold Indledning. Hvad er god matematisk skik?...................... Starttips før ulvehyl 4. Primtalsfaktorisering...........................

Læs mere

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner

FUNKTIONER del 1 Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner FUNKTIONER del Funktionsbegrebet Lineære funktioner Eksponentialfunktioner Logaritmefunktioner -klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse FUNKTIONSBEGREBET... 3 Funktioner beskrevet ved mængder...

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Additionsformlerne. Frank Villa. 19. august 2012

Additionsformlerne. Frank Villa. 19. august 2012 Additionsformlerne Frank Villa 19. august 2012 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Vinkelrette linjer. Frank Villa. 4. november 2014

Vinkelrette linjer. Frank Villa. 4. november 2014 Vinkelrette linjer Frank Villa 4. november 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 3 Proportionalitet... 4 Rentesregning...

Læs mere

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring

Matematik - et grundlæggende kursus. Dennis Cordsen Pipenbring Matematik - et grundlæggende kursus Dennis Cordsen Pipenbring 22. april 2006 2 Indhold I Matematik C 9 1 Grundlæggende algebra 11 1.1 Sprog................................ 11 1.2 Tal.................................

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

1 Om funktioner. 1.1 Hvad er en funktion?

1 Om funktioner. 1.1 Hvad er en funktion? 1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet

Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................

Læs mere

Brug og Misbrug af logiske tegn

Brug og Misbrug af logiske tegn Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

9 Eksponential- og logaritmefunktioner

9 Eksponential- og logaritmefunktioner 9 Eksponential- og logaritmefunktioner Hayati Balo, AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2 2. Crone og Rosenquist, Matematiske elementer

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Tal og Regneoperationer

Tal og Regneoperationer Tal og Regneoperationer Frank Villa 3. juli 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Sammensætning af regnearterne

Sammensætning af regnearterne Sammensætning af regnearterne Plus, minus, gange og division... 19 Negative tal... 0 Parenteser og brøkstreger... Potenser og rødder... 4 Sammensætning af regnearterne Side 18 Plus, minus, gange og division

Læs mere

Egenskaber ved Krydsproduktet

Egenskaber ved Krydsproduktet Egenskaber ved Krydsproduktet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Funktioner. 3. del Karsten Juul

Funktioner. 3. del Karsten Juul Funktioner 3. del 019 Karsten Juul Funktioner 3. del, 019 Karsten Juul 1/9-019 Nyeste version af dette hæfte kan downloades fra http://mat1.dk/noter.htm. Hæftet må benyttes i undervisningen hvis læreren

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Komplekse tal. Jan Scholtyßek 29.04.2009

Komplekse tal. Jan Scholtyßek 29.04.2009 Komplekse tal Jan Scholtyßek 29.04.2009 1 Grundlag Underlige begreber er det, der opstår i matematikken. Blandt andet komplekse tal. Hvad for fanden er det? Lyder...komplekst. Men bare roligt. Så komplekst

Læs mere

Elementær Matematik. Trigonometriske Funktioner

Elementær Matematik. Trigonometriske Funktioner Elementær Matematik Trigonometriske Funktioner Ole Witt-Hansen Indhold. Gradtal og radiantal.... sin x, cos x og tan x... 3. Trigonometriske ligninger...3 4. Trigonometriske uligheder...5 5. Harmoniske

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Eksponentielle funktioner

Eksponentielle funktioner Eksponentielle funktioner http://en.wikipedia.org/wiki/rabbits_in_australia 4. udg. 2011 12-12-2011 Eksponentielle funktioner Vækst Udfyld tabellen ved: at skrive begyndelsesværdien b = f(0) = 30 under

Læs mere

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe. Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Potensfunktioner og dobbeltlogaritmisk papir

Potensfunktioner og dobbeltlogaritmisk papir 1 Potensfunktioner og dobbeltlogaritmisk papir OBS: til skriftlig eksamen skal du kun kunne aflæse på en graf, der allerede er indtegnet på dobbeltlogaritmisk papir. Du kan ikke komme ud for at skulle

Læs mere

Eksponentielle funktioner for C-niveau i hf

Eksponentielle funktioner for C-niveau i hf Eksponentielle funktioner for C-niveau i hf 2017 Karsten Juul Procent 1. Procenter på en ny måde... 1 2. Bestem procentvis ændring... 2 3. Bestem begyndelsesværdi... 2 4. Bestem slutværdi... 3 5. Vækstrate...

Læs mere

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal?

Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Her er et spørgsmål, du måske aldrig har overvejet: kan man finde to trekanter med samme areal? Det er ret let at svare på: arealet af en trekant, husker vi fra vor kære folkeskole, findes ved at gange

Læs mere