Matematisk æstetik. Jonas Lindstrøm Jensen, ph.d-studerende. 28. oktober 2009
|
|
|
- Carl Nøhr
- 10 år siden
- Visninger:
Transkript
1 28. oktober 2009
2
3 er et tal, nemlig φ = Vi taler som regel om, at forholdet mellem to tal a og b er det gyldne snit, altså at a b = φ. Fx er 62 = φ. 38
4 Fibonaccitallene Fibonaccitallene er 1, 1, 2, 3, 5, 8, 13, 21, 34,.... Læg mærke til, at et Fibonacci tal er summen af de to foregående tal. φ kan vi nu finde som forholdet mellem to på hinanden følgende Fibonaccital, fx er 34 = φ. 21
5
6 Man kan også finde beskrive det gyldne snit på følgende måde: Forholdet mellem to tal a og b er det gyldne snit, når a b = a + b. a Fx er = 8 5 5, og forholdet mellem 5 og 3 er da cirka det gyldne snit.
7 Eksempler fra naturen
8 Der er 34 kurver med uret og 21 mod uret i solsikken. Det sikrer en optimal udnyttelse af pladsen.
9 i kunsten To størrelser, hvis forhold er det gyldne snit, opfattes som værende særligt behagelige eller æstetiske. Udnyttet (mere eller mindre bevidst) i kunst, arkitektur, design etc.
10 Eksempler fra kunsten
11 Outline Sandro Botticelli: Bebudelsen, malet
12 , dukker også op inden for design, fx som form på mange indpakninger: Cigaretpakker Tændstikæsker 16:9 Dog ikke helt universielt, fx er forholdet mellem siderne på et stykke papir
13 Vi har en bestemt, matematisk defineret funktion, der hver gang den får et punkt fra et koordinatsystem, spytter et andet punkt ud. Det punkt vi får ud, smider vi nu ind i funktionen igen, og får derfor et nyt punkt. Det gør vi nu igen og igen og igen... Hvad sker der?
14 Lad os nu vælge et punkt, smide det ind i funktionen, smide resultatet ind igen osv. Der er nu to muligheder: 1 Enten vil funktionen efterhånden spytte punkter ud, der er længere og længere væk fra centrum, 2 eller også vil den ikke.
15 Hvis det punkt vi betragter, giver tilfælde 1, farver vi punktet hvidt. Hvis det giver tilfælde 2, farver vi det sort. Vi prøver nu for en masse punkter et for hver pixel. Det er et eksempel på et algoritmisk genereret billede Kunstneren anede ikke, hvordan billedet så ud, da han fandt på funktionen.
16
17 Matematik, og især geometri, indgår naturligt som redskab i al computergrafik. Fx Bezier-kurver hvordan får du en computer til at tegne en pæn kurve? Demoscenen computerspil uden spiller.
18 Kunst som redskab... indhold
19 Eksempel: Listening Post Mark Hansen and Ben Rubin: Listening Post, Real-Time Data Responsive Environment 2001 Statistik og dataanalyse brugt på chatfora på internettet.
20 Eksempel: Alice i eventyrland Fuld af nørdede referencer til matematik, da Lewis Caroll selv var matematiker. Bogen indeholder mange spøjse, logiske argumenter, men også mere åbenlys matematik. Der findes katte uden grin, men ingen grin uden katte. 4 5 = 12 i base 18, 4 6 = 13 i base 19, 5 6 = 14 i base 20,... Søgt?
21 Eksempel: M. C. Escher Bruger matematik og især begrebet uendelighed meget eksplicit i sin kunst. Ingen matematisk skoling, udover almindelig skolegang. Hofstadter: Gödel, Escer, Bach an eternal golden braid.
22
23
24 Mange matematikere vil argumentere for, at et matematisk argument eller bevis kan være æstetisk. Simple, enkle, indsigtsfulde argumenter, og overraskende resultater. Måske meget lig æstetik i filosofi, idelogi eller lignende.
Det gyldne snit, forløb i 1. g
Det gyldne snit, forløb i 1. g Mål - Træne at skrive elementære matematiske tekster på computer inkl. billeder, formler og tabeller - Bruge geometriprogram - Læse en elementær tekst selv om et fagligt
Matematik. Matematiske kompetencer
Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske
F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING
F I N N H. K R I S T I A N S E N 6 DET GYLDNE SNIT 4 TES REGNING MED REGNEARK KUGLE G Y L D E N D A L SIMULATIONER 5 LANDMÅLING Faglige mål: Demonstrere viden om matematikanvendelse samt eksempler på matematikkens
Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm
Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål http://pub.uvm.dk/2002/kom/hel.pdf http://qa.uvm.dk/uddannelser-og-dagtilbud/folkeskolen/afsluttendeproever/om-afsluttende-proever/proevevejledninger
Matematik interne delprøve 09 Tesselering
Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der
Fraktaler Mandelbrots Mængde
Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................
Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)
Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog
Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:
INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler
Fælles netværksmøde. Matematik i bevægelse. Fredag d. 7/11
Fælles netværksmøde Matematik i bevægelse Fredag d. 7/11 Dagens program Præsentation af fagpilot netværk Fagteam - hvordan fungere det på jeres skole? Hvad vil I gerne have hjælp til? Hvordan får vi bevægelse
Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet
Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................
Faglige delmål og slutmål i faget Matematik. Trin 1
Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,
Kædebrøker. b 0 f.eks. 3 b 0 + a 1. f.eks. 3 + 1 b 1 7. a 1. b 1 + a f.eks. 3 + 1 7 + 1. f.eks. 3 + b 1 + a 2 7 + Notation: a 2 b 2 + an.
Kædebrøker Naturvidenskabsfestivalen 2006 foredrag på Herning htx, 26. september Flemming Topsøe Institut for Matematiske Fag, Københavns Universitet b 0 f.eks. 3 b 0 + a 1 f.eks. 3
Evaluering af kompetencer
Evaluering af kompetencer Odense den 13. maj 2013 http://tinyurl.com/cca2glm Montaigne Man burde spørge hvem der ved rigtigst, ikke hvem der ved mest. KOMPIS http://tinyurl.com/d4m295w Målsætning og planlægning
Mundtlig prøve i Matematik
Mundtlig prøve i Matematik Tirsdag d. 9. september 2014 CFU Sjælland Mikael Scheby NTS-Center Øst Dagens indhold Prøvebekendtgørelse highlights Vekselvirkning mellem formalia, oplæg og arbejde med eksempler
Matematik Naturligvis. Matematikundervisning der udfordrer alle.
Matematikundervisning der udfordrer alle. Læring i bevægelse Matematikkompetencerne i spil Læringsstile Dialog og samarbejde i uderummet Matematik Naturligvis Hvorfor lære matematik i det fri? Ved at arbejde
Mundtlig prøve i Matematik
Mundtlig prøve i Matematik Mandag d. 9. september 2013 CFU Sjælland Mikael Scheby Dagens indhold Velkomst, præsentation, formål med dagen Vekselvirkning mellem formalia, oplæg og arbejde med eksempler
Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:
Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses
Årsplan for Matematik 8. klasse 2011/2012
Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand
Mundtlig prøve i matematik
Mundtlig prøve i matematik Onsdag d. 5. december 2012 CFU Sjælland Mari-Ann Skovlund & Mikael Scheby Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve, eller
Matematikken bag Parallel- og centralprojektion
Matematikken bag parallel- og centralojektion 1 Matematikken bag Parallel- og centralojektion Dette er et redigeret uddrag af lærebogen: Programmering med Delphi fra 2003 (570 sider). Delphi ophørte med
Ræsonnement og tankegang. DLF-Kursus Ringsted 17.-18.9 2015 Eva Rønn UCC
Ræsonnement og tankegang DLF-Kursus Ringsted 17.-18.9 2015 Eva Rønn UCC Vivianis sætning - optakt Vicenzo Viviani (1622-1703) var en italiensk matematiker. Han var elev af Galilei. Denne opgave handler
Fibonacci følgen og Det gyldne snit
Fibonacci følgen og Det gyldne snit af John V. Petersen Indhold Fibonacci... 2 Fibonacci følgen og Binets formel... 3... 4... 6... 6 Bevis for Binets formel... 7 Binets formel fortæller os, at...... 9...
Er der særlige krav til indholdet i opgaveformuleringen?
SRP- OPGAVEN Reglerne Hvem skriver opgaveformuleringen? Må den komme som en overraskelse? Er der særlige krav til indholdet i opgaveformuleringen? Skal indeholde faglige mål i begge fag og fordybelse i
Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34
Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie
Matematik på Humlebæk lille Skole
Matematik på Humlebæk lille Skole Matematikundervisningen på HLS er i overensstemmelse med Undervisningsministeriets Fælles Mål, dog med få justeringer som passer til vores skoles struktur. Det betyder
Kommentarer til matematik B-projektet 2015
Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver
-*/+&3*/(&3 %"/4, #3&7)07&% &,4".&/41"1*3. %&,0/530- # (&3,0/5",5# (&3,0--&(*&) '5&3 (-04&) '5&3 '03."5&3 -*/+&3*/(&3 4*%&3 4,0-&) '5&3 www.ibnfmjo.el 4,0-& 1"1*3 LINEX gør det sjovt at lære Matematik
Matematisk argumentation
Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.
MATEMATIK. Formål for faget
MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede
Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema
Webinar - Matematik 1. Fælles Mål 2014 2. Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel Alle
Matematik, basis. Undervisningen på basisniveau skal udvikle kursisternes matematikkompetencer til at følge undervisningen
avu-bekendtgørelsen, august 2009 Matematik Basis, G-FED Matematik, basis 1. Identitet og formål 1.1 Identitet I matematik basis er arbejdet med forståelsen af de faglige begreber i centrum. Den opnåede
Bjørn Grøn. Euklids konstruktion af femkanten
Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen
Årsplan for matematik i 1. klasse 2010-11
Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden
MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål
MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig
Geometriske konstruktioner: Ovaler og det gyldne snit
Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer
Matematikken i kunstig intelligens Opgaver om koordinerende robotter
Matematikken i kunstig intelligens Opgaver om koordinerende robotter Thomas Bolander 2. juni 2018 Vejledning til opgaver Opgave 1 kan eventuelt springes over, hvis man har mindre tid. De resterende opgaver
Matematikken i kunstig intelligens Opgaver om koordinerende robotter LØSNINGER
Matematikken i kunstig intelligens Opgaver om koordinerende robotter LØSNINGER Thomas Bolander 25. april 2018 Vejledning til opgaver Opgave 1 kan eventuelt springes over, hvis man har mindre tid. De resterende
Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering
Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen
Undervisningsplan 6. kl. Matematik. Periode: August-oktober Emne: We are all mad. Tema: Spil, sandsynlighed, kombinatorik og simulering
Undervisningsplan 6. kl. Matematik Periode: August-oktober 2016 Emne: We are all mad Tema: Spil, sandsynlighed, kombinatorik og simulering Klasse: 6. Dette matematik forløb tager udgangspunkt i, at filmen
Forord. Dette materiale er ophavsretligt beskyttet og må ikke videregives
Baggrunden for tilblivelsen af denne bog er to serier af forelæsninger, som jeg arrangerede på Folkeuniversitetet i 2010 og 2011. De omhandlede forskellige matematiske emner og tiltrak mange deltagere.
Vejledende årsplan for matematik 5.v 2009/10
Vejledende årsplan for matematik 5.v 2009/10 Uge Emne Formål Opgaver samt arbejdsområder 33-36 Geometri 1 Indlæring af geometriske navne Figurer har bestemte egenskaber Lære at måle vinkler med vinkelmåler
Undervisningsplan for faget matematik. Ørestad Friskole
Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2
HANS CHRISTIAN HANSEN JOHN SCHOU KRISTINE JESS JEPPE SKOTT GEOMETRI MATEMATIK FOR LÆRERSTUDERENDE 4. 10. KLASSE
HANS CHRISTIAN HANSEN JOHN SCHOU KRISTINE JESS JEPPE SKOTT MATEMATIK FOR LÆRERSTUDERENDE GEOMETRI 4. 10. KLASSE Hans Christian Hansen, Joh n Schou, Kristine Jess og Jeppe Skott Matematik for lærerstuderende
Fysisk aktivitet i den boglige undervisning
Fysisk aktivitet i den boglige undervisning 1 Battle Øve begreber, teorier og beregninger i de naturvidenskabelige fag Besvare redegørende eller analyserende spørgsmål af tekster i fx historie, samfundsfag
Mundtlig gruppeprøve i matematik. 17-09-2012 [email protected] Mobil: 2041 0721 Side 1
Mundtlig gruppeprøve i matematik 2012 [email protected] Mobil: 2041 0721 Side 1 Hvorfor en mundtlig prøve? Der er trinmål, vi ikke kan prøve eleverne i ved en skriftlig prøve Eller kun delvist kan prøve
SKOLER PÅ NYE MÅDER LÆRINGSMILJØER FIRE BUD PÅ FREMTIDENS
SKOLER PÅ NYE MÅDER FIRE BUD PÅ FREMTIDENS LÆRINGSMILJØER FIRE BUD PÅ FREMTIDENS LÆRINGSMILJØER Man lærer bedst, når man er inspireret. Men kan man blive inspireret i en nedslidt skole med ensformige
Årsplan/aktivitetsplan for matematik i 6.c 2012-2013
Årsplan/aktivitetsplan for matematik i 6.c 2012-2013 Undervisere: Marianne Kvist (MKV) & Asger Poulsen (APO) Omfang: mandag kl. 10 00 11 20, onsdag kl. 10 00 11 20 4 lektioner pr. uge Matematikken i 6.c
Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.
Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,
Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet
Fagårsplan 12/13 Fag: Matematik Klasse: 3.A Lærer:LBJ Fagområde/ emne At regne i hovedet penge Periode Mål Eleverne skal: Lære at anvende simpel hovedregning gennem leg og praktiske anvende addition og
Opgaveformuleringer til studieprojekt - Matematik og andet/andre fag:
Opgaveformuleringer til studieprojekt - Matematik og andet/andre fag: Fag: Matematik/Historie Emne: Det gyldne snit og Fibonaccitallene Du skal give en matematisk behandling af det gyldne snit. Du skal
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.
Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig
t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25
Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.
Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen.
Fag: Matematik Hold: 21 Lærer: ASH 33-34 35-36 lære at læse og forstå en lønseddel samt vide hvordan deres skat bliver beregnet. Se i øvrigt fælles mål Arbejde med regnehieraki og regneregler. 36-38 Elevere
Matematik. Matematiske kompetencer
Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers
KUNST OG MATEMATIK. På Holstebro Kunstmuseum. Big Bang Odense den
KUNST OG MATEMATIK På Holstebro Kunstmuseum Big Bang Odense den 2.4.2019 Skolesamarbejde Omvisninger Skolesamarbejde Omvisninger Undervisningsforløb Skolesamarbejde Omvisninger Undervisningsforløb
Årsplan for 5. klasse, matematik
Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold hf2 Matematik C Claus Simonsen 14x
Mælkeby, matematik, 2.-3. klasse
Mælkeby, matematik, 2.-3. klasse RAMMESÆTNING Mælkeby er et projekt som er baseret på, at elever, i matematik i indskolingen, skal kunne forstå, bearbejde og herved flytte et fysisk projekt ind i et digitalt,
Niels Johnsen Problembehandlingskompetencen
Niels Johnsen Problembehandlingskompetencen Kursus arrangeret af UCC og Danmarks Lærerforening Ringsted 18.9.2015 Matematiske problemer matematiske spørgsmål, der ikke kan besvares udelukkende med rutinemetoder
Substitutions- og indkomsteffekt ved prisændringer
Substitutions- og indkomsteffekt ved prisændringer Erik Bennike 14. november 2009 Denne note giver en beskrivelse af de relevante begreber omkring substitutions- og indkomsteffekter i mikroøkonomi. 1 Introduktion
LEGO Company LEGO Company blev grundlagt i 1932. Hovedproduktet er i dag byggeklodser i plast.
Almen voksenuddannelse Matematik trin 2 maj 2004 Informationsark LEGO Company LEGO Company blev grundlagt i 1932. Hovedproduktet er i dag byggeklodser i plast. Grundlæggeren Ole Kirk Christiansen fandt
Eksamensspørgsmål: Trekantberegning
Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8
Epistel E2 Partiel differentiation
Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +
Geometri i plan og rum
INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af
www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: [email protected]
www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: [email protected] Årsplan for matematik i 8.klasse I timerne vil vi bruge bogen matematiktak 8.klasse, programmer
Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse.
Fag:matematik Hold:18 Lærer:ym Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hovedvægten er elevernes forståelse for matematiske begreber.
Fraktaler en helt ny form for matematik
Manus: Math 4 / Fraktal Manusark nr. 1 Fraktaler en helt ny form for matematik 5 10 15 20 25 30 35 Det var en sensation, da den polskfødte matematiker og filosof Benoit Mandelbrot i 1975 præsenterede sine
Fælles mål 2009 Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til at skelne mellem definitioner og sætninger, mellem enkelttilfælde og
Matematik Basis. Faglige mål. Kernestof. Supplerende stof
Matematik Basis Undervisningens mål er, at kursisten kan: a) forstå tallenes opbygning i positionssystemet samt gange og dividere med et multiplum af 10 b) forstå de fire regningsarter og vælge hensigtsmæssige
Årsplan for 7. klasse, matematik
Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet
Sæson 2016-2017. Præsentation af de enkelte fag. Begynderkursus i IPAD. Linedance. Maleri
Sæson 2016-2017 Præsentation af de enkelte fag Begynderkursus i IPAD Har du en IPAD, som du gerne vil lære (bedre) at kende? Så har du chancen for at deltage på begynderkursus på lokalcentret. Her lærer
Undervisningsplan 3-4. klasse Matematik
Undervisningsplan 3-4. klasse Matematik Formålet for faget matematik Guldminen 2019/2020 Eleverne skal i faget matematik udvikle matematiske kompetencer og opnå færdigheder og viden, således at de kan
Mål for forløb På tur i vildmarken
Natur/teknologi 5.-6. klasse samt 3. - 4. klasse Mål for forløb Undersøgelse Undersøgelser i naturfag Eleven kan gennemføre enkle systematiske undersøgelser. variabler i en undersøgelse. Natur og miljø
Læringsmål Faglige aktiviteter Emne Tema Materialer
Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende
Hvordan laver jeg en poster/plakat og handout
Hvordan laver jeg en poster/plakat og handout Poster Indhold Keep it simple! Undlad hellere noget forklarende tekst eller nogle resultater idet en overfyldt poster let bliver kedelig og triviel at kigge
brikkerne til regning & matematik geometri trin 2 preben bernitt
brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er
ÅRSPLAN M A T E M A T I K
ÅRSPLAN M A T E M A T I K 2013/2014 Klasse: 3.u Lærer: Bjørn Bech 3.u får 5 matematiktimer om ugen: MANDAG TIRSDAG ONSDAG TORSDAG FREDAG Lektion 1 Lektion 2 Lektion 3 Matematik Matematik Lektion 4 Matematik
Hvorfor skal børn lære at programmere? App Academy. Alle fortjener at kunne programmere
Hvorfor skal børn lære at programmere? App Academy Alle fortjener at kunne programmere App Academy Jernbanegade 27 6000 Kolding +45 51 922 722 [email protected] www.appacademy.dk Programmering på skemaet
komposition GRATIS GUIDE På under 15 minutter L æ r m e r e o m
L æ r m e r e o m komposition GRATIS GUIDE På under 15 minutter Introduktion 2 Altid et hovedmotiv 3 Ti tredjedele (two thirds) 4 Det gyldne snit 5 Forgrund, mellemstykke og baggrund 6 Diagonaler 7 Sidekomposition
Differentialregning Infinitesimalregning
Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel
På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot
Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved
Fælles Mål Matematik Indskolingen. Roskilde 4. november
Fælles Mål Matematik Indskolingen Roskilde 4. november 05-11-2015 [email protected] Side 2 Bindende/vejledende Bindende mål og tekster: Fagets formål Kompetencemål (12 stk.) Færdigheds- og vidensmål (122
Gå på opdagelse: Kunst i det offentlige rum
Gå på opdagelse: Kunst i det offentlige rum Liv i byens rum Når vi bevæger os rundt i byen er det ikke alene arkitekturen, der spiller ind på rumdannelsen. Kunstværker i det offentlige rum har en særlig
Uendelige rækker og Taylor-rækker
Uendelige rækker og Taylor-rækker Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 200 Thomas Bolander, FUKBH 0 s. /24 Forhold mellem endelighed
Teorien. solkompasset
Teorien bag solkompasset Preben M. Henriksen 31. juli 2007 Indhold 1 Indledning 2 2 Koordinatsystemer 2 3 Solens deklination 4 4 Horisontalsystemet 5 5 Solkompasset 9 6 Appendiks 11 6.1 Diverse formler..............................
ÅRSPLAN MATEMATIK 10 C SKOLEÅRET 2015/2016. 13 piger, 5 tosprogede og 8 etnisk danske (15 17 år) 14 drenge, 7 tosprogede og 7 etnisk danske (15 17 år)
LINIE 10 ÅRSPLAN MATEMATIK 10 C SKOLEÅRET 2015/2016 FAG: KLASSE: LÆRER: Matematik 10C Nicolai Thyssen KLASSEFORUDSÆTNINGER: Holdet består af 27 elever fordelingen af eleverne er: 13 piger, 5 tosprogede
