Epistel E2 Partiel differentiation

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Epistel E2 Partiel differentiation"

Transkript

1 Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x + h, y) f(x, y) = lim h h f(x, y + h) f(x, y) = lim h h (1) (2) og så fremdeles Regnereglerne for ordinær differentiation gælder uændret for partiel differentiation Multiple afledede skrives 2 f(x, y) x 2 2 f(x, y) 2 2 f(x, y) x = ( ) f(x, y) x x = ( ) f(x, y) = ( ) f(x, y) = ( ) f(x, y) x x og så fremdeles Rækkefølgen kan som vist altid ombyttes i fysikken; matematikerne kan sagtens finde unagelser I fysikken regner vi også med, at differentiation kan foretages til vilkårlig høj orden, med mindre det fører til problemer Fysikkens bevidste løsagtighed overfor matematiske spidsfindigheder er begrundet i den erfaring, at hvis spidsfindighed er nødvendig i praksis, skal det nok vise sig gennem meningsløsheder og indre modsigelser Reglen er altså, at man kan rask køre løs med simple, men nogenlunde overbevisende argumenter og beregninger, inil det viser sig, at man er på afveje Så trækker fysikeren følehornene li til sig, grubler li, taler måske med sine matematikervenner, og finder ud af, hvad der gik galt Og så går man videre til næste forhindring (3) (4) (5) 1

2 z y x Figur 1: En funktion z = f(x, y) fremstiller en flade i det 3-dimensionale rum 1 Totalt differentiale Betragt nu en funktion af to variable (en flade i rummet) z = f(x, y) (6) Hvis vi samtidig foretager en lille ændring dx i x og dy i y, så finder vi ved at Taylor udvikle til første orden i de to små størrelse f(x + dx, y + dy) = f(x, y) + f(x, y) dx + x f(x, y) dy (7) Der sker altså også blot en lille ændring dz = f(x + dx, y + dy) f(x, y) i funktionens værdi, så at vi kan skrive li mere kortfattet, dz = z z dx + dy (8) x Dette er det totale differentiale af funktionen z = f(x, y) Også kaldet det perfekte eller fuldstændige differentiale Det totale differentiale kan altså skrives på formen med Helt klart gælder det, at dz = A(x, y)dx + B(x, y)dy (9) A = z x B = z B x = A fordi de partielle afledede selvfølgelig kan ombyttes 2 (1) (11) (12)

3 11 Differentiation langs en kurve Lad både x = x(t) og y = y(t) afhænge af en parameter t, så at de beskriver en kurve i xy-planen Da z = f(x(t), y(t)) kun afhænger af t, vil den aflee af z efter t blive dz = z dx x + z dy (13) hvilket følger direkte af det totale differentiale For en ordens skyld skrives denne li kompakte form helt ud df(x(t), y(t)) f(x, y) dx(t) f(x, y) dy(t) = + (14) x x x(t) y y(t) x x(t) y y(t) hvor man som vist substituerer kurvens form efter at have udført den partielle differentiation af f efter x og y 2 Differentialformer Hvis A(x, y) og B(x, y) er vilkårlige funktioner af x og y, kan man danne urykket d F = A(x, y)dx + B(x, y)dy (15) Her har vi brugt et symbol d F til at benævne det infinitesimale uryk på højre side Det er altså ikke a priori differentialet af noget som helst Sommetider skriver vi bare Adx + Bdy uden at give urykket noget navn Det går under flere forskellige betegnelser: differentialform, 1-form, imperfekt differentiale, og ineksakt differentiale Vi skal bruge differentialform, selv om det i dag oftest dækker mere generelle geometriske begreber Man kan da spørge om, under hvilke betingelser der findes en funktion, z = f(x, y), således at d F faktisk er et totalt differential, dz? Svaret er enkelt: når ligningen (12) er opfyl Et (fysiker-)bevis følger snart, men først skal vi bevise Stokes teorem 21 Integrerende faktor Det kan vises, at der altid findes en såkal integrerende faktor λ(x, y) således at λd F er et totalt differential Betingelsen herfor er ifølge ovenstående, at λa og λb tilfredsstiller (12), altså (λb) x = (λa) (16) For at finde den integrerende faktor skal man løse denne ligning efter λ, hvilket i almindelighed volde store vanskeligheder 3

4 y 1 dy dx 2 12 x Figur 2: Et åbent kurvestykke 12 mellem punkterne 1 og 2 Kurven har en bestemt gennemløbsretning fra 1 til 2 Den beskrives ved to funktioner (x(t), y(t)) i intervallet t 1 t t 2 Kurvedifferentialerne er vist i et punkt på kurven Vektoren (dx, dy) er tangent til kurven i dette punkt 3 Kurveintegraler Betragt nu et åbent kurvestykke 12 mellem to punkter (x 1, y 1 ) og (x 2, y 2 ) i xy-planen Kurven er beskrevet ved de to koordinatfunktioner (x(t), y(t)) hvor t er en parameter, vi passende kan kalde tiden Lad kurven begynde i (x 1, y 1 ) til tiden t = t 1 og slutte i (x 2, y 2 ) til tiden t = t 2 Integralet af differentialformen Adx + Bdy langs kurven er da defineret som A(x, y)dx + B(x, y)dy 12 t2 ( = A(x(t), y(t)) dx(t) + B(x(t), y(t)) dy(t) ) (17) t 1 Urykket på venstre side er blot en symbolsk fremstilling af det mere præcise uryk på højre side Det er nemt at vise, at kurveintegralets værdi ikke afhænger af parametriseringen (valget af tid), og det symbolske uryk er derfor en fornuftig repræsentation Specielt antyder det, at integralet afhænger af hele vejen 12 og ikke blot af dens endepunkter Ofte vil man helt undgå den eksplicitte parameterfremstilling (højre side) og i stedet tænke på den symbolske integrand Adx + Bdy som bestående af skalarproduktet af vektoren (A, B) med vektordifferentialet på kurven (dx, dy) Integralet fremkommer da som en (næsten) uendelig sum over de (næsten) infinitesimale termer (A, B) (dx, dy) = Adx+Bdy langs kurven Overalt i fysikken betragtes integraler i øvrigt som (næsten) uendelige summer over (næsten) infinitesimale termer Dette svarer den Riemann ske definition af integraler En sådan opfattelse af integraler gør det nemt at beregne dem numerisk, men naturligvis kun til en vis approksimation 4

5 y b P A a x Figur 3: Et rektangel, der omslutter arealet a b, og en generel lukket kurve der omslutter et areal A Kurven har en bestemt gennemløbsretning, også kaldet orientering Den beskrives ligesom et åbent kurvestykke ved to funktioner (x(t), y(t)) i intervallet t 1 t t 2, men i dette tilfælde sammenfalder start- og endepunkterne Startpunktet P er fiktivt og uden geometrisk betydning, men absolut nødvendigt for parametriseringen 31 Lukkede kurveintegraler Hvis kurven er lukket, så at den begynder og ender i samme punkt, vil vi have (x(t 1 ), y(t 1 )) = (x(t 2 ), y(t 2 )) I dette tilfælde skriver vi kurveintegralet endnu mere symbolsk A(x, y)dx + B(x, y)dy t2 ( = A(x(t), y(t)) dx(t) + B(x(t), y(t)) dy(t) ) (18) t 1 Højre side er den samme som før Det er let at vise, at integralet ikke afhænger af hvilket punkt på kurven, der vælges som start og ende Dette reflekteres også i den symbolske repræsentation af integralet på venstre side, hvor endepunktet ikke forekommer Som eksempel kan vi integrere mod uret run om et rektangel med siderne a og b, anbragt med det nederste venstre hjørne i begyndelsespunktet Kurveintegralet bliver i dette tilfælde A(x, y)dx + B(x, y)dy a = A(x, ) dx + b B(a, y) dy + a A(x, b) dx + b B(, y) dy (19) Læg mærke til, hvorledes omløbsretningen fastlægger integralernes grænser I dette tilfælde har vi helt undgået en eksplicit parametrisering og i stedet brugt koordinaterne selv som parametre Dette er altid muligt, når det omsluttede areal er konvekst, dvs at enhver ret linie skærer arealet præcis i to (eller ingen) punkter Rullesten er konvekse, moderne skulptur er det sjældent 5

6 32 Integrable differentialformer Lad nu den kvadratiske form være et totalt differential af en funktion z = f(x, y), som tager værdierne z 1 = f(x 1, y 1 ) og z 2 = f(x 2, y 2 ) i endepunkterne Så finder vi ved hjælp af (13) i symbolsk notation z z dx + 12 Adx + Bdy = = = 12 t2 t 1 t2 t 1 = z 2 z 1 x dy ( z dx x + z dz dy ) En differentialform, som er et totalt differential, kaldes derfor også integrabel Bemærk, at integralet af et totalt differential ikke afhænger af vejen, men kun af forskellen i endepunkternes z-værdier For det totale differential dz = Adx + Bdy finder vi for en vilkårlig lukket kurve Adx + Bdy = (2) fordi integralet z = f(x(t), y(t)) har den samme værdi i parametriseringens endepunkter, t = t 1 og t = t 2 33 Stokes teorem Der findes en fundamental relation mellem et kurveintegral langs en lukket kurve og dobbeltintegralet over det areal kurven omslutter Stokes s teorem (i 2 dimensioner) siger, at hvis den lukkede kurve omslutter arealet A, da vil ( B A(x, y)dx + B(x, y)dy = x A ) dxdy (21) Beviset, som følger, er et go eksempel på bevidst fysikersløsethed Ikke desto mindre kan det udarbejdes i fuld matematisk detalje, hvis man har god tid Først viser vi, at teoremet gælder for et rektangel a b, og dernæst bygger vi et vilkårligt areal op ved hjælp af bittesmå rektangler For et rektangel a b med det ene A 6

7 y b a b a x Figur 4: Stokes teorem er nemt at bevise for et rektangel, og det følger for mere komplicerede figurer ved at sætte rektangler sammen, som i den ful optruktne figur til højre På grund af omløbsretningen vil bidragene til kurveintegralerne run om rektanglerne ophæve hinanden, hvor rektanglerne mødes, så at kun bidragene fra den ydre omkreds overlever I grænsen sætter man (næsten) uendelig mange (næsten) uendelig små rektangler sammen til en vilkårlig figur hjørne i begyndelsespunktet finder vi ( B a b x A ) dxdy a b ( ) B(x, y) A(x, y) = dx dy x = = b a (B(a, y) B(, y))dy A(x, ) dx + b a B(a, y) dy + (A(x, b) A(x, ))dx a A(x, b) dx + b B(, y) dy I tredie linie har vi integreret over henholdsvis x og y i de to termer (med fysikerens frihed til ombytning af integrationsrækkefølgen), og i sidste linie har vi ombyttet nogle af grænserne, så at alle leddene er har fået positivt fortegn Sidste linie er simpelthen kurveintegralet run om rektanglet modsat urets retning Hermed er beviset gennemført for et rektangel Når flere rektangler sættes sammen til mere komplicerede figurer vil omløbsretningerne være modsatte på de sider der støder sammen Det bevirker, at kurveintegralerne langs de sammenstødende sider ophæver hinanden, så at den samlede sum over alle rektangler kun indeholder bidrag fra den ydre omkreds Det areal, der omsluttes af en vilkårlig lukket kurve, kan approksimeres med (næsten) uendelig mange (næsten) uendelig små rektangler, og deraf følger Stokes teorem i fuld almindelighed Stokes teorem findes i alle dimensioner, men bliver noget mere kompliceret end her Den 3-dimensionelle version er af stor betydning i elektricitetslæren og i fluid mekanik 7

8 y (x, y) (x, y) (x, y) x Figur 5: To kurvestykker (x, y) og (x, y), der begge forbinder koordinatsystemets begyndelsespunkt med punktet (x, y) Når ligning (12) er opfyl, vil kurveintegralet af Adx + Bdy være uafhængigt af vejen 34 Bevis for integrabilitet Vi kan nu ved hjælp af Stokes teorem vise, at (12) er en tilstrækkelig betingelse for, at en differentialform er integrabel For hvis (12) er opfyl, vil kurveintegralet forsvinde run om en vilkårlig lukket kurve Adx + Bdy = (22) Lad os indføre et åbent kurvestykke (x, y) som forbinder koordinatsystemets begyndelsespunkt med punktet (x, y) og lad os definere integralet, f(x, y) = A(x, y ) dx + B(x, y ) dy (23) (x,y) Denne funktion er uafhængig af vejen og afhænger kun af endepunktet (x, y), fordi forskellen mellem to veje og forsvinder Adx + Bdy Adx + Bdy = Adx + Bdy = (24) (x,y) (x,y) Fortegnet for den anden term på venstre side skyldes den angivne orientering af vejene De to kurver danner tilsammen en lukket kurve, som symbolsk kan skrives Integralet z = f(x, y) er altså en rigtig funktion af endepunktets koordinater og det følger forholdsvis nemt, at dz = Adx + Bdy (25) Ligning (12) er altså både nødvendig og tilstrækkelig for, at en given differentialform er et totalt differential 8

9 Opgave 1 Beregn de totale differentialer af urykkene x + y xy sin(x + y) cos(xy) tan x2 y (26a) (26b) (26c) (26d) (26e) Opgave 2 Et stykke af en parabel i planen beskrives ved x = t (27) y = t 2 (28) for t 1 Beregn kurveintegralet af differentialformen y 2 dx xdy (29) Opgave 3 Enhedscirklen beskrives ved x = cos t (3) y = sin t (31) for t 2π a) Beregn kurveintegralet af den kvadratiske form ydx + xdy (32) run om cirklen b) Vis, at Stokes teorem er opfyl 9

10 Løsning 1 dx + dy ydx + xdy cos(x + y)dx + cos(x + y)dy sin(xy)ydx sin(xy)xdy ( ) ) 2 ( 1 + (tan x2 2 x ) x2 dx y y y dy 2 (33a) (33b) (33c) (33d) (33e) Løsning 2 1 y 2 dx xdy = 1 ( t 4 2t 2) = 7 15 (34) Løsning 3 a) Kurveintegralet er ydx + xdy = 2π cirklen ( (sin t) 2 + (cos t) 2) = 2π (35) b) Højre side af Stokes teorem bliver et integral over cirklens areal 2dxdy = 2π (36) som det skal være cirklen 1

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30.

Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 135, 270, 60, 30. Opgaver Polære koordinater Opgave 1 Opskriv følgende vinkler i radianer 180, 90, 15, 70, 60, 0. Opgave Bestem sin π Opgave. Et punkt p i xy-planen er givet ved de kartesiske koordinater,. Bestem p s polære

Læs mere

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Oversigt [S] 5., 5.3, 5.4,.,. Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 6 Uge 39.

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter Arealmomenter af. og. orden side Institut for Matematik, DTU: Gymnasieopgave Arealmomenter Teori: Se lærebøgerne i faget Statiske konstruktionsmodeller og EDB. Se også H&OL bind,., samt bind appendix.3,

Læs mere

Kurve- og plan-integraler

Kurve- og plan-integraler enote 22 1 enote 22 Kurve- og plan-integraler Vi vil her med udgangspunkt i de metoder og resultater der er opstillet i enote 21 vise, hvordan Riemann-integralerne derfra kan benyttes til blandt andet

Læs mere

Substitutions- og indkomsteffekt ved prisændringer

Substitutions- og indkomsteffekt ved prisændringer Substitutions- og indkomsteffekt ved prisændringer Erik Bennike 14. november 2009 Denne note giver en beskrivelse af de relevante begreber omkring substitutions- og indkomsteffekter i mikroøkonomi. 1 Introduktion

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

Matematikken bag Parallel- og centralprojektion

Matematikken bag Parallel- og centralprojektion Matematikken bag parallel- og centralojektion 1 Matematikken bag Parallel- og centralojektion Dette er et redigeret uddrag af lærebogen: Programmering med Delphi fra 2003 (570 sider). Delphi ophørte med

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

Oversigt [S] 2.7, 2.9, 11.4

Oversigt [S] 2.7, 2.9, 11.4 Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt

Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Oversigt [S] 5.2, 5.3, 5.4, 2., 2.2 Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 26

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Some like it HOT: Højere Ordens Tænkning med CAS

Some like it HOT: Højere Ordens Tænkning med CAS Some like it HOT: Højere Ordens Tænkning med CAS Bjørn Felsager, Haslev Gymnasium & HF, 2001 I år er det første år, hvor CAS-forsøget er et standardforsøg og alle studentereksamensopgaverne derfor foreligger

Læs mere

Eksamen i Mat F, april 2006

Eksamen i Mat F, april 2006 Eksamen i Mat F, april 26 Opgave Lad F være et vektorfelt, givet i retvinklede koordinater som: Udregn F og F: F x F = F x i + F y j + F z k = F y = z 2 F z xz y 2 F = F x + F y + F z = + + x. F = F z

Læs mere

Lidt om plane kurver og geometrisk kontinuitet

Lidt om plane kurver og geometrisk kontinuitet Lidt om plane kurver og geometrisk kontinuitet Jesper Møller og Rasmus P. Waagepetersen, Institut for Matematiske Fag, Aalborg Universitet September 3, 2003 1 Indledning Dette notesæt giver en oversigt

Læs mere

Oversigt [S] 2.7, 2.9, 11.4

Oversigt [S] 2.7, 2.9, 11.4 Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable

Læs mere

Gradienter og tangentplaner

Gradienter og tangentplaner enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem

Læs mere

Ang. skriftlig matematik B på hf

Ang. skriftlig matematik B på hf Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

Matematisk modellering og numeriske metoder. Lektion 13

Matematisk modellering og numeriske metoder. Lektion 13 Matematisk modellering og numeriske metoder Lektion 3 Morten Grud Rasmussen 9. november 25 Divergens af et vektorfelt [Sektion 9.8 og.7 i bogen, s. 43]. Definition af og og egenskaber for divergens Lad

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave A Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

MM502+4 forelæsningsslides. uge 6, 2009

MM502+4 forelæsningsslides. uge 6, 2009 MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,

Læs mere

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet

STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU. Mandag den 11. maj 2009. Kl. 09.00 14.00 STX091-MAA. Undervisningsministeriet STUDENTEREKSAMEN MAJ 2009 MATEMATIK A-NIVEAU Mandag den 11. maj 2009 Kl. 09.00 14.00 STX091-MAA Undervisningsministeriet Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-5

Læs mere

Mathematicus AB1. # a # b. # a # b. Mike Vandal Auerbach.

Mathematicus AB1. # a # b. # a # b. Mike Vandal Auerbach. Mathematicus AB1 # a # b # a # b Mike Vandal Auerbach www.mathematicus.dk Mathematicus AB1 1. udgave, 2017 Disse noter er skrevet til matematikundervisning på stx og må anvendes til ikke-kommercielle formål.

Læs mere

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

M A T E M A T I K. # e z. # a. # e x. # e y A U E R B A C H M I K E. a z. a x

M A T E M A T I K. # e z. # a. # e x. # e y A U E R B A C H M I K E. a z. a x M A T E M A T I K B A M I K E A U E R B A C H WWW.MATHEMATICUS.DK z a z # e z # a a x # e x ay # e y y x Matematik B A. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock

Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil

Læs mere

Matematik F Et bud på hvordan eksamenssæt løses

Matematik F Et bud på hvordan eksamenssæt løses Matematik F Et bud på hvordan eksamenssæt løses Jeppe Trøst Nielsen 11. april 21 Denne samling af ligninger og løsninger er udarbejdet efter det princip, at eksamenssættene ikke ændrer sig specielt meget

Læs mere

Lineære ligningssystemer

Lineære ligningssystemer enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.

Læs mere

Vektorfelter. enote Vektorfelter

Vektorfelter. enote Vektorfelter enote 24 1 enote 24 Vektorfelter I enote 6 indføres og studeres vektorer i plan og rum. I enote 16 ser vi på gradienterne for funktioner f (x, y) af to variable. Et gradientvektorfelt for en funktion af

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Kommentarer til matematik B-projektet 2015

Kommentarer til matematik B-projektet 2015 Kommentarer til matematik B-projektet 2015 Mandag d. 13/4 udleveres årets eksamensprojekt i matematik B. Dette brev er tænkt som en hjælp til vejledningsprocessen for de lærere, der har elever, som laver

Læs mere

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2

Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit

Matematikkens mysterier - på et højt niveau. Kenneth Hansen. 5. Kurver og keglesnit Matematikkens mysterier - på et højt niveau af Kenneth Hansen 5. Kurver og keglesnit 5. Kurver og keglesnit 5.1 Kurver: Parameterfremstilling og ligning 5. Hastighed, acceleration og tangenter 7 5.3 Kurveundersøgelser

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan

Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan Praktiske Maple Ting. - Hvis du skal indsætte kvadratroden, et integrale, lambda, osv. Så skriv eks. Sqrt, int, eller lambda, tryk escape og du kan så vælge tegnet. - For at definere noget, eks en x værdi,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2015 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse Flexhold Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2011 Institution Uddannelsescenter Herning, afd. HHX-Ikast Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Termin hvori undervisningen afsluttes: maj juni 10 HTX Sukkertoppen,

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Bevægelsens Geometri

Bevægelsens Geometri Bevægelsens Geometri Vi vil betragte bevægelsen af et punkt. Dette punkt kan f.eks. være tyngdepunktet af en flue, et menneske, et molekyle, en galakse eller hvad man nu ellers har lyst til at beskrive.

Læs mere

Matematisk modellering og numeriske metoder. Lektion 8

Matematisk modellering og numeriske metoder. Lektion 8 Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er

Læs mere

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant.

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant. Matematik F2 - sæt 2 af 7 blok 4 f(z)dz = 0 1 I denne uge vil vi studere Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en

Læs mere

Kurver i planen og rummet

Kurver i planen og rummet Kurver i planen og rummet John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Kurver i planen og rummet. Noterne er beregnet til at blive brugt sammen med foredraget. Afsnit 2 er

Læs mere

Svar til eksamen i Matematik F2 d. 23. juni 2016

Svar til eksamen i Matematik F2 d. 23. juni 2016 Svar til eksamen i Matematik F d. 3. juni 06 FORBEHOLD FOR FEJL! Bemærk, i modsætning til herunder, så skal det i besvarelsen fremgå tydeligt, hvordan polerne ndes og hvordan de enkelte residuer udregnes.

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Oversigt [S] 5.2, 5.4, 12.1

Oversigt [S] 5.2, 5.4, 12.1 Oversigt [S] 5.2, 5.4, 12.1 Nøgleord og begreber Bestemt integral Areal iemann summer Volumen Dobbelt integral Test dobbelt integral iemann dobbeltsummer Nyttige regneregler for integral Test integral

Læs mere

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik

Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Vektorfunktioner vha. CAS

Vektorfunktioner vha. CAS Vektorfunktioner vha. CAS 1 Forord Vi skal i de kommende uger arbejde med emnet Vektorfunktioner ved: 1) at I selv arbejder med siderne 3 10 som en opstart. Siderne baserer sig på CAS-programmet TI-Nspire.

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2011 Htx Sukkertoppen,

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: Maj 2013 HTX Vibenhus

Læs mere

Undervisningsbeskrivelse Valghold 2011 2012 Matematik A

Undervisningsbeskrivelse Valghold 2011 2012 Matematik A Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2011-2012 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik A Valghold Henrik Pedersen HtxmatA311

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

MATEMATIK A. Indhold. 92 videoer.

MATEMATIK A. Indhold. 92 videoer. MATEMATIK A Indhold Differentialligninger... 2 Differentialregning... 3 Eksamen... 3 Hvorfor Matematik?... 3 Integralregning... 3 Regression... 4 Statistik... 5 Trigonometriske funktioner... 5 Vektorer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 & Maj-juni 2017 Institution VUC Holstebro Uddannelse Fag og niveau Lærer(e) Hold STX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 HTX

Læs mere

Tonelli light. Eksistensbeviset for µ ν gav målet. for G E K ved succesiv integration. Alternativ definition:

Tonelli light. Eksistensbeviset for µ ν gav målet. for G E K ved succesiv integration. Alternativ definition: Tonelli light Eksistensbeviset for µ ν gav målet ( ) λ(g) = G (x, y)dν(y) dµ(x) for G E K ved succesiv integration. Alternativ definition: ( ) λ(g) = G (x, y)dµ(x) dν(y). Som λ(a B) = µ(a)ν(b) gælder λ(a

Læs mere

Geometrien af en scroll-kompressor Fra et konkret problem til abstrakt matematik

Geometrien af en scroll-kompressor Fra et konkret problem til abstrakt matematik Geometrien af en scroll-kompressor Fra et konkret problem til abstrakt matematik Jens Gravesen and Christian Henriksen 10. februar 1999 Abstract Med udgangspunkt i scroll-kompressoren, en opfindelse fra

Læs mere

MM502+4 forelæsningsslides

MM502+4 forelæsningsslides MM502+4 forelæsningsslides uge 9, 2009 Produceret af Hans J. Munkholm, delvis på baggrund af lignende materiale udarbejdet af Mikael ørdam 1 Egentlige og uegentlige dobbeltintegraler: efinition (Egentlige

Læs mere

Uendelige rækker og Taylor-rækker

Uendelige rækker og Taylor-rækker Uendelige rækker og Taylor-rækker Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 200 Thomas Bolander, FUKBH 0 s. /24 Forhold mellem endelighed

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.

Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne

Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne Uddrag af studieordningen for Adgangskursus til Ingeniøruddannelserne 21 Matematik B Kurset svarer til det gymnasiale niveau B 21.2.2 Kernestof Kernestoffet er: regningsarternes hierarki, det udvidede

Læs mere

M A T E M A T I K A 3

M A T E M A T I K A 3 M A T E M A T I K A 3 M I K E A U E R B A C H WWW.MATHEMATICUS.DK z a z # e z # a a x # e x ay # e y y x Matematik A3. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes

Læs mere

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f

GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for udvalgte sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Kofi Mensah 7Ama1S15

Læs mere

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas UVB Skoleår: 2013-2014 Institution: Fag og niveau: Lærer(e): Hold: Teknisk Gymnasium Skive Matematik A Claus Vestergaard og Franka Gallas 3. A Titel 1: Rep af 1. og 2. år + Gocart Titel 2: Vektorer i rummet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

GAUSS-BONNET HANS PLESNER JAKOBSEN

GAUSS-BONNET HANS PLESNER JAKOBSEN GAUSS-BONNET HANS PLESNER JAKOBSEN.. Indledning. En af de mest fundamentale sætninger i geometri er Thales Sætning, der siger, at vinkelsummen i en trekant er lig med π. Generalisationen af denne sætning

Læs mere