Studentereksamen i Matematik B 2012
|
|
- Jacob Michelsen
- 6 år siden
- Visninger:
Transkript
1 Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen
2 Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er lineære. f er aftagende (da a = -1,5 <0) og begyndelsesværdien er 1. Derfor svarer f til grafen A. g er voksende med begyndelsesværdi 0. Derfor svarer g til grafen C. Endelig er h også en voksende funktion; begyndelsesværdien er den største (b = 2) og hældningskoefficienten er mindre end for g: Derfor svarer h til grafen B. Opgave 2 Givet ligningen: x 2 +8 x+15=0 Diskriminant og løsning a=1 ;b=8 ;c=15 d =b 2 4 a c d = =64 60=4 x= 8±2 2 1 x= 5 x= 3 Diskriminanten d = 4 L = {-5 ; -3} Opgave 3 Trekanten, som er gengivet på næste side, har mål som anført på tegningen; desuden vides, at omkredsen er 30.
3 Ib Michelsen stx_121_b_gl 3 af 11 Længden af AB Da trekant ABD er retvinklet, kan Pythagoras sætning anvendes: hyp 2 =k 1 2 +k 2 2 De oplyste tal indsættes: c 2 = c 2 =100 c=10 AB = 10 Arealet af trekant ABC Da omkredsen af trekanten er 30, fås længden af AC som: AC = ,5 = 12,5 Arealformlen for en vilårlig trekant er T =½ h g højde: T =½ 6 12,5=37,5 Trekantens areal er 37,5 Opgave 4 ; AC benyttes som grundlinje og BD som Det er oplyst, at funktionen f har fordoblingskonstanten 3; tabellen herunder skulle så udfyldes med de farvede tal: Forklaring: Når x vokser fra 0 til 3 med 3, som er fordoblingskonstanten, skal y-værdien 7 fordobles: dvs. under 3 skrives14. Tilsvarende er forskellen mellem 3 og 6 også fordoblingskonstanten.og derfor skal der stå 28 under 6. Og da 56 er det dobbelte af 28 findes svaret 9 ved at addere fordoblingskonstanten til 6.
4 Ib Michelsen stx_121_b_gl 4 af 11 Opgave 5 Givet: f (x)=2e x +1 Bestem f'(x) f ' ( x)=2(e x )'+0 f ' ( x)=2e x Bestem tangentligning f (0)=2e 0 +1=2 1+1=3 P(0,f(0)) = (0,3) Tangentens hældningskoefficient = f ' (0)=2 e 0 =2 1=2 Parameteren b i tangentligningen fås med formlen: b= y 1 a x 1 b=3 2 0=3 Tangentligningen: y=2 x+3 ; ved indsætning ses: Opgave 6 For funktionen f (x)=4 x+3 skal der findes en stamfunktion, hvis graf går genne P(1,10). Mængden af stamfunktioner kan findes som F ( x)=4 1 (1+1) x x+k=2 x 2 +3 x+k Heraf ses, at blandt de foreslåede funktioner passer den første og den sidste, men begge kan ikke have en graf, der går gennem P. F 1 (1)= =2+3+5=10 Heraf ses, at F 1 ( x) er den søgte stamfunktion.
5 Ib Michelsen stx_121_b_gl 5 af 11 Opgave 7 Solcellekapaciteten (målt i MW) for i Tyskland er oplyst for perioden En eksponentiel model kan beskrive udviklingen. Data er gengivet i regnearket herunder: Bestemmelse af forskriften S(t) Data i regnearket er koordinater til punkterne A, F. Med kommandoen fitexp findes funktionen S (eksponentiel regression). Med 3 betydende cifre kan funktionen skrives: S (t)=1900 1,52 t Skøn over kapaciteten i 2015 Da 2015 er 10 år efter 2005, beregnes S (10)=1900 1,52 10 = ; dvs. at den skønnede kapacitet for 2015 er MW
6 Ib Michelsen stx_121_b_gl 6 af 11 Parametrenes betydning b = 1900 fortæller, at i modellen sættes kapaciteten i 2005 (begyndelsesåret) til 1900 MW. a = 1,52 fortæller, at kapaciteten hvert år stiger med 52 % Opgave 8 Givet en trekant med mål som på tegningen: Bestem BC Da trekant BCD er retvinklet, kan hypotenusen BC findes med Pythagoras sætning: hyp 2 =k 1 2 +k 2 2 De oplyste tal indsættes: a 2 =6 2 +(5+2) 2 =85 a= (85)=9,22 BC = 9,22
7 Ib Michelsen stx_121_b_gl 7 af 11 Bestem arealet af trekant ABC For enhver trekant gælder arealsætningen: T =½h g h= CD ).. Heri indsættes de kendte tal (g = c = 5 og T =½ 6 5=15 T =15 Bestem vinkel B Da vinkel B er en spids vinkel i den retvinklede trekant BCD, kan den findes med formlen v=sin 1 ( mk hyp ) Heri indsættes de kendte tal: B=sin 1 ( 6 7 )=40,6o Vinkel B=40,6 o Bestem medianen m a Da MB = ½ BC og cosinusrelationerne gælder i alle trekanter, fås ved indsættelse af de kendte tal i: m a 2 =c 2 +(½a) 2 2 c (½a) cos(b) følgende: m a 2 =5 2 +(½ 9,22) (½ 9,22) cos(40,6 o ) m a =3,35 Opgave 9 Sammenhængen mellem (nogle) græskars vægt og radius kan beskrives ved funktionen v(r)=0,0060 r 2,6657, hvor vægt (v) måles i kg og radius (r) i cm. Bestem radius (hvis vægten er 40 kg) Vægt indsættes, hvorved jeg får ligningen: 40=0,0060 r 2, ,0060 =r2,6657 2, ,0060 =r r = 27,19 Dvs., at et græskar med vægten 40 kg har en radius på 27,2 cm
8 Ib Michelsen stx_121_b_gl 8 af 11 Bestem den procentvise vægtforøgelse Når vægten forøges med 10 % svare det til at at en ny vægt findes ved at anvende x-faktor 1,10. Den tilsvarende y-faktor findes: y-faktor = 1,10 2,6657 = Dvs. at vægten stiger med 29 % Opgave 10 f (x)=x 4 2x 2 +4 Løs f'(x) = 0 f ' ( x)=4 x x 2 1 =4 x 3 4x f ' ( x)=0 4 x 3 4x=0 4 x( x 2 1)=0 4 x (x+1) ( x 1)=0 Ifølge nulreglen ses, at L = {-1 ; 0 ; +1} Bestem monotoniforhold x x < -1 x = -1-1 < x < 0 x = 0 0 < x < +1 x = < x f' (x) f (x) aftagende lok. min. voksende lok. max. aftagende lok. min voksende I ], 1 ] er f aftagende (da f' (x) < 0). Tilsvarende fås: I [ 1,0 ] er f voksende I [ 0,+1 ] er f aftagende I [ +1,+ {[ er f voksende Tegn grafer og bestem arealet af M Funktionsforskrifterne er indtaste i GeoGebra og graferne tegnes automatisk. Skæringspunkterne mellem graferne findes: A = (-1,3) og B = (1,3). Da f (x) g( x) for alle x i intervallet fra -1 til 1 fås arealet som +1 Areal= ( f (x) g ( x))dx 1 som findes med kommandoen integrale[f,g,-1,1]
9 Ib Michelsen stx_121_b_gl 9 af 11 Med GeoGebra beregnes arealet: Areal(M) = 2,4 Opgave 11 I 4. kvartal 2007 er antal hushandler i Danmark opgjort for hver af de 11 landsdele: Sortering efter størrelse: 181, 251, 439, 687, 803,1218, 1298, 1536, 1600, 1615, 1976 Efter sortering af observationerne findes medianen som den midterste observation, dvs nr. 6 (1218). Tilsvarende findes de øvrige kvartiler som medianer for hhv. observationer under og over medianen. Kvartilsæt = {439 ; 1218 ; 1600} Middeltallet = ( ) /11 = 11603/11= 1054,8 Middeltallet = 1055 Boksplot For 2010 er der tilsvarende oplyst kvartilsæt og mindste og største antal handler. For begge år bruges disse oplysninger til at tegne boksplot som vist på figur herunder:
10 Ib Michelsen stx_121_b_gl 10 af 11 Kommentar Tilsyneladende er der i alle landsdele en nedgang i antallet af handler fra 2007 til Det kunne tænkes, at der i en enkelt landsdel havde været flere handler og at denne evt. havde byttet rang med en anden landsdel, men det er nok kun teoretisk. Variationsbredden er blevet mindre især på grund af faldet i landsdelen(e) med de fleste handler. Relativt er der dog næsten samme forskel som tidligere, selvom landsdelene med mange handler har oplevet et kraftigt fald og 1. kvartil ikke har ændret sig meget. Opgave 12 Et metalstykke har form som på figurens mørke del, idet halvcirklerne er fjernet. Omkredsen er 6 cm. 1 Bestem h som funktion af r Omkredsen for metalstykket består af 2 sider med længden h samt 2 halvcirkler med radius r, der har en samlet omkreds på 2 π r. Deraf fås: Omkreds=6 2 h+2 π r=6 2 h=6 2 π r h= 6 2 π r 2 h=3 π r 2 1 Hvis figurens mørke del skal være sammenhængende, ses det let, at h > 2r 2 Med foregående fodnote fås: 3 π r>2 r 3>r(2+π) 3 >r r>0. Dvs. DM for 2+π 3 omkredsfunktionen Omkreds(r) er:[ 0 ; 2+π [
11 Ib Michelsen stx_121_b_gl 11 af 11 Arealet Arealet af det resterende metalstykke fås som differensen mellem arealet af et rektangel og en cirkel: Areal =h 2r π r 2 Areal=(3 π r) 2 r π r 2 Areal=6 r 2 π r 2 π r 2 Areal=6r 3 π r 2 Maksimering af areal Da arealfunktionens graf er en parabel med grenene nedad (a < 0), findes størsteværdien for r = x-værdien i toppunktet (= -b/ (2a) ) a= 3 π b=6 r= 6 2 ( 3 π) r= 1 π 3 Dvs. radius = 0,32 cm 3 r=0,32<0,58=3/(2+π) ; dvs. den fundne værdi tilhører definitionsmængden.
Ib Michelsen Vejledende løsning stxb 101 1
Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er
Besvarelse af stx_081_matb 1. Opgave 2. Opgave 1 2. Ib Michelsen, 2z Side B_081. Reducer + + = + + = Værdien af
Ib Michelsen, z Side 1 7-05-01 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 Besvarelse af stx_081_matb 1 Opgave 1 Reducer ( x + h) h( h + x) ( x h) h( h x) + + = x h xh h h x x + + = Værdien
Stx matematik B maj 2009
Ib Michelsen Svar stxb maj 2009 1 Stx matematik B maj 2009 Opgave 1 Bestem f ' ( x), idet f (x )=2 x 3 +4 x 2 f ' ( x)=(2 x 3 +4 x 2 )'=(2 x 3 )'+(4 x 2 )'=2 ( x 3 )' +4 ( x 2 )'=2 3 x 3 1 +4 2 x 2 1 =6
Stx matematik B december 2007. Delprøven med hjælpemidler
Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem
Vejledende besvarelse
Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100
Matematik B-niveau 31. maj 2016 Delprøve 1
Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =
Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4
Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat
Matematik B. Studentereksamen. Torsdag den 31. maj 2012 kl. 9.00-13.00. 2stx121-MAT/B-31052012
Matematik B Studentereksamen stx11-mat/b-310501 Torsdag den 31. maj 01 kl. 9.00-13.00 Side 1 af 6 sider Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
Vejledende løsning. Ib Michelsen. hfmac123
Vejledende løsning hfmac123 Side 1 Opgave 1 På en bankkonto indsættes 30.000 kr. til en rentesats på 2,125 % i 7 år. Beregning af indestående Jeg benytter formlen for kapitalfremskrivning: K n=k 0 (1+r
Løsningsforslag Mat B August 2012
Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave
Matematik B-niveau STX 7. december 2012 Delprøve 1
Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme
Ib Michelsen Vejledende løsning HF C 121 1. Et beløb forrentes i en bank med rentesatsen 3,5 % i 5 år og derefter er indeståendet kr. 59.384,32 kr.
Ib Michelsen Vejledende løsning HF C 121 1 Opgave 1 Et beløb forrentes i en bank med rentesatsen 3,5 % i 5 år og derefter er indeståendet kr. 59.384,32 kr. Beregning af startkapital Da der er tale om kapitalfremskrivning,
Løsningsforslag MatB Juni 2013
Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x
Matematik A, STX. Vejledende eksamensopgaver
Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,
Løsning MatB - januar 2013
Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]
Løsninger til eksamensopgaver på B-niveau 2011-2012
Løsninger til eksamensopgaver på B-niveau 011-01 18. maj 011: Delprøven UDEN hjælpemidler Opgave 1: 5x 11 19x 17 1117 19x 5x 8 14x x Opgave : T K T K KT T K T K KT KT T Parentesen er udregnet ved hjælp
Matematik c - eksamen
Eksamensnummer: 101364 - Fjernkursist side 1 af 13 Matematik c - eksamen Opgave 1) a) Jeg får af vide, at et par har vundet i Lotto og ønsker at sætte 100.000 kr. ind på en opsparingskonto. I Bank A kan
Løsninger til eksamensopgaver på B-niveau 2017
Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver
Løsninger til eksamensopgaver på B-niveau 2014
Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.
Løsninger til eksamensopgaver på B-niveau 2013
Løsninger til eksamensopgaver på B-niveau 013 Opgave 1: y a x b x 6 y 5 9 4. maj 013: Delprøven UDEN hjælpemidler Metode 1: Man kan bestemme a ved at indsætte de sammenhørende værdier i ligningsudtrykket,
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:
7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Løsninger til eksamensopgaver på A-niveau 2016
Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det
Formelsamling Matematik C
Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden
Løsninger til eksamensopgaver på A-niveau 2017
Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på
Løsningsforslag MatB December 2013
Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor
Vejledende besvarelse
Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer
Løsninger til eksamensopgaver på B-niveau 2018
Løsninger til eksamensopgaver på B-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler Opgave 1: Da trekant ABC er retvinklet, kan længden af hypotenusen bestemmes med Pythagoras: 2 2 2 AB AC BC 2 2
STUDENTEREKSAMEN MAJ AUGUST 2007 2009 MATEMATIK B-NIVEAU. onsdag 12. august 2009. Kl. 09.00 13.00. STX092-MABx
STUDENTEREKSAMEN MAJ AUGUST 007 009 MATEMATIK B-NIVEAU onsdag 1. august 009 Kl. 09.00 13.00 STX09-MABx Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt 5 spørgsmål.
Løsningsforslag MatB Juni 2014
Løsningsforslag MatB Juni 2014 Opgave 1 (5 %) a) Bestem en ligning for den rette linje l, der indeholder punkterne P( 2,4) og Q(4, 1) Løsning: Da de to punkter er givet kan vi beregne hældningen på følgende
1hf Spørgsmål til mundtlig matematik eksamen sommer 2014
1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser
Matematik B. Studentereksamen
Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Løsninger til eksamensopgaver på A-niveau 2018
Løsninger til eksamensopgaver på A-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler 2 Opgave 1: 2 2 12 0 Man kan løse andengradsligningen med diskriminantmetoden, men man kan også som her forkorte
Løsningsforslag MatB Juni 2012
Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion
Formelsamling. Ib Michelsen
Formelsamling T = log(2) 2 log(a) Ikast 2016 Ib Michelsen Ligedannede trekanter Hvis to trekanter er ensvinklede, har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den
MATEMATIK A-NIVEAU 2g
NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,
GU HHX MAJ 2009 MATEMATIK B. Onsdag den 13. maj 2009. Kl. 9.00 13.00 GL091-MAB. Undervisningsministeriet
GU HHX MAJ 009 MATEMATIK B Onsdag den 13. maj 009 Kl. 9.00 13.00 Undervisningsministeriet GL091-MAB Matematik B Prøvens varighed er 4 timer. Alle hjælpemidler er tilladt. Af opgaverne 8A, 8B, 8C, 8D og
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015
DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.
navn: dato: fag: Matematik hold: 2dMa modtaget af: ark nr: 1 af i alt 12 ark
ark nr: af i alt ark Opgave En lineær funktion f opfylder at dens graf går gennem A(3,7) og B(9,5) Vi finder hældningen a af grafen a = y - y 5-7 8 = = = 3 x - x 9-3 6 Forskriften for f kan nu bestemmes
GL. MATEMATIK B-NIVEAU
GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver
Løsningsforslag MatB Jan 2011
Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige
STUDENTEREKSAMEN MAJ-JUNI 2009 2009-8-2 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER
STUDENTEREKSAMEN MAJ-JUNI 009 009-8- MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Mandag den 11. maj 009 kl. 9.00-10.00 BESVARELSEN AFLEVERES KL. 10.00 Der tildeles
gl. Matematik A Studentereksamen Torsdag den 22. maj 2014 kl gl-1stx141-mat/a
gl. Matematik A Studentereksamen gl-1st141-mat/a-05014 Torsdag den. maj 014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Opgave 1 - uden hjælpemidler. Opgave 2 - uden hjælpemidler. Opgave 3 - uden hjælpemidler. Opgaven. a - Eksponentiel model. Opgaven
2014-0522 1stx141-MAT-B - eksemplarisk besvarelse Bemærk, at i opgaverne uden hjælpemidler er Maple blot benyttet som tekstbehandling. Til eksamen skal besvarelsen laves med papir og blyant. Opgavetksten
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 2016 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 Dette
2HF091_MAC. Givet to ensvinklede trekanter som vist på figuren. De anførte mål er oplyst.
Opgave 1 Givet to ensvinklede trekanter som vist på figuren. De anførte mål er oplyst. Da trekanterne er ensvinklede, har de proportionale sider; forstørrelsesfaktoren k findes som forholdet mellem c 1
Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler
Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for
gl. Matematik B Studentereksamen
gl. Matematik B Studentereksamen gl-stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
Trekants- beregning for hf
Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel
Løsninger til matematik C december 2015 Februar 2017
a) Vi aflæser opgavebeskrivelsen og ser, at vi kender r = 2%, K 0 = 30000 samt n = 5, så vi anvender renteformlen. Vi skal finde ud af, hvad der står efter 5 år på kontoen.: K 5 = 30000 (1 + 0.02) 5 =
(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2
MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar
Da der er tale om ét indskud og renten er fast, benytter vi kapitalfremskrivningsformlerne til beregningen, hvor
Opgave 1 Da trekant ABC er retvinklet, kan sætningen mk = hyp*sin(v) benyttes. De kendte tal indsættes: BC = 6,4 sin(37) = 3,85 BC = 3,9 Tilsvarende gælder for den hosliggende katete: hk = hyp*os(v) og
GUX. Matematik Niveau B. Prøveform b
GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.
Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning
Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Efterår 2018, eksamen december 2018 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer Hold Hf-e
Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses.
18-02-2009 16:13:02 Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: hyp 2 = kat 1 2 +kat 2 2 12 De oplyste tal indsættes; ligningen løses. hyp 2 = 5 2 +12 2 hyp 2 = 25 + 144 = 169 hyp
Matematik B. Studentereksamen. Skriftlig prøve (4 timer)
Matematik B Studentereksamen Skriftlig prøve (4 timer) STX093-MAB Fredag den 11. december 2009 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5 med i alt
Matematik A studentereksamen
Xxxx Side 1 af 11 Opgave 7 Jeg aflæser af boksplottet for personbeskatningen i 2007 medianen til. Første og anden kvartil aflæser jeg til hhv. og. Den mindst observerede personbeskatning i år 2007 var
a) For at bestemme a og b i y=ax+b defineres to lister med data fra opgaven År d 0, 1, 2, 3, 4, 5, 6 :
Eksemplarisk løsning af eksamensopgave Nedenstående opgaver er delprøven med hjælpemidler fra Matematik B eksamen d. 22 maj 2014 restart with Gym : Opgave 7 a) For at bestemme a og b i y=ax+b defineres
H Å N D B O G M A T E M A T I K 2. U D G A V E
H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................
Matematik B. Studentereksamen
Matematik B Studentereksamen stx123-mat/b-07122012 Fredag den 7. december 2012 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
Løsninger til eksamensopgaver på A-niveau 2011 18. maj 2011: Delprøven UDEN hjælpemidler
Løsninger til eksamensopgaver på A-niveau 011 18. maj 011: Delprøven UDEN hjælpemidler Opgave 1: x x1 0 Dette er en andengradsligning, der kan løses enten ved diskriminantmetoden eller ved at finde to
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
Matematik C 29. maj 2017
Opgave 1a) Matematik C 29. maj 2017 Eda kadriye Ozgur Vi får oplyst at et par har vundet i lotto og indsætter 100 000kr ind på en opsparingskonto i banken A kan de få en fast årlig rente på 1,25% Vi skal
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2018 Institution Kolding Hf og VUC Uddannelse Fag og niveau Lærer(e) Hold HFe Matematik C Anja Bøie Pedersen
Geometri, (E-opgaver 9d)
Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige
Delprøven uden hlælpemidler
Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 5 Funktioner og grafer, modellering af variabelsammenhænge 2016 MATEMATIK A-NIVEAU Vejledende eksempler
Matematik A August 2016 Delprøve 1
Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,
Eksamensspørgsma l Mat B
Eksamensspørgsma l Mat B 1. Lineære funktioner og tangentligningen Gør rede for de lineære funktioner og deres grafiske billeder, herunder betydning og bestemmelse af de konstanter, som indgår i regneforskriften.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2019 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Vestegnen, Albertslund Gymnasievej 10, 2620
Løsninger til matematik B-niveau HF maj 2016 April 2017
Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl Cristina Sissee Jensen Side 1 af 4 Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl
Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!
Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da
GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2
GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve
MATEMATIK B-NIVEAU STX081-MAB
MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund
Matematisk formelsamling
Matematisk formelsamling Almen voksenuddannelse Niveau D Denne udgave af Matematisk formelsamling til den skriftlige prøve på almen voksenuddannelse (avu) niveau D er udgivet af Børne- og Undervisningsministeriet
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
Matematik projekt. Klasse: Sh-mab05. Fag: Matematik B. Projekt: Trigonometri
Matematik projekt Klasse: Sh-mab05 Fag: Matematik B Projekt: Trigonometri Kursister: Anders Jørgensen, Kirstine Irming, Mark Petersen, Tobias Winberg & Zehra Köse Underviser: Vibeke Wulff Side 1 af 11
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette
Eksamensopgave august 2009
Ib Michelsen, Viborg C / Skive C Side 1 09-04-011 1 Eksmensopgve ugust 009 Opgve 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 Givet ovenstående ensvinklede treknter. D treknterne er ensvinklede, er
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....
Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari
Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen
Matematik B. Studentereksamen
Matematik B Studentereksamen 2st101-MAT/B-01062010 Tirsdag den 1. juni 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:
Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.
1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin august-juni, 2017/2018 Institution Campus Vejle HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik
Opgave 1 - Rentesregning. Opgave a)
Matematik C, HF 7. december 2016 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Løsningerne nedenfor er løst
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:
MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A Matematik A, STX. Anders Jørgensen & Mark Kddafi
MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt 1STX161-MAT/A-24052016 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik
Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.
Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske
Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: +kat 2. De oplyste tal indsættes; ligningen løses.
Opg. 1-1 B Da trekant ABC er retvinklet, kan vi anvende Pythagoras: hyp 2 = kat 1 2 +kat 2 2 12 De oplyste tal indsættes; ligningen løses. hyp 2 = 5 2 +12 2 hyp 2 = 25 + 144 = 169 hyp = 13,00 = 13,0 (idet
Matematik A. Studentereksamen
Matematik A Studentereksamen stx123-mat/a-07122012 Fredag den 7. december 2012 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
MAT B GSK juni 2007 delprøven uden hjælpemidler
MAT B GSK juni 007 delprøven uden hjælpemidler Opg 1 Grafen for funktionen f er vist på bilag 1. Løs ligningen f() = 4 og uligheden f() < 4. Svar : f() = 4 =, = 1, = 1 eller = 3 ; L = { ; 1;1;3} (ses
Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.
Eksamensspørgsmål i ma til 1p sommeren 2009 (revideret) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar formlen til kapitalfremskrivning