Matematik interne delprøve 09 Tesselering

Størrelse: px
Starte visningen fra side:

Download "Matematik interne delprøve 09 Tesselering"

Transkript

1 Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der kan dække en flade, hvor der ingen huller er, og hvor figurerne ikke overlapper hinanden. Disse mønstre kan fortsættes i det uendelige. Der findes 3 regulære polygoner, der kan bruges til tesselering. Det er ligebenede trekanter, kvadrater og regulære sekskanter. Et regulært polygon er et polygon, hvor alle vinkler er lige store, og alle sider er lige lange. Figur 1: Tesselering med regulære polygoner Vinklernes samlede sum i et samlingspunkt skal være 360. Derfor skal det regulære polygons vinkler, kunne gå op i 360. I en ligebenet trekant er hver vinkel 60, i et kvadrat er hver vinkel 90, og i en regulær sekskant er hver vinkel 120. Da både 60, 90 og 120 går op i 360 uden rest, kan disse regulære polygoner altså bruges til tesselering. Figur 2: Samlingspunktet skal være 360 Man kan ikke bruge for eks. en femkant. Hver vinkel i en femkant er 108, og det går op i gange med en rest på 36, så der vil være huller i mønstret. Man kan bruge mange andre figurer til tesselering. Man kan konstruere en sådan figur ud fra et rektangel vha. parallelforskydning, spejling, drejning/rotation, glidespejling og strækning/vridning. Man kan bruge papir, saks og tape, og konstruere figuren, men man kan også bruge programmet Paint, der findes på alle computere, der har Windows. 1

2 Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen Jeg vil på de følgende tegninger, vise hvordan man kan konstruere en figur til tesselering ud fra et rektangel. Denne metode kan bruges både i hånden og på computer. Konstruktion af figur til tesselering Figur 3a Figur 3b Figur 3c Figur 3d Figur 3e Figur 3f Figur 3g Figur 3h Forklaring af figurerne: Man starter med at konstruere et rektangel, som vist i figur 3a. Derefter klipper man en figur ud af den ene side, som vist på figur 3b. Nu parallelforskyder man figuren over på den modsatte side, som vist på figur 3c. Man gør nu det samme i enten toppen eller bunden og parallelforskyder den til den modsatte side, som vist på figur 3d og 3e. Nu er figuren færdige, og man skal nu konstruere flere, for at man kan sætte dem sammen i et mønster, som vist på figur 3g og 3h. Hvis man laver det i hånden må man tegne efter figuren og klippe ud. På computeren er det lidt simplere, for her kan man bare kopiere figuren og med et klik lave en ny ved at trykke på sæt ind. Man kan nu lave mønstre i det uendelige. 2

3 Escher Maurits Cornelius Escher( ) tog udgangspunkt i tesselering i sine kunstværker. Han forbandt den fladedækkende geometri med et kunstnerisk udtryk. Escher arbejdede med rumlige illusioner, umulige bygninger og geometriske mønstre. Her er et eksempel på hans arbejde. Figur 4a Figur 4b Hvilke firkanter kan bruges til tesselering? Alle firkanter kan bruges til tesselering. Man kan altid få dem til at passe sammen ved at rotere, spejlvende osv. Konvekse figurer er ligetil, hvorimod de konkave figurer kræver lidt mere opmærksomhed, men det kan stadig lade sig gøre. Da vinkelsummen i en firkant uanset form altid er 360, vil alle firkanter kunne bruges. Dette antager jeg ud fra, at vinklernes samlede sum i et samlingspunkt skal være 360. Jeg har tidligere vist, at et kvadrat, en regulær firkant, kan bruges til tesselering. Jeg vil nu vise det for andre firkanter, både konvekse og konkave. Jeg vil starte med romben, der er en konveks figur. Tesselering med en rombe Figur 5a Figur 5b 3

4 Jeg har med denne tegning bevist, at en rombe kan bruges til tesselering. Romben kan bruges, da man ved flytning kan få de fire forskellige hjørner til at samles i et samlingspunkt. Der er nu dannet en ny rombe, og denne kan nu sammensættes med tre nye af samme slags, og sådan kan man fortsætte i det uendelige. Jeg vil nu vha. tegninger bevise, at alle andre konvekse firkanter kan bruges til tesselering med samme fremgangsmåde som med romben. Tesselering med et rektangel Figur 6a Figur 6b Tesselering med et parallelogram Figur 7a Figur 7b Tesselering med en trapez Tesselering med konveks trapezoide Figur 8a Figur 8b 4

5 Tesselering med konveks trapezoide Figur 9a Figur 9b Figur 9c Jeg har nu med tegninger bevist, at man kan bruge alle konvekse firkanter til tesselering. I og med at de fire vinkler i hver firkant tilsammen er 360 kan man altid ved at spejle, rotere osv. få figurerne til at passe sammen, så A, B, C og D i fire forskellige firkanter mødes i et samlingspunkt. Jeg vil nu vise, at konkave figurer også kan bruges til tesselering. Konkav ligebenet firkant: Figur 10a Figur 10b Figur 10c Konkav firkant: Figur 11a Figur 11b Figur 11c Jeg mener, at jeg med tegningerne har vist, at alle konkave figurer også kan bruges til tesselering. Arbejde med tesselering på mellemtrin Jeg mener, at mulighederne for at arbejde med tesselering på mellemtrin et rigtig gode. Eleverne får mulighed for at anvende geometriske færdigheder som spejling, rotation, flytning, parallelforskydning osv. Eleverne får også kendskab til mønstre og sammenhænge, som jeg mener, er en meget vigtig del af geometrien. Tesselering er nemt at gå til for alle klasser på mellemtrin 1. Man kan tage papir, blyant og tape frem, og lade dem sidde og eksperimentere med figurer. Hvis man bare har forklaret dem den grundlæggende 1 Jeg mener, at dette emne er relevant til alle klassetrin, men denne opgave henvender sig til mellemtrin. 5

6 teknik til fremstilling af figurer til tesselering, som vist på side 1-2, kan de sagtens selv sidde og nørkle med det. Der er også mulighed for at arbejde med tesselering på computeren. Det går lidt hurtigere, så man kan lave mere avancerede mønstre på kort tid. Til tesselering på computer kan man anvende programmet Paint, og det er rigtigt nemt at gå til. Det er en god måde at få it ind i undervisningen på, og alle lærere kan lære at bruge programmet på kort tid. Jeg mener, at det er vigtigt, at eleverne prøver at lave tesselering både på computer, og med papir og saks. Det ene må ikke erstatte det andet. De er to meget forskellige metoder, og de har godt af at lære begge, da hver fremgangsmåde kræver forskellige kompetencer. Jeg kan forestille mig, at eleverne, når de sidder og arbejder med tesselering, ikke tænker over hvilke matematiske kompetencer de anvender. Jeg tror, at mange bliver grebet af at lave mønstre, og måske også overrasket over at DE også kan lave fantastiske mønstre så let som ingenting. Man kan derfor, når de har arbejdet med det i nogle timer snakke med dem om hvilke geometriske færdigheder, de har anvendt. Så går det op for dem, at de ikke bare leger, men at de rent faktisk laver matematik, nemlig geometri. Der er mulighed for at arbejde videre med tesselering ved at farvelægge figurerne i forskellige farver, så der bliver et mønster i mønsteret. Jeg har for eks. fremtryllet en lille ø i mit mønster på figur 12. Figur 12 Man kan i de ældste klasser på mellemtrinnet gå videre med at snakke om omkreds og areal, efter at eleverne har konstrueret figurer og mønstre. Man kan spørge dem: Hvad tror I der sker med arealet og omkredsen, når I tager noget af figuren og flytter om på den anden side? De kan med tesselering få en forståelse for areal og omkreds af forskellige figurer, og hvad der sker med disse, når man flytter dele af figuren. De får en forståelse for, at arealet er det samme, så længe man lægger det samme til i den ene side, som man tog i den anden side, men at omkredsen højst sandsynlig er ændret. I arbejdet med tesselering kan man også introducere eleverne til Escher og hans kunstværker. Vise dem hans billeder og snakke om hvordan han har konstrueret dem, og hvad han har måtte tænkt, da han lavede dem. Det kan give dem en stor inspiration at se på hans værker og måske også søge på nettet efter andre, der har fået inspiration af ham. Når man lader eleverne inspirere af Escher, skal man dog huske på at sige til eleverne, at han blot er en inspiration, så de ikke føler, at de skal leve op til hans perfektionisme. Der vil også være mulighed for at bruge emnet tesselering til tværfaglige projekter. Man kunne sagtens forestille sig, at matematik og billedkunst kunne gå sammen om et sådant projekt. Emnet kunne gå ud på, 6

7 at eleverne vha. tesselering kunne skabe deres eget design til evt. tapet, print til t-shirts, reklamer, malerier osv. Man kunne starte med et værksted, hvor de enten på computeren eller med saks og papir, lavede skitser til deres eget design, dette selvfølgelig vha. geometriske færdigheder. Derefter skulle de i skabelsesværkstedet, hvor de skulle skabe noget ud fra deres design. I skabelsesfasen får de også brug for deres matematiske evner, da de nu skal måle op, regne ud og evt. omregne størrelsen. Der er meget matematik i sådant et projekt, og jeg tror, at det meste er uden at eleverne opdager det, fordi de er så fanget af det. Jeg tror, at de fleste elever synes at det er sejt, at de selv kan designe, og jeg tror, at dette er en god motivationsfaktor. Jeg har kigget på Fælles Mål 2009 for matematik, trinmål efter 6.klasse. Jeg har her fundet de punkter, jeg mener, er relevante i arbejdet med tesselering: Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til, i arbejdet med geometri at: Undersøge og konstruere enkle figurer i planen Bruge it til at undersøge og konstruere geometriske figurer Spejle, dreje og parallelforskyde, bl.a. i forbindelse med arbejdet med mønstre 2 Eleverne kommer altså i arbejdet med tesselering, igennem mange af de elementer, det er vigtigt, at de har lært indenfor geometrien efter 6.klassetrin. Hvis jeg skal kigge på hvilke matematiske kompetencer man kunne sætte i fokus i arbejdet med tesselering, mener jeg, at det er relevant igen at kigge på Fælles Mål Der står her at: Undervisningen skal lede frem mod at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til at: - kende, vælge og anvende hensigtsmæssige hjælpemidler, herunder konkrete materialer, lommeregner og it, bl.a. til eksperimenterende udforskning af matematiske sammenhænge(hjælpemiddelkompetence). 3 Jeg mener, at dette punkt er meget relevant for arbejdet med tesselering på computeren, da det også er et meget eksperimenterende arbejde man laver. Jeg mener grundlæggende, at tesselering er et rigtigt relevant emne at bruge i folkeskolen, når eleverne skal lære om geometri. Det er en legende metode, som jeg tror at eleverne bliver optaget af. En del krav fra trinmålene kan også blive opfyldt i et sådant arbejde og eleverne har mulighed for at integrere it i undervisningen. 4 2 Fælles Mål 2009, matematik. Faghæfte 12, Undervisningsministeriets håndbogsserie nr Fælles Mål 2009, matematik. Faghæfte 12, Undervisningsministeriets håndbogsserie nr Denne opgave er udarbejdet på baggrund af samtaler med Bjarke Steffensen Holm( ), Andreas Glent Buch( ) og Ane Haahr Andersen( ). Hvis der er sammenfald i formuleringer og indhold, er dette grunden. 7

GEOMETRI I PLAN OG RUM

GEOMETRI I PLAN OG RUM LÆRERVEJLEDNING GEOMETRI I PLN OG RUM Kopiark Indhold og kommentarer Vejledende sværhedsgrad Tilknytning til Kolorit 9 matematik grundbog Navne på figurer På siden arbejder eleverne med navnene på forskellige

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Eksperimenterende undersøgelse af vinkelsummer i 4. 6.kl.

Eksperimenterende undersøgelse af vinkelsummer i 4. 6.kl. Eksperimenterende undersøgelse af vinkelsummer i 4. 6.kl. Målsætning: Lærermål: At observere på og udvikle brugen af geogebra i forbindelse med eksperimenterende undersøgelser af vinkelsummer i matematik

Læs mere

KonteXt +5, Kernebog

KonteXt +5, Kernebog 1 KonteXt +5, Lærervejledning/Web Facit til KonteXt +5, Kernebog Kapitel 3: Vinkler og figurer Version september 2015 Facitlisten er en del af KonteXt +5; Lærervejledning/Web KonteXt +5, Kernebog Forfattere:

Læs mere

Matematik - undervisningsplan

Matematik - undervisningsplan I 4. klasse starter man på andet forløb i matematik, der skal lede frem mod at eleverne kan opfylde fagets trinmål efter 6. klasse. Det er dermed det som undervisningen tilrettelægges ud fra og målsættes

Læs mere

Matematisk jul - Naturligvis!

Matematisk jul - Naturligvis! Matematisk jul - Naturligvis! for mellemtrin Opgaverne henter inspiration i materialet Matematik Naturligvis, som kobler matematik til aktiv læring. Sådan bruger du julekalenderen Materialet indeholder

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Geometriske begreber: kunne sætte matematiske begreber ind i en matematisk kontekst samt kende den visuelle betydning

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Bjørn Grøn. Euklids konstruktion af femkanten

Bjørn Grøn. Euklids konstruktion af femkanten Bjørn Grøn Euklids konstruktion af femkanten Euklids konstruktion af femkanten Side af 17 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL

MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL 8 MULTI PRINTARK CAROLINE KREIBERG ANETTE SKIPPER-JØRGENSEN RIKKE TEGLSKOV GYLDENDAL DIGITALE VÆRKTØJER A1.1 SORTER LIGNINGER 2x + 3 = 15 x 17 = 25 61 x = 37 2x + 11 = 5x 10 x 2 = 2x + 3 4x + 1 5 = 9 4x

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter Fag: Matematik Hold: 26 Lærer: Harriet Tipsmark Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter 33-35 Målet for undervisningen er, at eleverne tilegner sig gode matematiske færdigheder og at

Læs mere

Årsplan matematik 1. klasse 2015/2016

Årsplan matematik 1. klasse 2015/2016 Årsplan matematik 1. klasse 2015/2016 Undervisningen vil tage udgangspunkt i systemet Matematrix. I 1. klasse får eleverne udleveret 2 arbejdsbøger (Trix 1a + Trix 1b). Den pædagogiske tankegang i dette

Læs mere

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse)

Matematik. Trinmål 2. Nordvestskolen 2006 Forord. Trinmål 2 (4. 6. klasse) Matematik Trinmål 2 Nordvestskolen 2006 Forord Forord For at sikre kvaliteten og fagligheden i folkeskolen har Undervisningsministeriet udarbejdet faghæfter til samtlige fag i folkeskolen med bindende

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

Jeg er den største. Vagn Lundsgaard Hansen. Annoncering af en konkurrence

Jeg er den største. Vagn Lundsgaard Hansen. Annoncering af en konkurrence Normat 2/1998 71 Jeg er den største Vagn Lundsgaard Hansen Institut for Matematik Danmarks Tekniske Universitet Bygning 303 DK 2800 Lyngby V.L.Hansen@mat.dtu.dk Optimalitetsbetragtninger optræder i næsten

Læs mere

Undersøgelser af trekanter

Undersøgelser af trekanter En rød tråd igennem kapitlet er en søgen efter svar på spørgsmålet: Hvordan kan vi beregne os frem til længder, vi ikke kan komme til at måle?. Hvordan kan vi fx beregne højden på et træ eller et hus,

Læs mere

Årsplan for 4. klasse matematik på Solhverv Privatskole

Årsplan for 4. klasse matematik på Solhverv Privatskole Årsplan for 4. klasse matematik på Solhverv Privatskole Klasse / hold: 4. klasse Skoleår / periode: 2015/2016 Team / lærere: Grethe Søgaard Der arbejdes ud fra Fælles mål efter 6. klasse. http://uvm.dk/uddannelserog-dagtilbud/folkeskolen/faelles-maal

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema

Webinar - Matematik. 1. Fælles Mål 2014. 2. Relationsmodellen og et forløbsplanlægningsskema Webinar - Matematik 1. Fælles Mål 2014 2. Relationsmodellen og et forløbsplanlægningsskema 3. Et eksempel på et forløb om areal og omkreds på mellemtrinnet 4. Relationsmodellen som refleksionsmodel Alle

Læs mere

Årsplan matematik 5 kl 2015/16

Årsplan matematik 5 kl 2015/16 Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant

Mattip om. Arealer 2. Tilhørende kopi: Arealer 4 og 5. Du skal lære om: Repetition af begreber og formler. Arealberegning af en trekant Mattip om Arealer 2 Du skal lære om: Repetition af begreber og formler Kan ikke Kan næsten Kan Arealberegning af en trekant Arealberegning af en trapez Tilhørende kopi: Arealer 4 og 5 2016 mattip.dk 1

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering. Fag: Matematik Hold: 27 Lærer: Jesper Svejstrup Pedersen Undervisnings-mål 9 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 32-37 i arbejdet med geometri at benytte

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

1 F Flytningsgeometri F Flytningsgeometri

1 F Flytningsgeometri F Flytningsgeometri 1 lytningsgeometri lytningsgeometri 2 At undersøge mønstre i kunst, arkitektur, flisebelægninger og dekorationer giver mulighed for en undersøgende tilgang til geometrien i det hele taget. Læreren har

Læs mere

Introduktion til. og Ligedannethed i 3. klasse. Lærervejledning

Introduktion til. og Ligedannethed i 3. klasse. Lærervejledning Introduktion til og Ligedannethed i 3. klasse Lærervejledning Udarbejdet af: Cathrine Gretoft Cecilie Handberg Bettina Skou Frederiksberg Seminarium LEGO Digital Designer og Ligedannethed Som lærerstuderende

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri

Tip til 1. runde af Georg Mohr-Konkurrencen Geometri Tip til. runde af - Geometri, Kirsten Rosenkilde. Tip til. runde af Geometri Her er nogle centrale principper om og strategier for hvordan man løser geometriopgaver. et er ikke en særlig teoretisk indføring,

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

Opgaver hørende til undervisningsmateriale om Herons formel

Opgaver hørende til undervisningsmateriale om Herons formel Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og

Læs mere

Forskellig eller ens? Geometriforløb i 5 klasse.

Forskellig eller ens? Geometriforløb i 5 klasse. Forskellig eller ens? Geometriforløb i 5 klasse. Introduktion til undervisningsforløbet Forløbet behandler forskellige plangeometriske problemstillinger ud fra dagligdagsbegreberne ens og forskellig. Alle

Læs mere

Matematiske færdigheder opgavesæt

Matematiske færdigheder opgavesæt Matematiske færdigheder opgavesæt SÆT + 0 :, 0 000 9 0 cm m 0 liter dl ton kg Hvilket år var der flest privatbiler i Danmark? Cirka hvor mange privatbiler var der i 99? 00 0 000 Priser i Tivoli, 00: Turpas

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne

i tredje kilogram (kg) længde cirkeludsnit periferi todimensional hjørne median 50% halvdel geometri i tredje 3 rumfang normal 90 grader underlig indskrevet kilogram (kg) bage forkortelse tusinde (1000) rumfang beholder fylde liter passer ben sds bredde deci centi lineal tiendedel

Læs mere

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER

MULTI 7 A1 LÆS MATEMATIK FØR UNDER EFTER LÆS OG SKRIV MATEMATIK A1 LÆS MATEMATIK Brug de tre rammer i modellen, når du skal løse en matematikopgave. Det er ikke sikkert, du skal bruge alle punkter i hver ramme til alle opgaver. Find ud af, hvilke

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009

Årsplan 2013/2014 6. ÅRGANG: MATEMATIK. Lyreskovskolen. FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Årsplan 2013/2014 6. ÅRGANG: MATEMATIK FORMÅL OG FAGLIGHEDSPLANER - Fælles Mål II 2009 Formålet med undervisningen i matematik er, at eleverne udvikler matematiske r og opnår viden og kunnen således, at

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

MATEMATIK I HASLEBAKKER 14 OPGAVER

MATEMATIK I HASLEBAKKER 14 OPGAVER MATEMATIK I HASLEBAKKER 14 OPGAVER Matematik i Hasle Bakker Hasle Bakker er et oplagt mål for ekskursioner, der lægger op til, at eleverne åbner øjnene for de muligheder, naturen giver. Leg, bevægelse,

Læs mere

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin

LÆRERVEJLEDNING. Matematik -6. klase. Hasle bakker 4.-6.klassetrin LÆRERVEJLEDNING Matematik -6. klase Hasle bakker 4.-6.klassetrin Lærervejledningen Forord: Hasle bakker forløbet er et nyskabende undervisningsmateriale hvor teknologien, i form af mobiltelefonen og dens

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Areal og overflade: kunne foretage beregninger af sammensatte arealer og sammensætte formler til beregning af disse.

Læs mere

Dagens program. Velkommen og præsentation.

Dagens program. Velkommen og præsentation. Dagens program Velkommen og præsentation. Evt. udveksling af mailadresser. Forenklede Fælles Mål om geometri og dynamiske programmer. Screencast, hvordan og hvorfor? Opgave om polygoner i GeoGebra, løst

Læs mere

Årsplan for matematik i 4. klasse 2014-15

Årsplan for matematik i 4. klasse 2014-15 Årsplan for matematik i 4. klasse 2014-15 Klasse: 4. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 4(mandag, tirsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen er, at

Læs mere

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016

Matematik undervisningsplan 4-6. klassetrin Årsplan 2015 & 2016 Materialer Grundbog: kontext Arbejdsbog: kontext Rema Matematik undervisningsplan Matematikmappe til opgaveark, tilpasset elevernes individuelle niveau Tabeltræning og anden basistræning efter behov Supplerende

Læs mere

KUNST PÅ TAPETET BØRNENES EFTERÅRSUDSTILLING 2012

KUNST PÅ TAPETET BØRNENES EFTERÅRSUDSTILLING 2012 BØRNENES EFTERÅRSUDSTILLING 2012 KUNST PÅ TAPETET MATERIALET BESTÅR AF TRE DELE: VEJLEDNING & PRAKTISK INFO SPØRGSMÅL & INSPIRATION TAPET-MODUL TIL PRINT/KOPI VEJLEDNING & PRAKTISK INFO OPGAVEBESKRIVELSE:

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Opgave 1 -Tages kvadrat

Opgave 1 -Tages kvadrat Opgave 1 -Tages kvadrat Den danske matematiker, Tage Werner, fandt på figuren, som ses herunder. Figuren kan laves ved 1) at tegne et kvadrat, 2) markere midtpunkterne på kvadratets sider og 3) tegne linjestykker

Læs mere

matematik grundbog basis preben bernitt

matematik grundbog basis preben bernitt 33 matematik grundbog basis preben bernitt 1 matematik grundbog basis ISBN: 978-87-92488-27-5 2. udgave som E-bog 2010 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt efter aftale med bernitt-matematik.dk

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

Matematik Delmål og slutmål

Matematik Delmål og slutmål Matematik Delmål og slutmål Ferritslev friskole 2006 SLUTMÅL efter 9. Klasse: Regning med de rationale tal, såvel som de reelle tal skal beherskes. Der skal kunne benyttes og beherskes formler i forbindelse

Læs mere

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen)

Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Årsplan for matematik på mellemtrinnet 2015-2016 (Lærere: Ebba Frøslev og Esben O. Lauritsen) Bog: Vi bruger grundbogssystemet Format, som er et fleksibelt matematiksystem, der tager udgangspunkt i læringsstile.

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 4 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning undersøgende arbejde Eleven kan læse og skrive enkle tekster med og om matematik

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Statistik og sandsynlighed

Statistik og sandsynlighed Navn: Nr.: Klasse: Prøvedato: mat Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

Årets overordnede mål inddelt i kategorier

Årets overordnede mål inddelt i kategorier Matematik 1. klasse Årsplan af Bo Kristensen, Katrinedals Skole Årets overordnede mål inddelt i kategorier Tallenes opbygning og indbyrdes hierarki Tælle til 100. Kende tælleremser som 10 20 30, 5 10 15,

Læs mere

Figurer med ligesidede trekanter deltaedere

Figurer med ligesidede trekanter deltaedere Figurer med ligesidede trekanter deltaedere I denne aktivitet arbejdes der med den mindste regulære polygon vi har, nemlig den ligesidede trekant. Polygon betyder mangekant. Trekanten er mindst på den

Læs mere

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK)

Årsplan for matematik 4.kl 2013-2014 udarbejdet af Anne-Marie Kristiansen (RK) Matematikundervisningen vil i år ændre sig en del fra, hvad eleverne kender fra de tidligere år. vil få en fælles grundbog, hvor de ikke må skrive i, et kladdehæfte, som de skal skrive i, en arbejdsbog

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Målet med enhver undervisning må være at udvikle elevens forståelse for sin. Noshörningstenen. av Volker Berthold lärare på Spjellerup friskole

Målet med enhver undervisning må være at udvikle elevens forståelse for sin. Noshörningstenen. av Volker Berthold lärare på Spjellerup friskole Noshörningstenen En marksten bidrar till en vardagsanknuten matematikundervisning av Volker Berthold lärare på Spjellerup friskole Målet med enhver undervisning må være at udvikle elevens forståelse for

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Matematik Naturligvis. Matematikundervisning der udfordrer alle.

Matematik Naturligvis. Matematikundervisning der udfordrer alle. Matematikundervisning der udfordrer alle. Læring i bevægelse Matematikkompetencerne i spil Læringsstile Dialog og samarbejde i uderummet Matematik Naturligvis Hvorfor lære matematik i det fri? Ved at arbejde

Læs mere

geometri trin 1 brikkerne til regning & matematik preben bernitt

geometri trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 1 preben bernitt brikkerne til regning & matematik geometri, trin 1 ISBN: 978-87-92488-15-2 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty

cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty cvbnmrtyuiopasdfghjklæøzxcvbnmq wertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwer tyuiopåasdfghjklæøzxcvbnmqwerty Matematik Den kinesiske prøve uiopåasdfghjklæøzxcvbnmqwertyui 45 min 01 11

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser

*HRPHWUL PHG *HRPH7ULFNV. - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser *HRPHWUL PHG *HRPH7ULFNV q2nodvvh - et fundament af erfaringer - et arbejde med undersøgelser og overvejelser INFA 1998 1 Forord I den nye læseplan for matematik og i den tilhørende undervisningsvejledning

Læs mere

Årsplan Matematik 5.klasse

Årsplan Matematik 5.klasse Årsplan Matematik 5.klasse Emne Periode Mål Relation til fælles mål Arbejdsform Materialer Evaluering Evaluering Rette forståelses fejl Evaluering prøve MAT 4 MAT 4 Geometri Arbejde med Excel regneark

Læs mere

Årsplan 5. Årgang

Årsplan 5. Årgang Årsplan 5. Årgang 2016-2017 Materialer til 5.årgang: - Matematrix grundbog 5.kl - Matematrix arbejdsbog 5.kl - Skrivehæfte - Kopiark - Færdighedsregning 5.kl - Computer Vi skal i løbet af året arbejde

Læs mere

Årsplan matematik 1.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 1.klasse - skoleår 12/13- Ida Skov Andersen Med ret til ændringer og justeringer BASIS: Klassen består af 26 elever og der er afsat 5 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 1A og 1B, de tilhørende kopisider + CD-rom, Rema samt evt. ekstraopgaver. Derudover vil

Læs mere

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm

Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm Opgave design - oplæg til mundtlig prøve i matematik i 9. og 10. klasse - udvalgt baggrundsmateriale/ Mikael Skånstrøm KOM-rapporten Prøvevejledning Fælles Mål http://pub.uvm.dk/2002/kom/hel.pdf http://qa.uvm.dk/uddannelser-og-dagtilbud/folkeskolen/afsluttendeproever/om-afsluttende-proever/proevevejledninger

Læs mere

Mundtlig prøve i Matematik

Mundtlig prøve i Matematik Mundtlig prøve i Matematik Tirsdag d. 9. september 2014 CFU Sjælland Mikael Scheby NTS-Center Øst Dagens indhold Prøvebekendtgørelse highlights Vekselvirkning mellem formalia, oplæg og arbejde med eksempler

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

En dialogisk undervisningsmodel

En dialogisk undervisningsmodel 8 Lær e r v e j l e d n i n g En dialogisk undervisningsmodel Helle Alrø gør i artiklen En nysgerrigt undersøgende matematikundervisning 6 rede for en måde at samtale på, som kan være et nyttigt redskab,

Læs mere

Projekt 3.4 Introduktion til geometri med TI-Nspire

Projekt 3.4 Introduktion til geometri med TI-Nspire Projekt 3.4 Introduktion til geometri med TI-Nspire 1. Introduktion til geometriværktøjerne i TI-Nspire cas... 2 1.2. Åben en geometriapplikation... 2 1.2. Klik-Flyt-Klik... 2 Eksempel: Tegn en cirkel...

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Interaktiv Whiteboard og geometri

Interaktiv Whiteboard og geometri Interaktiv Whiteboard og geometri Nærværende dokumentation af et undervisningsforløb til undervisning i geometri er blevet til som et resultat af initiativet Spredningsprojektet. Spredningsprojektet er

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen.

Tavleundervisning og samarbejde 2 og 2. Eleverne arbejder selvstændigt med opgaver. Løbende opsamling ved tavlen. Fag: Matematik Hold: 21 Lærer: ASH 33-34 35-36 lære at læse og forstå en lønseddel samt vide hvordan deres skat bliver beregnet. Se i øvrigt fælles mål Arbejde med regnehieraki og regneregler. 36-38 Elevere

Læs mere

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold

forstå, arbejde med og analysere problemstillinger af matematisk art i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold Årsplan for undervisningen i matematik på 4. klassetrin 2006/2007 Retningslinjer for undervisningen i matematik: Da Billesborgskolen ikke har egne læseplaner for faget matematik, udgør folkeskolens formål

Læs mere

ÅRSPLAN M A T E M A T I K

ÅRSPLAN M A T E M A T I K ÅRSPLAN M A T E M A T I K 2013/2014 Klasse: 3.u Lærer: Bjørn Bech 3.u får 5 matematiktimer om ugen: MANDAG TIRSDAG ONSDAG TORSDAG FREDAG Lektion 1 Lektion 2 Lektion 3 Matematik Matematik Lektion 4 Matematik

Læs mere

Stoledesign et undervisningsforløb i håndværk og design 5. klassetrin

Stoledesign et undervisningsforløb i håndværk og design 5. klassetrin Stoledesign et undervisningsforløb i håndværk og design 5. klassetrin Det følgende er en skematisk fremstilling af et undervisningsforløb afviklet på Absalons Skole i efteråret 2014. Forløbet blev til

Læs mere

Årsplan for matematik 2.b (HSØ)

Årsplan for matematik 2.b (HSØ) Årsplan for matematik 2.b (HSØ) Bøger, supplerende materiale og andet relevant I undervisningen bruger vi Kolorit. Der suppleres med kopiark fra den tilhørende kopimappe + andre kopiark, som passer til

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere