Tryk. Tryk i væsker. Arkimedes lov
|
|
|
- Signe Jespersen
- 10 år siden
- Visninger:
Transkript
1 Tryk. Tryk i væsker. rkimedes lov 1/6 Tryk. Tryk i væsker. rkimedes lov Indhold 1. Definition af tryk Tryk i væsker Enheder for tryk rkimedes lov...5 Ole Witt-Hansen 1975 (2015)
2 Tryk. Tryk i væsker. rkimedes lov 2/6 1. Definition af tryk Ovenstående figurer viser nogle tilfælde, hvor en plan klods er anbragt mod en flade. På figur (a) er klodsen anbragt på et bord. Klodsen er påvirket af tyngdekraften = mg, samt reaktionskraften lig med normalkraften (dvs. vinkelret på fladen) F r N fra bordet. På figur (b) er klodsen stillet på højkant, så berøringsfladen er mindre. Normalkraften er stadig den samme F N = mg, men kraften pr. arealenhed er større. Man udtrykker dette ved at de to klodser udøver forskelligt tryk på bordet. Man definerer nu trykket på fladen som normalkraften pr. arealenhed. Tryk betegnes enten med p eller P. Trykket er en skalar, så vi dropper vektorstregerne. Normalkraften er F N og arealet af berøringsfladen betegnes, F T (1.2) FN p = (Definitionsligning for tryk) f definitionsligningen ses, at SI enheden for tryk er Newton pr. kvadratmeter (N/m 2 ). Denne enhed kaldes også for Pascal (Forkortes Pa). På figur (c) er er klodsen påvirket af tyngden plus en yderligere kraft F. Normalkraften bliver i dette mg + F tilfælde F N = mg + F, og trykket på bordet er: p = På figur (d) har tyngden ingen komposant vinkelret på berøringsfladen, og giver derfor intet bidrag til trykket på den lodrette flade. Klodsen holdes fast af en kraft F r, der danner en vinkel α med enhedsnormalen (enhedsvektor vinkelret på fladen) n., n = 1. Normalkraften er i dette tilfælde: F N = F n = F n cosα og trykket mod den lodrette flade er F n p =, hvor som før er berøringsfladens areal. 1.3 Eksempel Et cylinderformet lod har massen 2,0 kg og radius i bundfladen 2,0 cm. a) Beregn det tryk, som loddet udøver, når det anbringes på et vandret bord.
3 Tryk. Tryk i væsker. rkimedes lov 3/6 Løsning Bundfladens areal: = π r 2 = π(4, m) 2 = 5, m 2. Normalkraften: F N = 2,0 kg 9,82 m/s 2 = 19,6 N. Heraf bestemmes trykket: FN 19,6 N p = 5,02 10 m 3 = = 3,92 10 N / 3 2 m 2 2. Tryk i væsker Tryk i væsker og gasser defineres på samme måde som tryk på en massiv flade, som normalkraften pr. arealenhed. I en væske er trykket det samme i alle retninger i en bestemt dybde. Betragter vi nemlig et lille terningformet væskevolumen, som vist på figuren, og hvis tyngde vi kan se bort fra, og som er i hvile, må kraften og dermed trykket være det samme på modstående sider. Ellers ville væskevoluminet flytte sig i den største krafts retning. Trykket på to hosliggende sider må også være den samme, da væskevoluminet ellers ville deformeres (trykkes skævt). Idet trykket er det samme i alle retninger, taler man om trykket i en bestemt dybde. Vi søger nu at beregne trykket i væsken p h i dybden h. Væskens massefylde er ρ, og trykket ved væskens overflade er lig med atmosfæretrykket p 0. Vi betragter nu et kasseformet væskerumfang, der har den ene flade sammenfaldende med overfladen af væsken. Se figur. realet af denne flade og bundfladen er og højden (dybden) af kassen er h. Kassens rumfang er V = h FN Vi anvender nu definitionsligningen for tryk: p = FN = p. Kraften på kassens overflade er trykket gange arealet: F 0 = p 0. Massen af væsken i kassen: m v = ρ V = ρ h Tyngden af væsken i kassen er derfor: F T =m v g = ρ h g. Normalkraften på bundfladen af kassen må være lig med normalkraften på denne flade, som er kraften på overfladen plus tyngden af væsken i kassen. Idet F N = F T + F 0 = ρ h g + p 0 FN p = finder vi trykket i dybden h, ved at indsætte F N og dividere med. Heraf fås:
4 Tryk. Tryk i væsker. rkimedes lov 4/6 (2.2) = p 0 + ρgh (Trykket i dybden h af en væske) p h Det bemærkes, at trykket ifølge formlen kun afhænger af dybden, men ikke af væskebeholderens udformning eller hvor meget væske, der er i beholderen. 2.3 Eksempel De to viste kar har den samme grundflade, men forskelligt rumfang. Fyldes de to kar nu op med væske til samme højde er trykket på bundfladen ifølge formlen for tryk i væsker den samme. Da bundfladerne har det samme areal, er de to bundflader også påvirket af den samme kraft. Kan det nu være rigtigt? Man kunne f.eks. undersøge påstanden ved at anbringe de to kar på en vægt, og argumentationen synes da at pege på, at vægten skulle vise det samme, hvilket den naturligvis ikke gør. Så hvad er der galt med ræsonnementet? Løsning: Det er ikke kraften på bundfladen, men den resulterende kraft på legemet, man bestemmer med en vægt. På figuren til venstre, påvirker trykkræfterne også beholderen med en opad rettet kraft, som skal trækkes fra trykkraften mod bundfladen. Men det er korrekt, at de to beholdere har samme tryk på bundfladen. 3. Enheder for tryk Som omtalt er SI enheden for tryk Pascal (Pa), som er lig med Newton pr. kvadratmeter (N/m 2 ). Især i forbindelse med gasser (lufttryk), findes der flere andre enheder for tryk, der har sin oprindelse i, hvorledes man tidligere målte trykket af atmosfæren. 3.1 Definition: Ved trykket 1 atmosfære (1 atm), forstår man trykket af en 760 mm høj kviksølvsøjle. For at omregne til SI enheder, anvender vi formlen for trykket i dybden h af en væske med massefylde ρ. P(760 mm Hg) = ρ Hg gh =13, kg/m 3 9,82 m/s 2 0,760 m = 1, Pa (3.2) 1 atm = 760 mm Hg = 1, Pa 1 1 mm Hg = atm 760 = 133,3 Pa (3.3) 1 Bar = 1 b =10 5 Pa. 1 mb (1 milibar) = 10 2 Pa (3.4) 1 at (trykket af 1 kg på 1 cm 2 ) = 1 kp/cm 2 = 9,80665 N/10-4 m 2 = 9, Pa Som det fremgår, er enhederne 1 atm, 1 Bar og 1 at næsten ens, hvilket ikke gør det lettere. Tidligere angav man lufttrykket i mb, og endnu tidligere i atm. Nu angiver oftest lufttrykket i hpa (hektopascal = 100 Pa), som er det samme som 1 mb. Enheden 1 at, har mest været anvendt af ingeniører. Ved trykket i bildæk anvendes enheden psi (pounds per square inch). 1 psi =6, Pa. Ikke så sjældent ser man tryk angivet som kg/m 2, men da dette ikke er en enhed for tryk, menes formodentlig.kp/m 2.
5 Tryk. Tryk i væsker. rkimedes lov 5/6 4. rkimedes lov Figuren forestiller et kasseformet legeme, der er nedsænket i en væske med massefylde ρ. Trykket på overfladen er og på bundfladen af kassen, kan bestemmes ud fra (2.2): p h = p 0 + ρgh. Den øverste flade, befinder sig i dybden h 1, og bundfladen befinder sig i dybden h 2. Man finder heraf trykket på de to flader. p1 = p0 + ρgh1 og p2 = p0 + ρgh2 De kræfter, der virker på de to flader, findes ved at gange med fladernes fælles areal : F 1 =p 1 og F 2 =p 2. Forskellen på kræfterne på underside og overside, kaldes for opdriften og betegnes F op. Vi udregner da F op. (4.2) F op = F 2 - F 1 = (p 0 + ρgh 2 ) - (p 0 + ρgh 1 ) = ρg(h 2 h 1 ) Kassens rumfang er højde x grundflade: V =(h 2 h 1 ). Massen af den væske, der kan være i kassen er m v = ρv. Vi kan derefter udtrykke opdriften: (4.3) F = ρ g( h2 h1 ) = ρgv m g F m g op = (4.3) udtrykkekimedes lov: v Et legeme, der er nedsænket i en væske er påvirket af en opdrift, som er lig med tyngden af den fortrængte væskemængden. For bedre at forstå årsagen til opdriften, har vi detaljeret udledt rkimedes lov, uf fra formlen for trykket i dybden af en væske. Men rkimedes lov kan indses ved følgende ræsonnement, der ikke kun gælder for et kasseformet legeme, men for en vilkårlig udformning af det nedsænkede legeme. fgrænser man nemlig et væskerumfang, som svarer til formen det nedsænkede legeme, er dette væskerumfang påvirket af tyngdekraften og trykkræfterne fra væsken. Da det er i hvile må trykkræfternes opdrift præcis modsvare tyngden af væsken m v g. Erstattes væskerumfanget nu af et virkeligt legeme med den samme form, vil trykkræfternes opdrift være den samme, fordi trykket i en væske kun afhænger af dybden og er uafhængigt af beholderens udformning. ltså kan vi slutte, at der gældekimedes lov: Ethvert legeme, der er nedsænket i en væske, er påvirket af en opdrift, som er lig med tyngden af den væskemængde, det fortrænger. op = v
6 Tryk. Tryk i væsker. rkimedes lov 6/6 4.4 Opgaver 1. ngiv den kraft, hvormed atmosfærens tryk påvirker sædet på en stol, der måler 40 x 40 cm 2. Er det mere eller mindre en tyngden af en elefant på 2,5 ton? Hvorfor braser stolen så ikke sammen? 2. Hvor stort er trykket i Filippinergraven.(dybde 10, 5 km)? Udtryk resultatet i atm. 3. Følgende spørgsmål skal (uden tøven) besvares ved ja eller nej. Opdriften på et legeme afhænger af: a) Dybden legemet befinder sig i. b) Massefylden for det nedsænkede legeme. c) Om det eundt eller firkantet, men ellers samme rumfang. d) Massefylden af væsken, som legemet er nedsænket i. e) Rumfanget af det nedsænkede legeme f) Trykket på væskens overflade (atmosfæretrykket) 4. Med en hammer påvirkes hovedet af et søm med en kraft på 400 N. Sømhovedet har en diameter 8,0 mm, og spidsen har en diameter på 0,5 mm. Beregn trykket på sømhovedet, og på stedet, hvor sømmet trænger ind.
1. Tryk. Figur 1. og A 2. , der påvirkes af luftartens molekyler med kræfterne henholdsvis F 1. og F 2. , må der derfor gælde, at (1.1) F 1 = P.
M3 1. Tryk I beholderen på figur 1 er der en luftart, hvis molekyler bevæger sig rundt mellem hinanden. Med jævne mellemrum støder de sammen med hinanden og de støder ligeledes med jævne mellemrum mod
Gaslovene. SH ver. 1.2. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3
Gaslovene SH ver. 1.2 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................
0BOpgaver i tryk og gasser. 1BOpgave 1
0BOpgaver i tryk og gasser 1BOpgave 1 Blandede opgaver i densitet ( = massefylde): a) Luftens densitet ved normal stuetemperatur og tryk er 1,20 kg/m 3. Hvor meget vejer luften i et rum med længde 6,00m,
Opdrift i vand og luft
Fysikøvelse Erik Vestergaard www.matematikfysik.dk Opdrift i vand og luft Formål I denne øvelse skal vi studere begrebet opdrift, som har en version i både en væske og i en gas. Vi skal lave et lille forsøg,
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 9. juni 2011 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 9. juni 2011 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 11. august 2015 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 11. august 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og
Bernoulli s lov. Med eksempler fra Hydrodynamik og aerodynamik. Indhold
Bernoulli s lov Med eksempler fra Indhold 1. Indledning...1 2. Strømning i væsker...1 3. Bernoulli s lov...2 4. Tømning af en beholder via en hane i bunden...4 Ole Witt-Hansen Køge Gymnasium 2008 Bernoulli
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 2. juni 2015 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 2. juni 2015 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),
Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.
M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger
Gaslovene. SH ver. 1.4. 1 Hvad er en gas? 2 1.1 Fysiske størrelser... 2 1.2 Gasligninger... 3
Gaslovene SH ver. 1.4 Indhold 1 Hvad er en gas? 2 1.1 Fysiske størrelser................... 2 1.2 Gasligninger...................... 3 2 Forsøgene 3 2.1 Boyle Mariottes lov.................. 4 2.1.1 Konklusioner.................
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side af 7 Skriftlig prøve, tirsdag den 6. december, 008, kl. 9:00-3:00 Kursus navn: ysik Kursus nr. 00 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning": Besvarelsen
Lineære sammenhænge. Udgave 2. 2009 Karsten Juul
Lineære sammenhænge Udgave 2 y = 0,5x 2,5 2009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Variabelsammenhænge, 2. udgave 2009". Indhold 1. Lineære sammenhænge, ligning og graf... 1 2. Lineær
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Fredag d. 8. juni 2018 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Fredag d. 8. juni 2018 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),
Newtons love. Indhold. Ole Witt-Hansen Elementær Fysik 1 1975 (2015) Newtons love 1/14
Newtons love /4 Newtons love Indhold. Kraft.... Fjedervægt som kraftmåler... 3. Kræfter er vektorer...3 4. Masse...4 5. Newtons love...5 6. Inertiens lov. Inertialsystemer...5 7. Newtons. lov...7 8. Newtons
1. Kræfter. 2. Gravitationskræfter
1 M1 Isaac Newton 1. Kræfter Vi vil starte med at se på kræfter. Vi ved fra vores hverdag, at der i mange daglige situationer optræder kræfter. Skal man fx. cykle op ad en bakke, bliver man nødt til at
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 31. maj 2016 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 31. maj 2016 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Mandag d. 11. juni 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 8. august 2013 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 8. august 2013 kl. 9 00 13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, torsdag den 24. maj, 2007, kl. 9:00-13:00 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning":
b. Sammenhængen passer med forskriften for en potensfunktion når a = 1 og b= k.
Kapitel 5 Øvelse 56 a = b = 3 b a = 1,7 b = 0,8 c a = 3 b =1 d a = b = 8 Øvelse 57 Sammenhængen passer med forskriften for en potensfunktion når a =1 b k = b Sammenhængen passer med forskriften for en
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 13 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":
Naturvidenskabeligt grundforløb
Før besøget i Tivoli De fysiologiske virkninger af g-kræfter. Spørgsmål der skal besvares: Hvorfor er blodtrykket større i fødderne større end blodtrykket i hovedet? Hvorfor øges pulsen, når man rejser
FYSIK RAPPORT. Fysiske Kræfter. Tim, Emil, Lasse & Kim
FYSIK RAPPORT Fysiske Kræfter Tim, Emil, Lasse & Kim Indhold Indledning... 2 Newtons love... 3 1. Lov: Inertiloven... 3 2. Lov: Kraftloven... 3 3. Lov: Loven om aktion/reaktion... 3 Kræfter... 4 Formler:...
brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt
brikkerne til regning & matematik areal og rumfang F+E+D preben bernitt brikkerne til regning & matematik areal og rumfang,f ISBN: 978-87-92488-18-3 1. Udgave som E-bog 2010 by bernitt-matematik.dk Kopiering
Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium
s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,
Rumfang af væske i beholder
Matematikprojekt Rumfang af væske i beholder Maila Walmod, 1.3 HTX Roskilde Afleveringsdato: Fredag d. 7. december 2007 1 Fru Hansen skal have en væskebeholder, hvor rumfanget af væsken skal kunne aflæses
Eksponentielle sammenhænge
Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller
Erik Vestergaard 1. Gaslovene. Erik Vestergaard
Erik Vestergaard www.matematikfysik.dk 1 Gaslovene Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, april 018. Billedliste Forside: istock.com/cofotoisme (Varmluftsballoner) Side
Funktioner generelt. for matematik pä B-niveau i stx. 2013 Karsten Juul
Funktioner generelt for matematik pä B-niveau i st f f ( ),8 0 Karsten Juul Funktioner generelt for matematik pä B-niveau i st Funktion, forskrift, definitionsmångde Find forskrift StÇrste og mindste vårdi
Tilstandsligningen for ideale gasser
ilstandsligningen for ideale gasser /8 ilstandsligningen for ideale gasser Indhold. Udledning af tilstandsligningen.... Konsekvenser af tilstandsligningen...4 3. Eksempler og opgaver...5 4. Daltons lov...6
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 11 Skriftlig prøve, torsdag den 8 maj, 009, kl 9:00-13:00 Kursus navn: Fysik 1 Kursus nr 100 Tilladte hjælpemidler: Alle hjælpemidler er tilladt "Vægtning": Besvarelsen
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, tirsdag den 24. maj, 2016 Kursus navn Fysik 1 Kursus nr. 10024 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":
Den Naturvidenskabelige Bacheloreksamen Københavns Universitet. Fysik september 2006
Den Naturvidenskabelige acheloreksamen Københavns Universitet Fysik 1-14. september 006 Første skriftlige evaluering 006 Opgavesættet består af 4 opgaver med i alt 9 spørgsmål. Skriv tydeligt navn og fødselsdato
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Fredag d. 2. juni 2017 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Fredag d. 2. juni 2017 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),
KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE
KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk mekanik 2 - ny og gammel ordning Vejledende eksamensopgaver 16. januar 2008 Tilladte hjælpemidler: Medbragt litteratur, noter
ELEKTROMAGNETISME. "Quasistatiske elektriske og magnetiske felter", side Notem kaldes herefter QEMF.
Institut for elektroniske systemer EIT3/18 180917HEb ELEKTROMAGNETISME www.kom.aau.dk/~heb/kurser/elektro-18 MM 1: Fredag d. 28. september 2018 kl. 8.15 i B2-104 Emner: Læsning: Indledning til kurset Emner
Tip til 1. runde af Georg Mohr-Konkurrencen. Geometri. Georg Mohr-Konkurrencen
Tip til. runde af Georg Mohr-Konkurrencen Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en teoretisk indføring, men der i stedet fokus på
Variabel- sammenhænge
Variabel- sammenhænge 2008 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for st og hf. Indhold 1. Hvordan viser en tabel sammenhængen mellem to variable?... 1 2.
Løsninger til udvalgte opgaver i opgavehæftet
V3. Marstal solvarmeanlæg a) Den samlede effekt, som solfangeren tilføres er Solskinstiden omregnet til sekunder er Den tilførte energi er så: Kun af denne er nyttiggjort, så den nyttiggjorte energi udgør
Trekants- beregning for hf
Trekants- beregning for hf C C 5 l 5 A 34 8 B 018 Karsten Juul Indhold 1. Vinkler... 1 1.1 Regler for vinkler.... 1. Omkreds, areal, højde....1 Omkreds..... Rektangel....3 Kvadrat....4 Højde....5 Højde-grundlinje-formel
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 14 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":
Tip til 1. runde af Georg Mohr-Konkurrencen Geometri
Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,
Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5
Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende
INTRODUKTION TIL VEKTORER
INTRODUKTION TIL VEKTORER x-klasserne Gammel Hellerup Gymnasium 1 Indholdsfortegnelse HVORFOR INDFØRES VEKTORER?... 3 VEKTORER... 5 Vektoraddition... 7 Kræfternes parallelogram... 9 Multiplikation af vektor
Projekt 3.1 Pyramidestub og cirkelareal
Projekt. Pyramidestub og cirkelareal - i tilknytning til afsnit., især for A Indhold Rumfanget af en pyramidestub... Moderne metode... Ægyptisk metode... Kommentarer til den ægyptiske beregning... Arealet
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 23. august 2012 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 23. august 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og
FYSIKOPGAVER KINEMATIK og MEKANIK
FYSIKOPGAVER KINEMATIK og MEKANIK M1 Galileos faldrende På billedet nedenfor ses en model af Galileo Galilei s faldrende som den kan ses på http://www.museogalileo.it/ i Firenze. Den består af et skråplan
21. OKTOBER 2014 TRYK OG TRYKKOTER. En kort forklaring om begreberne meter vandsøjle og meter over havet. Lejre Vandråd
21. OKTOBER 2014 TRYK OG TRYKKOTER En kort forklaring om begreberne meter vandsøjle og meter over havet Lejre Vandråd Indholdsfortegnelse 1. Tryk og trykkoter i et vandforsyningssystem... 3 1.1 Tryk og
Impulsbevarelse ved stød
Iulsbevarelse ved stød Indhold. Centralt stød.... Elastisk stød... 3. Uelastisk stød... 4. Iulsbevarelse ved stød... 5. Centralt elastisk stød...3 6. Centralt fuldstændig uelastisk stød...5 7. Ekseler
Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul
Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit
hvor p er trykket, V er rumfanget, n er antal mol, R er gaskonstanten og T er temperaturen i Kelwin. Gaskonstanten R angiver energi pr mol pr grad.
1 Povlonis Innovation Povl-Otto Nissen Boyle-Mariottes lov = k Boyle-Mariottes lov,, handler om, at ket gange rumfanget i en indelukket luftmasse ved uændret temeratur T er konstant. Tidligere er åvisningen
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Torsdag d. 7. august 2014 kl
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Torsdag d. 7. august 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),
Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant
Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1
Statik og styrkelære
Bukserobot Statik og styrkelære Refleksioner over hvilke styrkemæssige udfordringer en given last har på den valgte konstruktion. Hvilke ydre kræfter påvirker konstruktionen og hvor er de placeret Materialer
bruge en formel-samling
Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber
Fysik 2 - Den Harmoniske Oscillator
Fysik 2 - Den Harmoniske Oscillator Esben Bork Hansen, Amanda Larssen, Martin Qvistgaard Christensen, Maria Cavallius 5. januar 2009 Indhold 1 Formål 1 2 Forsøget 2 3 Resultater 3 4 Teori 4 4.1 simpel
Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.
Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den
Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015. Teoretisk prøve. Prøvetid: 3 timer
Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015 Teoretisk prøve Prøvetid: 3 timer Opgavesættet består af 15 spørgsmål fordelt på 5 opgaver. Bemærk, at de enkelte spørgsmål ikke tæller
Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt).
Mit bord. Tegn det bord, du sidder ved. Du skal lave en tegning af bordet set lige på fra alle sider (fra langsiden, den korte side, fra oven og fra neden - 4 tegninger i alt). Tegningerne skal laves på
Matematik A. Højere teknisk eksamen
Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir
Opdrift og modstand på et vingeprofil
Opdrift og modstand på et vingeprofil Thor Paulli Andersen Ingeniørhøjskolen Aarhus Universitet 1 Vingens anatomi Et vingeprofil er karakteriseret ved følgende bestanddele: forkant, bagkant, korde, krumning
Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer
Dansk Fysikolympiade 2007 Landsprøve Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar Prøvetid: 3 timer Opgavesættet består af 6 opgaver med tilsammen 17 spørgsmål. Svarene på de stillede
Rapport uge 48: Skråplan
Rapport uge 48: Skråplan Morten A. Medici, Jonatan Selsing og Filip Bojanowski 2. december 2008 Indhold 1 Formål 2 2 Teori 2 2.1 Rullebetingelsen.......................... 2 2.2 Konstant kraftmoment......................
Funktioner. 2. del Karsten Juul
Funktioner 2. del 2018 Karsten Juul 18. Eksponentiel funktion forskrift 18.1 Oplæg nr. 1 til forskrift for eksponentiel funktion... 52 18.2 Oplæg nr. 2 til forskrift for eksponentiel funktion... 53 18.3.
Deformation af stålbjælker
Deformation af stålbjælker Af Jimmy Lauridsen Indhold 1 Nedbøjning af bjælker... 1 1.1 Elasticitetsmodulet... 2 1.2 Inertimomentet... 4 2 Formelsamling for typiske systemer... 8 1 Nedbøjning af bjælker
Løsningsforslag til fysik A eksamenssæt, 23. maj 2008
Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi
Danmarks Tekniske Universitet
Danmars Tenise Universitet Sriftlig prøve, tirsdag den 15. december, 009, l. 9:00-13:00 Kursus navn: Fysi 1 Kursus nr. 100 Tilladte hjælpemidler: Alle hjælpemidler er tilladt. "Vægtning": Besvarelsen bedømmes
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne
median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel
Vejr. Matematik trin 2. avu
Vejr Matematik trin 2 avu Almen voksenuddannelse 10. december 2008 Vejr Matematik trin 2 Skriftlig matematik Opgavesættet består af: Opgavehæfte Svarark Hæftet indeholder følgende opgaver: 1 Klimarekorder
Naturfagligt tema og opgaver
Naturfagligt tema og opgaver SI system (fr. Système international d'unités 'det internationale enhedssystem') Fysisk Størrelse Symbol SI-system Vejlængde s m meter Længde l m Længde af emne Tid t s (sekunder,
GUX. Matematik. A-Niveau. Torsdag den 31. maj Kl Prøveform a GUX181 - MAA
GUX Matematik A-Niveau Torsdag den 31. maj 018 Kl. 09.00-14.00 Prøveform a GUX181 - MAA 1 Matematik A Prøvens varighed er 5 timer. Prøven består af opgaverne 1 til 11 med i alt 5 spørgsmål. De 5 spørgsmål
Matematik. Meteriske system
Matematik Geometriske figurer 1 Meteriske system Enheder: Når vi arbejder i længder, arealer og rummål er udgangspunktet metersystemet: 2 www.ucholstebro.dk. Døesvej 70 76. 7500 Holstebro. Telefon 99 122
Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari
Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen
Studieretningsopgave
Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...
Afstande, skæringer og vinkler i rummet
Afstande, skæringer og vinkler i rummet Frank Villa 2. maj 202 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Potensfunktioner samt proportional og omvent proportional. for hf Karsten Juul
Potensfunktioner samt proportional og omvent proportional for hf 2018 Karsten Juul Potensfunktion 1. Oplæg til forskrift for potensfunktion...1 2. Forskrift for potensfunktion...2 3. Udregn x eller y i
Hunden kan sige et nyt tal (legen kan selvfølgelig udvides til former) hver dag, men kun det tal.
4. oktober 9.00-15.00 Tårnby Faglig læsning Program Præsentation Hunden - en aktivitet til at vågne op på Oplæg om begrebsdannelse Aktiviteter hvor kroppen er medspiller Matematikkens særlige sprog Aktiviteter
Afstande, skæringer og vinkler i rummet
Afstande, skæringer og vinkler i rummet Frank Nasser 9. april 20 c 2008-20. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på
Kuglers bevægelse i væske
Kuglers bevægelse i væske Øvelsens formål er - at eftervise v 2 -loven for bevægelse i væsker: For et legeme der bevæger sig i vand. - at se at legemet i vores forsøg er så stort, at vi ikke har laminar
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve
5: Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri). Interessen for figurer
Kapitel 3 Lineære sammenhænge
Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk
Figur 1. fs10 Matematik - Tennisklubben
Figur 1 fs10 Matematik - Tennisklubben 1 Hammel Tennisklub Hammel tennisklub har eksisteret siden år 1904 1.1 Hvor lang tid har klubben eksisteret? Der spilles fra april, til oktober starter. 1.2 Hvor
Eksamen i fysik 2016
Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.
Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul
Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse
TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)
Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale
Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:
Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius
Beregning til brug for opmåling, udfoldning og konstruktion
VVS-branchens efteruddannelse Beregning til brug for opmåling, udfoldning og konstruktion Beregning til brug for opmåling, udfoldning og konstruktion Med de trigonometriske funktioner, kan der foretages
Danmarks Tekniske Universitet
Danmarks Tekniske Universitet Side 1 af 4 sider Skriftlig prøve, den 29. maj 2006 Kursus navn: Fysik 1 Kursus nr. 10022 Tilladte hjælpemidler: Alle "Vægtning": Eksamenssættet vurderes samlet. Alle svar
Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. 25. August 2011 kl. 9 00-13 00
Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik 25. August 2011 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis), rigtigheden
Eksempler på opgaver til mundtlig delprøve i fysik B (htx)
Eksempler på opgaver til mundtlig delprøve i fysik B (htx) Af Morten Stoklund Larsen og Anne Handberg Pedersen Denne note indeholder forfatternes forslag til, hvordan opgaver til brug ved den mundtlige
Kapitel 4. Trigonometri. Matematik C (må anvendes på Ørestad Gymnasium) Kapitel 4
Matematik C (må anvendes på Ørestad Gymnasium) Trigonometri Den del af matematik, der beskæftiger sig med figurer og deres egenskaber, kaldes for geometri. Selve ordet geometri er græsk og betyder jord(=geo)måling(=metri).
