Forelæsning 9: Inferens for andele (kapitel 10)

Størrelse: px
Starte visningen fra side:

Download "Forelæsning 9: Inferens for andele (kapitel 10)"

Transkript

1 Kursus Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

2 Oversigt 1 Intro 2 Konfidensinterval for én andel Eksempel 1 Bestemmelse af stikprøvestørrelse 3 Hypotesetest for én andel 4 Hypotesetest for to andele Eksempel 2 5 Hypotesetest for flere andele Eksempel 2 - fortsat 6 Analyse af antalstabeller 7 R (R note 8) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

3 Intro Oversigt 1 Intro 2 Konfidensinterval for én andel Eksempel 1 Bestemmelse af stikprøvestørrelse 3 Hypotesetest for én andel 4 Hypotesetest for to andele Eksempel 2 5 Hypotesetest for flere andele Eksempel 2 - fortsat 6 Analyse af antalstabeller 7 R (R note 8) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

4 Intro Forskellige Hypotesetest-situationer Gennemsnit for kvantitative data: Hypotesetest for én middelværdi (one-sample) Hypotesetest for to middelværdier (two samples) Varianser for kvantitative data: Hypotesetest for én varians Hypotesetest for to varianser I dag: Andele: Hypotesetest for én andel Hypotesetest for to og flere andele Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

5 Intro Estimation af andele Estimation af andele fås ved at observere antal gange x en hændelse har indtruffet ud af n forsøg: ˆp = x n ˆp [0; 1] Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

6 Konfidensinterval for én andel Oversigt 1 Intro 2 Konfidensinterval for én andel Eksempel 1 Bestemmelse af stikprøvestørrelse 3 Hypotesetest for én andel 4 Hypotesetest for to andele Eksempel 2 5 Hypotesetest for flere andele Eksempel 2 - fortsat 6 Analyse af antalstabeller 7 R (R note 8) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

7 Konfidensinterval for én andel Konfidensinterval for én andel Såfremt der haves en stor stikprøve, fås et (1 α)% konfidensinterval for p x x n z n (1 x n ) α/2 < p < x x n n + z n (1 x n ) α/2 n Ovenstående formel fås ved approximation til normalfordelingen. Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

8 Konfidensinterval for én andel Eksempel 1 Eksempel 1 og/eller: p = Andelen af venstrehåndede i Danmark p = Andelen af kvindelige ingeniørstuderende Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

9 Konfidensinterval for én andel Bestemmelse af stikprøvestørrelse Maksimal fejl på estimat Den maksimale fejl med (1 α)% konfidens bliver E = z α/2 p(1 p) n hvor et estimat af p fås ved p = x n Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

10 Konfidensinterval for én andel Bestemmelse af stikprøvestørrelse Bestemmelse af stikprøvestørrelse Såfremt man højst vil tillade en maksimal fejl E med (1 α)% konfidens, bestemmes den nødvendige stikprøvestørrelse ved n = p(1 p)[ z α/2 E ]2 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

11 Konfidensinterval for én andel Bestemmelse af stikprøvestørrelse Bestemmelse af stikprøvestørrelse Såfremt man højst vil tillade en maksimal fejl E med (1 α)% konfidens, og p ikke kendes, bestemmes den nødvendige stikprøvestørrelse ved n = 1 4 [z α/2 E ]2 idet man får den mest konservative stikprøvestørrelse ved at vælge p = 1 2 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

12 Konfidensinterval for én andel Bestemmelse af stikprøvestørrelse Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

13 Hypotesetest for én andel Oversigt 1 Intro 2 Konfidensinterval for én andel Eksempel 1 Bestemmelse af stikprøvestørrelse 3 Hypotesetest for én andel 4 Hypotesetest for to andele Eksempel 2 5 Hypotesetest for flere andele Eksempel 2 - fortsat 6 Analyse af antalstabeller 7 R (R note 8) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

14 Hypotesetest for én andel Trin ved Hypoteseprøvning 1. Opstil hypoteser og vælg signifikansniveau α 2. Beregn teststørrelse 3. Beregn kritisk værdi (eller p-værdi) 4. Sammenlign teststørrelse og kritisk værdi og drag en konklusion (evt. 4. Sammenlign p-værdi og signifikansniveau og drag en konklusion) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

15 Hypotesetest for én andel Hypotesetest for én andel Vi betragter en nul- og alternativ hypotese for én andel p: H 0 : p = p 0 H 1 : p p 0 Man vælger som sædvanligt enten at acceptere H 0 eller at forkaste H 0 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

16 Hypotesetest for én andel Beregning af teststørrelse Såfremt stikprøven er tilstrækkelig stor fås teststørrelsen: Z = X np 0 np0 (1 p 0 ) Under nulhypotesen gælder at Z følger en standard normalfordeling, dvs. Z N(0, 1 2 ) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

17 Hypotesetest for én andel Beregning af kritisk værdi Afhængig af den alternative hypotese fås følgende kritiske værdier Alternativ Afvis hypotese nul-hypotese hvis p < p 0 Z < z α p > p 0 Z > z α p p 0 Z < z α/2 eller Z > z α/2 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

18 Hypotesetest for én andel Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

19 Hypotesetest for to andele Oversigt 1 Intro 2 Konfidensinterval for én andel Eksempel 1 Bestemmelse af stikprøvestørrelse 3 Hypotesetest for én andel 4 Hypotesetest for to andele Eksempel 2 5 Hypotesetest for flere andele Eksempel 2 - fortsat 6 Analyse af antalstabeller 7 R (R note 8) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

20 Hypotesetest for to andele Hypotesetest for to andele Såfremt man ønsker at sammenligne to andele (her vist for et tosidet alternativ) Fås teststørrelsen H 0 : p 1 = p 2 H 1 : p 1 p 2 Z = X 1 n 1 X 2 n 2 ˆp(1 ˆp)( 1 n n 2 ), hvor ˆp = X 1 + X 2 n 1 + n 2 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

21 Hypotesetest for to andele Eksempel 2 Eksempel 2 I et studie (USA, 1975) undersøgte man sammenhæng mellem brug af p-piller og risikoen for hjerteinfarkt. Fra et hospital havde man indsamlet følgende stikprøve Infarkt Ikke infarkt p-piller Ikke p-piller Udfør et test for om der er sammenhæng mellem brug af p-piller og risiko for hjerteinfarkt. Anvend signifikansniveau α = 1% Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

22 Hypotesetest for flere andele Oversigt 1 Intro 2 Konfidensinterval for én andel Eksempel 1 Bestemmelse af stikprøvestørrelse 3 Hypotesetest for én andel 4 Hypotesetest for to andele Eksempel 2 5 Hypotesetest for flere andele Eksempel 2 - fortsat 6 Analyse af antalstabeller 7 R (R note 8) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

23 Hypotesetest for flere andele Hypotesetest for flere andele I nogle tilfælde kan man være interesseret i at vurdere om to eller flere binomialfordlinger har den samme parameter p, dvs. man er interesseret i at teste nul-hypotesen H 0 : p 1 = p 2 =... = p k = p mod en alternativ hypotese at disse andele ikke er ens Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

24 Hypotesetest for flere andele Hypotesetest for flere andele stikprøve 1 stikprøve 2... stikprøve k Total Succes x 1 x 2... x k x Fiasko n 1 x 1 n 2 x 2... n k x k n x Total n 1 n 2... n k n Under nul-hypotesen fås et estimat for p: ˆp = x n Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

25 Hypotesetest for flere andele Hypotesetest for flere andele Under nul-hypotesen fås et estimat for p: ˆp = x n såfremt nul-hypotesen gælder, vil vi forvente at den j te gruppe har e 1j successer og e 2j fiaskoer, hvor e 1j = n j ˆp = n j x n e 2j = n j (1 ˆp) = n j (n x) n Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

26 Hypotesetest for flere andele Beregning af teststørrelse Teststørrelsen bliver χ 2 = 2 i=1 k (o ij e ij ) 2 e j=1 ij hvor o ij er observeret antal i celle (i, j) og e ij er forventet antal i celle (i, j) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

27 Hypotesetest for flere andele Beregning af kritisk værdi Vi har teststørrelsen χ 2 = 2 i=1 k (o ij e ij ) 2 e j=1 ij Teststørrelsen sammenlignes med χ 2 α(k 1) Såfremt χ 2 > χ 2 α(k 1) forkastes nul-hypotesen Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

28 Hypotesetest for flere andele Eksempel 2 - fortsat Eksempel 2 - fortsat Observerede Infarkt Ikke infarkt p-piller Ikke p-piller Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

29 Hypotesetest for flere andele Eksempel 2 - fortsat Eksempel 2 - fortsat Forventede Infarkt Ikke infarkt Total p-piller 57 Ikke p-piller 167 Total Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

30 Hypotesetest for flere andele Eksempel 2 - fortsat Eksempel 2 - fortsat Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

31 Analyse af antalstabeller Oversigt 1 Intro 2 Konfidensinterval for én andel Eksempel 1 Bestemmelse af stikprøvestørrelse 3 Hypotesetest for én andel 4 Hypotesetest for to andele Eksempel 2 5 Hypotesetest for flere andele Eksempel 2 - fortsat 6 Analyse af antalstabeller 7 R (R note 8) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

32 Analyse af antalstabeller Analyse af antalstabeller 4 uger før 2 uger før 1 uge før Kandidat I Kandidat II ved ikke Er stemmefordelingen ens? H 0 : p i1 = p i2 = p i3 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

33 Analyse af antalstabeller Analyse af antalstabeller dårlig middel god dårlig middel god Er der uafhængighed mellem inddelingskriterier? Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

34 Analyse af antalstabeller Beregning af teststørrelse I en antalstable med r rækker og c søjler, fås teststørrelsen χ 2 = r i=1 c (o ij e ij ) 2 j=1 hvor o ij er observeret antal i celle (i, j) og e ij er forventet antal i celle (i, j) e ij Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

35 Analyse af antalstabeller Beregning af kritisk værdi Vi har teststørrelsen χ 2 = r i=1 c (o ij e ij ) 2 e j=1 ij Teststørrelsen sammenlignes med χ 2 α((r 1)(c 1)) Såfremt χ 2 > χ 2 α((r 1)(c 1)) forkastes nul-hypotesen Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

36 R (R note 8) Oversigt 1 Intro 2 Konfidensinterval for én andel Eksempel 1 Bestemmelse af stikprøvestørrelse 3 Hypotesetest for én andel 4 Hypotesetest for to andele Eksempel 2 5 Hypotesetest for flere andele Eksempel 2 - fortsat 6 Analyse af antalstabeller 7 R (R note 8) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

37 R (R note 8) R (R note 8) ("orienterende") Eksemplet side 295: > prop.test(36,100) Eksemplet side 302 (eksemplet anvendt på side 612): > crumbled=c(41,27,22) > intact=c(79,53,78) > prop.test(crumbled,crumbled+intact) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

38 R (R note 8) Oversigt 1 Intro 2 Konfidensinterval for én andel Eksempel 1 Bestemmelse af stikprøvestørrelse 3 Hypotesetest for én andel 4 Hypotesetest for to andele Eksempel 2 5 Hypotesetest for flere andele Eksempel 2 - fortsat 6 Analyse af antalstabeller 7 R (R note 8) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 9 Foråret / 38

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test) Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n =

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n = Opgave 6 a) Se Bilag 2! b) Variablen n isoleres ( L = 2 z 1 α 2 ) 2 L = 2 z 1 α 2 L = 2 z 1 α 2 n = ( ˆp (1 ˆp) n ˆp (1 ˆp) n ˆp (1 ˆp) ( n ( ˆp (1 ˆp) ) 1/2 ) 2 L 2 z 1 α 2 n ) 1/2 Opgave 7 n = 4ˆp (1

Læs mere

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter.

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Eksempel I Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Per Bruun Brockhoff IMM DTU 02402 Eksempler 1 Eksempel I Tiden mellem kundeankomster på et posthus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark IMM Statistical Consulting Center Technical University of Denmark ISCC Brugervejledning til beregningsmodul til robust estimation af nugget effect Endelig udgave til Eurofins af Christian Dehlendorff 15.

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b

Peter Harremoës Matematik A med hjælpemidler 16. december 2013. M = S 1 + a = a + b a b a = b 1. b 1 a = b 1. a = b 1. b 1 a = b stk. Peter Harremoës Matematik A med hjælpemidler 16. december 2013 Opagve 6 Variables a isoleres: M = S 1 + a = a + b b a b a = b 1 ( ) 1 b 1 a = b 1 a = b 1 1 b 1 a = b Hvis b = 1, så gælder ligningen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh123-mat/b-17122012 Mandag den 17. december 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp.

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp. Udarbejdet af Thomas Jensen og Morten Overgård Nielsen Indhold Introduktion til materialet. s. 2 Introduktion til chi i anden test. s. 4 Et eksempel hastighed og ulykker på motorveje s. 8 Sådan udregnes

Læs mere

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse.

Skriv punkternes koordinater i regnearket, og brug værktøjet To variabel regressionsanalyse. Opdateret 28. maj 2014. MD Ofte brugte kommandoer i Geogebra. Generelle Punktet navngives A Geogebra navngiver punktet Funktionen navngives f Funktionen navngives af Geogebra Punktet på grafen for f med

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Oversigt. 1 Praktisk Information. 2 Introduction to Statistics - a primer. 3 Intro Case historier: IBM Big data, Novo Nordisk small data, Skive fjord

Oversigt. 1 Praktisk Information. 2 Introduction to Statistics - a primer. 3 Intro Case historier: IBM Big data, Novo Nordisk small data, Skive fjord Course 02402/02323 Introducerende Statistik Forelæsning 1: Intro, R og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2013/14

Læs mere

KURSUSMATERIALE TIL DET NYE STATISTIKPENSUM

KURSUSMATERIALE TIL DET NYE STATISTIKPENSUM KURSUSMATERIALE TIL DET NYE STATISTIKPENSUM Det foreliggende udkast til kursusmateriale er lagt ud til orientering for kollegerne med henblik på at indhente kommentarer til materialet. Sammen med Susanne

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

9. Binomialfordelingen

9. Binomialfordelingen 9. Biomialfordelige 9.. Gekedelse Hvert forsøg ka ku resultere i to mulige udfald; succes og fiasko. I modsætig til poissofordelige er atallet af forsøg edeligt. 9.. Model X : Stokastisk variabel, der

Læs mere

Sociologi, 2. semester Københavns Universitet Forår 2013

Sociologi, 2. semester Københavns Universitet Forår 2013 Indholdsfortegnelse 1. Problem og motivation: Bolig og ulighed i byen (1052, 852), (1040, 840), (1027, 827), (1105, 905)... 3 1.1 Teoretiske hypoteser... 4 2. Teoretisk udgangspunkt: Et steds betydning

Læs mere

VIDEREGÅENDE STATISTIK

VIDEREGÅENDE STATISTIK MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK herunder kvalitetskontrol Udgave 10.b 015 FORORD Denne lærebog kan læses på baggrund af en statistisk viden svarende til lærebogen M. Oddershede Larsen :

Læs mere

Lær nemt! Statistik - Kompendium

Lær nemt! Statistik - Kompendium David Brink Lær nemt! Statistik - Kompendium Ventus wwwventusdk Lær nemt! Statistik - Kompendium 005 David Brink Nielsen og Ventus Download kompendiet gratis på wwwventusdk ISBN 87-7681-01-7 Ventus Falkoner

Læs mere

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)...

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... χ Indhold Formål med noten... Goodness of fit metoden (GOF)... 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... ) χ -fordelingerne (fordelingsfunktionernes egenskaber)... 6 3) χ -

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: maj-juni 2011/2012 ZBC Ringsted Hhx Matematik B Jens Jørvad 12hhx21 Oversigt over

Læs mere

VIDEREGÅENDE STATISTIK

VIDEREGÅENDE STATISTIK MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK herunder kvalitetskontrol Udgave 10a 015 FORORD Denne lærebog kan læses på baggrund af en statistisk viden svarende til lærebogen M. Oddershede Larsen :

Læs mere

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0. Opgave 6 Vi sætter P = 1000 og isolerer x i ligningen Se Bilag 2! P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.6 ( 10 y 0.4 )1 /0.6 = x 10 1 /0.6 y 0.4 /0.6 = x x = 10 5 /3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014 Matematik B Højere handelseksamen hhx142-mat/b-18082014 Mandag den 18. august 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Statistisk bearbejdning af overvågningsdata - Trendanalyser

Statistisk bearbejdning af overvågningsdata - Trendanalyser Danmarks Miljøundersøgelser Miljøministeriet Teknisk anvisning fra DMU nr. 4, 006 Statistisk bearbejdning af overvågningsdata - Trendanalyser NOVANA (Tom side) Danmarks Miljøundersøgelser Miljøministeriet

Læs mere

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005

µ = κ (θ); Kanonisk link, θ = g(µ) Poul Thyregod, 9. maj Specialkursus vid.stat. foraar 2005 Hierarkiske generaliserede lineære modeller Lee og Nelder, Biometrika (21) 88, pp 987-16 Dagens program: Mandag den 2. maj Hierarkiske generaliserede lineære modeller - Afslutning Hierarkisk generaliseret

Læs mere

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i Normalfordeliger For at e stokastisk variabel X ka være ormalfordelt, skal X agive værdie af e eller ade målig, f.eks. tid, lægde, vægt, beløb osv. Notatioe er: Xi ~ N( μ, σ hvor i er observatiosummeret,

Læs mere

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal

Vejledende løsninger, Mat A, maj 2015 Peter Bregendal Delprøven uden hjælpemidler Opgave 1 a) Se graf: Opgave 2 a) f (x)= 25000x + 475000 År hvor værdien er 150000: 25000x + 475000 = 150000 25000x = 325000 x = 13 I år 2025 vil værdien være faldet til 150000

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 9. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 OPSAMLING EKSAKTE MODELLER Fordele: Praktiske til initierende analyser/dimensionering

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx141-mat/a-305014 Fredag den 3. maj 014 kl. 9.00-14.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen

Læs mere

IDRÆTSSTATISTIK BIND 2

IDRÆTSSTATISTIK BIND 2 IDRÆTSSTATISTIK BIND 2 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-07-8 Bd.2 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Indholdsfortegnelse 1. INDLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 2 2. LÆSEVEJLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 3

Indholdsfortegnelse 1. INDLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 2 2. LÆSEVEJLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 3 Indholdsfortegnelse 1. INDLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 2 2. LÆSEVEJLEDNING (1057:857)(1031:831)(1072:872)(1056:856) 3 3. TEORETISK UDGANGSPUNKT (1072:872) 3 3.1 FORFORSTÅELSE AF SUNDHED

Læs mere

R i 02402: Introduktion til Statistik

R i 02402: Introduktion til Statistik R i 02402: Introduktion til Statistik Per Bruun Brockhoff DTU Informatik, DK-2800 Lyngby 20. juni 2011 Indhold 1 Anvendelse af R på Databar-systemet på DTU 5 1.1 Adgang......................................

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Aktivitetsmappe for introkurset til Naturvidenskabeligt grundforløb 2008

Aktivitetsmappe for introkurset til Naturvidenskabeligt grundforløb 2008 Den eksperimentelle metode i statistik Den naturvidenskabelige metode er i fokus efter gymnasiereformen. Det starter med naturvidenskabeligt grundforløb: Aktivitetsmappe for introkurset til Naturvidenskabeligt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2015 Institution VUC Vest, Stormgade 47, 6700 Esbjerg Uddannelse HF net-undervisning, HFe Fag og niveau

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

IDRÆTSSTATISTIK BIND 1

IDRÆTSSTATISTIK BIND 1 IDRÆTSSTATISTIK BIND 1 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-05-1 Bd.1 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

Lyngallup om doggybags Dato: 27. marts 2012

Lyngallup om doggybags Dato: 27. marts 2012 Lyngallup om doggybags Dato: 27. marts 2012 Metode Feltperiode: 22. 27. marts 2012 Målgruppe: Repræsentativt udvalgte vælgere landet over på 18 eller derover Metode: GallupForum (webinterviews) Stikprøvestørrelse:

Læs mere

GRUNDLÆGGENDE STATISTIK

GRUNDLÆGGENDE STATISTIK Stephan Skovlund APRIL 2013 GRUNDLÆGGENDE STATISTIK Statistik med fokus på anvendelighed i erhvervslivet Statistik Excel - Dataanalyse Statlearn.com Indholdsfortegnelse FORORD... 6 KAPITEL 1: STATISTIKKENS

Læs mere

Stikprøver, binomialtest og chi^2 test er nogle af de punkter som denne note kommer ind på. Det er et supplement til Vejen til Matematik

Stikprøver, binomialtest og chi^2 test er nogle af de punkter som denne note kommer ind på. Det er et supplement til Vejen til Matematik Hypotesetest s og spørgeskemaer Stikprøver, binomialtest og chi^2 test er nogle af de punkter som denne note kommer ind på. Det er et supplement til Vejen til Matematik Kumuleret sandsynlighed 0.9 0.8

Læs mere

Vejledende besvarelse

Vejledende besvarelse Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005 TEKST NR 435 2004 BASISSTATISTIK Jørgen Larsen 2004, 2005 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING OG ANVENDELSER

Læs mere

Kønsproportion og familiemønstre.

Kønsproportion og familiemønstre. Københavns Universitet Afdeling for Anvendt Matematik og Statistik Projektopgave forår 2005 Kønsproportion og familiemønstre. Matematik 2SS Inge Henningsen februar 2005 Indledning I denne opgave undersøges,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2. juni 2014 Institution Kolding HF og VUC, Ålegården 2, 6000 Kolding (tovholder) VUC Vest, Stormgade 47,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave Per Vejrup-Hansen STATISTIK med Excel 2. udgave Per Vejrup-Hansen Statistik med Excel Per Vejrup-Hansen Statistik med Excel 2. trykte udgave 2012 1. e-bogsudgave 2012 Samfundslitteratur 2012 e-isbn: 978-87-593-1736-5

Læs mere

Statistik: Historier og eksempler Helle Hvitved

Statistik: Historier og eksempler Helle Hvitved Statistik: Historier og eksempler Helle Hvitved Dette er et forsøg på at give en overordnet beskrivelse af statistik og statistiske begreber uden at gå for meget i matematiske detaljer. Derved vil der

Læs mere

STATISTIK MED SAS. MORTEN FENGER Cand.merc.(scm.) på den nemme måde med step-by-step cases, som alle kan forholde sig til.

STATISTIK MED SAS. MORTEN FENGER Cand.merc.(scm.) på den nemme måde med step-by-step cases, som alle kan forholde sig til. MORTEN FENGER Cand.merc.(scm.) Denne e-bog introducerer dig til markedets stærkeste statistikværktøj. SAS kan alt inden for analytics og er samtidig let at lære. Derfor er det bare med at komme i gang

Læs mere

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics MOGENS ODDERSHEDE LARSEN Statistisk forsøgsplanlægning med benyttelse af Statgraphics Vekselvirkning CD 10 8 C 1 udbytte 6 4 0 1 3 4 D 11 udgave 00, DTU FORORD Dette notat er baseret på at de studerende

Læs mere

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L RÆSONNEMENT & 1BE V I S F I N N H. K R I S T I A N S E N GNING 2 EGNEARK KUGLE 5 MÅLING SIMULATIONER 3 G Y L D E N D A L MÅLSCORE I HÅNDBOLD Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Microsoft Excel - en kort introduktion. Grundlag

Microsoft Excel - en kort introduktion. Grundlag Microsoft Excel - en kort introduktion Grundlag Udover menuer og knapper - i princippet som du kender det fra Words eller andre tekstbehandlingsprogrammer - er der to grundlæggende vigtige størrelser i

Læs mere