Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer"

Transkript

1 Program Simpel og multipel lineær regression Helle Sørensen Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model, multikollinearitet. Eksempel hvor transformation af data er nyttigt (eller...): Michaelis-Menten ligning. StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 1 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 2 / 26 I tirsdags: model og estimation I tirsdags: Prædikterede værdier og residualer Set-up: responsvariabel og én forklarende kvantitativ variabel. Statistisk model: y i = β 0 + β 1 x i + ε i hvor ε erne antages at være uafhængige og N(0, σ)-fordelte. Estimation: ˆβ 0 og ˆβ 1 findes ved least squares, nemlig således at er så lille som muligt. n i=1 (y i β 0 β 1 x i ) 2 Minimerer summen af kvadraterne af lodrette afstande mellem observationer og forventede/prædikterede værdier. Regressionslinie: y = ˆβ 0 + ˆβ 1 x Prædikteret værdi for vilkårlig x-værdi: ŷ = ˆβ 0 + ˆβ 1 x. Specielt for værdierne x i i datasættet: ŷ i = ˆβ 0 + ˆβ 1 x i. Residualer: r i = y i ŷ i Estimat for spredning af ε i : Aflæses i SAS som Root MSE. 1 ˆσ = s Y X = n 2 n i=1 r 2 i StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 3 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 4 / 26

2 I tirsdags: Modelkontrol Standardiserede residualer: r i = r i sd(r i ) Hvis modelantagelserne er ok, så er r i erne normalfordelte med middelværdi 0 og spredning 1 uanset i. Modelkontrol: Residualplot: Plot (x i, r i ) eller (ŷ i, r i ). Checker antagelserne om at ε erne har middelværdi 0 og samme spredning. QQ-plot over r i erne. Checker normalfordelingsantagelsen. Cook-afstande: Plot (i,d i ) hvor D i måler afstanden måler effekten på de prædikterede værdier af at udelade observation i. Checker for særligt indflydelsesrige observationer. Problemer med modellen? Sommetider nyttigt at transformere responsen og/eller den forklarende variabel. Konfidensintervaller Især interesseret i konfidensintervaller for Husk: β 1 forventet ændring i y ved ændring i x på en enhed µ Y X = β 0 + β 1 x forventet værdi for y når forklarende variabel er x. 95% KI : estimat ± t n 2,0.975 SE(estimat) hvor SE som sædvanlig betyder standard error (estimeret spredning). SE( ˆβ 1 ) = s Y X (xi x) 2, Hvad sker der når n vokser? Hvad sker der for x langt fra/tæt på x? SE( ˆβ 0 + ˆβ 1 (x x)2 1 x) = s Y X + n (x i x) 2 Hvad sker hvis spredningen omkring linien er stor hhv. lille? Hvordan får vi SE( ˆβ 0 ) og dermed KI for β 0? StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 5 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 6 / 26 Konfidensintervaller i SAS Test af hypoteser Konfidensintervaller for β 0 + β 1 x i fås med optionen clm Konfidensintervaller for β 0 og β 1 : SE givet, men jeg kan ikke finde ud af at få proc reg til at beregne konfidensintervallerne direkte... Blodtryksdata: 95% KI for β 1? 95% KI for β 0? 95% KI for β 0 + β 1 50? Se figur side 365. Ofte interesseret i hypotesen H 0 : β 1 = 0. Hvorfor? Testes som sædvanlig på T obs = ˆβ 1 SE( ˆβ 1 ) ; p = 2P(T T obs) hvor T t n 2. Hvor ekstremt ligger den observerede værdi af T i t n 2 -fordelingen? Det er præcis dette test SAS laver i outputtet med parameterestimater. Hvordan skal testet ændres hvis hypotesen er H 0 : β 1 = β 10 for et kendt tal β 10? Hvordan tester vi mon hypotesen µ Y X = µ 0 for et kendt tal µ 0? StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 7 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 8 / 26

3 Test for ingen effekt af den forklarende variabel Forklaringsgrad R 2 Tilbage til hypotesen H 0 : β 1 = 0. Svarer til at vi kan fjerne variablen x fra modelbeskrivelsen. Som i variansanalysen: F -test. Til variationskilder: variation der kan forklares ved ret linie samt variation omkring ret linie: (y i ȳ) 2 = (ŷ i ȳ) 2 + (y i ŷ i ) 2 Variansanalyseskema side 363 og 364. F -test: F obs = (ŷ i ȳ) 2 /1 (y i ŷ i ) 2 /(n 2), p = P(F F obs), F F (1,n 2) R 2 -værdien er andelen af den totale variation som kan forklares med den rette linie: R 2 = (ŷ i ȳ) 2 (y i ȳ) 2 R 2 er netop kvadratet på Peason korrelationskoefficienten mellem x og y. R 2 rapporteres ofte som et mål for modellens egnethed, men er stærkt overvurderet: Hvad er det egentlig R 2 måler? Hvad hvis der er en stor naturlig variation? Hvad er risikoen ved at tilføje ekstra forklarende variable for at booste sin R 2? Sammenhæng mellem t-test og F -test: T 2 = F, samme p-værdi. StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 9 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 10 / 26 Prædiktionsintervaller Regression af y på x eller omvendt? Husk konfidensintervallet for µ Y X = β 0 + β 1 x: ˆβ 0 + ˆβ 1 (x x)2 1 x ± t n 1,0.975 s Y X + n (x i x) 2 Hvad udtaler konfidensintervallet sig om? Ønsker nu at angive et prædiktionsinterval, dvs. et interval hvor en ny observation vil havne med ssh. 95%. Hvad mangler vi at tage højde for? Hvordan? Skal det være smallere eller bredere end konfidensintervallet? Se figurer side 365 og 366. Hvad sker der hvis n vokser? Prædiktionsintervaller fås med optionen cli i SAS. For hvilke værdier af x er prædiktionen og PI troværdige? Model for sammenhæng mellem x og y samt tilhørende estimater: y i = β 0 + β 1 x i + ε i ( ˆβ 0, ˆβ 1 ) Alternativ model og tilhørende estimater: x i = α 0 + α 1 y i + e i (ˆα 0, ˆα 1 ) Hvis vi ser bort fra restleddet svarer dette til y i = α 0 α α 1 x i. Der gælder ikke ˆβ 0 = ˆα 0 /ˆα 1 og ˆβ 1 = 1/ˆα 1. Hvorfor ikke? Men testene for H 0 : β 1 = 0 og α 1 = 0 faktisk identiske. Hvornår er det rimeligt at bruge hvilken model? Hvad hvis ingen af modellerne er mere rimelig end den anden? StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 11 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 12 / 26

4 Multipel lineær regression Eksempel: blodtryk for voksne Simpel lineær regression: én kvantitativ forklarende variabel (prædiktor) Multipel lineær regression: flere kvantitative forklarende variable (prædiktorer) Model: y i = β 0 + β 1 x 1,i + β 1 x 2,i + + β p 1 x p 1,i + ε i hvor ε i erne er uafhængige og N(0,σ)-fordelte. Hvad er fortolkningen af β 1,β 2,...,β p 1? β 0? σ? FLH side 370: blodtryksmålinger for 50 voksne. Variable: Response: sbp Kvantitative forklarende: age, education, weight, height, bmi Kategoriske forklarende: race, sex, smoke FLH foreslår at bruge (delmængde af) variablene: age, height, weight. Sammenhænge mellem forklarende variable: scatter plots og parvise korrelationer. Se side 371. Begge dele beskriver kun parvise sammenhænge. Vi kan evt. forsøge at inddrage education og bmi, også (senere). StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 13 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 14 / 26 Eksempel: blodtryk for voksne Valg af model Hvor mange variable kan data bære? FLH-tommelfingerregel: n mindst 10 gange antal variable. For en given multipel regressionsmodel kan vi estimere β 0,β 1,...,β p 1 ved LS samt estimere σ. Lave modelkontrol vha. residualanalyse beregne SE( ˆβ j ) og dermed konfidensintervaller for β j. Bemærk: DF = n p; n minus antallet af parametre i middelværdibeskrivelsen. Men hvordan finder vi ud af hvilke variable vi skal inkludere i modellen? FLH beskriver to metoder til valg af model: Forward stepwise selection All possible regressions procedure Begge dele er ret automatiske /objektive procedurer. Måske for automatiske... Alternativ: backward stepwise selection. Overvej hvilke variable det giver mening at inddrage fra et fagligt synspunkt. Pas på med at inddrage for mange. Reducer modellen, dvs. test for effekt af variable indtil alle er signifikante. Hypotesen H 0 : β j = 0 testes med t-test. I hvilken rækkefølge skal vi teste for variablene? StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 15 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 16 / 26

5 Eksempel: blodtryk for voksne Multikollinearitet Startmodel: sbp i = β 0 + β 1 age i + β 2 weight i + β 3 height i + ε i hvor ε i erne er uafhængige og N(0,σ)-fordelte. Modelkontrol giver ikke umiddelbart anledning til bekymringer. Modelreduktion: Ikke signifikant effekt af højde når vægt og alder er med i modellen (p = 0.057) Alder har signifikant effekt (p = ). ˆβ 1 = (SE 0.044) Vægt har signifikant effekt (p = ). ˆβ 2 = (SE 0.119) Når frem til samme model som i FLH ved forward stepwise selection. Multikollinearitet betyder at der er forklarende variable der er tæt på at være lineært afhængige. En forklarende variabel kan næsten skrives som linearkombination af nogle af de øvrige. Eksempler: Stærkt korrelerede variable. To variable udtrykker stort det samme, fx. højde/skostørrelse(?) eller bmi/fedtprocent. Ikke svært at finde... Flere variable indblandet, fx. alder, uddannelse målt i år, antal år på arbejdsmarkedet. Sværere at finde... Hvad er problemet? Ikke problemer med at fitte modellen, men... parameterestimater er ikke troværdige da forskellige effekter blandes sammen. fortolkningen af parametrene ikke rimelige: ændring i x j når alle andre variable holdes fast. Hvorfor ikke? StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 17 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 18 / 26 Multikollinearitet Eksempel: blodtryk for voksne Symptomer på multikollinearitet: Fortegn på estimater får et andet fortegn end det man ville forvente Store p-værdier for variable som man ellers ville tro havde en effekt Store p-værdier for alle/næsten alle forklarende variable Store ændringer i parameterestimater hvis en/flere forklarende variable udelades Hvad sker hvis vi også inkluderer bmi og education i modellen? Pas ekstra meget på med ekstrapolation udover områder med observationer! StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 19 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 20 / 26

6 Eksempel: puromycin Eksempel: puromycin Eksperiment med enzymet puromycin. Hastigheden af en bestemt kemisk reaktion blev målt for seks forskellige koncentrationer af enzymet Andre forhold i forsøget var uændrede To gentagelser per koncentration. 12 sammenhørende værdier af puromycinkoncentration og hastighed. Koncentration Hastighed Hastighed Oprindelige værdier Koncentration y=1/hastighed Reciprokke værdier x=1/koncentration StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 21 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 22 / 26 Michaelis Menten model Analyse af den reciprokke model Michaelis-Menton ligning: Her er C koncentration, V hastighed V = θ C ρ + C Parameteren θ angiver den maksimale hastighed (for en meget stor koncentration) Parameteren ρ er den koncentration hvor reaktionshastigheden er halvdelen af den maksimale, dvs. θ/2. Hvorfor passer denne model ikke ind i den lineære regressionsmodel? Hvad sker der hvis ser på den reciprokke af V, dvs. 1/V? Lineær regressionsmodel: eller Estimater for α og β? 1 = 1 V i θ + ρ θ 1 + ε i C i y i = α + β x i + ε i Afhænger reaktionshastigheden af koncentrationen? Estimater for θ og ρ? Estimat for forventet reaktionshastighed ved koncentration på 0.5? Ved hvilken koncentration er den forventede reaktionshastighed 175? Mon modelantagelserne er rimelige? StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 23 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 24 / 26

7 Ikke-lineær regressionsmodel Resumé Alternativ model: med de sædvanlige antagelser på ε erne. V i = θ C i ρ + C i + ε i Modellen kan fittes med proc nlin. Estimater for θ og ρ? Estimat for forventet reaktionshastighed ved koncentration på 0.5? Ved hvilken koncentration er den forventede reaktionshastighed 175? Sammenlign med den anden model. Også SE er. Er modelantagelserne mon ok? Simpel/multipel: en eller flere forklarende variabel. Fortolkning af parametre er essentiel Konfidensintervaller vs. prædiktionsintervaller Fortolkningsproblemer ved multikollinearitet i multipel LR StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 25 / 26 StatBK (Uge 6, torsdag) Simpel og multipel lineær regresison 26 / 26

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Ensidet variansanalyse

Ensidet variansanalyse Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk StatBK (Uge 47, mandag) Ensidet ANOVA 1 / 18 Program I dag: Sammenligning af middelværdier Sammenligning af spredninger

Læs mere

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie Program Ensidet variansanalyse Sammenligning af grupper Helle Sørensen E-mail: helle@math.ku.dk I dag: Sammenligning af middelværdier Sammenligning af spredninger Parvise sammenligninger To eksempler:

Læs mere

En Introduktion til SAS. Kapitel 6.

En Introduktion til SAS. Kapitel 6. En Introduktion til SAS. Kapitel 6. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 6 Regressionsanalyse i SAS 6.1 Indledning Dette kapitel

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Mathematical Statistics ST06: Linear Models Bent Jørgensen og Pia Larsen Module 2: Mere om variansanalyse 2. Parreded observationer................................ 2.2 Faktor med 2 niveauer (0- variabel)........................

Læs mere

Lineær regression i SAS. Lineær regression i SAS p.1/20

Lineær regression i SAS. Lineær regression i SAS p.1/20 Lineær regression i SAS Lineær regression i SAS p.1/20 Lineær regression i SAS Simpel lineær regression Grafisk modelkontrol Multipel lineær regression SAS-procedurer: PROC REG PROC GPLOT Lineær regression

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau ypotese test Repetition fra sidst ypoteser Test af middelværdi Test af andel Test af varians Type 1 og type fejl Signifikansniveau Konfidens intervaller Et konfidens interval er et interval, der estimerer

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Modul 6: Regression og kalibrering

Modul 6: Regression og kalibrering Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Variansanalyse i SAS. Institut for Matematiske Fag December 2007

Variansanalyse i SAS. Institut for Matematiske Fag December 2007 Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Institut for Matematiske Fag December 2007 Variansanalyse i SAS 2 Tosidet variansanalyse Residualplot Tosidet variansanalyse

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

Modul 11: Simpel lineær regression

Modul 11: Simpel lineær regression Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Lineær regression. Simpel regression. Model. ofte bruges følgende notation:

Lineær regression. Simpel regression. Model. ofte bruges følgende notation: Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til

Læs mere

Reeksamen i Statistik for Biokemikere 6. april 2009

Reeksamen i Statistik for Biokemikere 6. april 2009 Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Opgavebesvarelse, brain weight

Opgavebesvarelse, brain weight Opgavebesvarelse, brain weight (Matthews & Farewell: Using and Understanding Medical Statistics, 2nd. ed.) Spørgsmål 1 Data er indlagt på T:/Basalstatistik/brain.txt og kan indlæses direkte i Analyst med

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

To-sidet variansanalyse

To-sidet variansanalyse Program 1. To-sidet variansanalyse 2. Hierarkisk princip 3. Tre (og flere) sidet variansanalyse 4. Variansanalyse med blocking 5. Flersidet variansanalyse med tilfældige faktorer 6. En oversigtsslide til

Læs mere

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet

Læs mere

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable

Faculty of Health Sciences. Logistisk regression: Interaktion Kvantitative responsvariable Faculty of Health Sciences Logistisk regression: Interaktion Kvantitative responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen

k UAFHÆNGIGE grupper F-test Oversigt 1 Intro eksempel 2 Model og hypotese 3 Beregning - variationsopspaltning og ANOVA tabellen Introduktion til Statistik Forelæsning 10: Envejs variansanalyse, ANOVA Peder Bacher DTU Compute, Dynamiske Systemer Bygning 303B, Rum 017 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail: pbac@dtu.dk

Læs mere

Forelæsning 8: Inferens for varianser (kap 9)

Forelæsning 8: Inferens for varianser (kap 9) Kursus 02402 Introduktion til Statistik Forelæsning 8: Inferens for varianser (kap 9) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Kvantitative Metoder 1 - Forår 2007

Kvantitative Metoder 1 - Forår 2007 Dagens program Afsnit 3.3-3.5 Varians Eksempel: Forventet nytte Kovarians og korrelation Middelværdi og varians af summer af stokastiske variabler Eksempel: Porteføljevalg 1 Beskrivelse af fordelinger

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al

Program. Tosidet variansanalyse og forsøgsplanlægning. Repetition: ensidet variansanalyse. Eksempel: data fra Collinge et al Program Tosidet variansanalyse og forsøgsplanlægning Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Ensidet ANOVA: repetition og Collinge eksempel. Additiv tosidet ANOVA (blokforsøg) Tosidet ANOVA

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning

Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 1 Regressionsproblemet 2 Simpel lineær regression Mindste kvadraters tilpasning Prædiktion og residualer Estimation af betinget standardafvigelse Test for uafhængighed Konfidensinterval for hældning 3

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Rygtespredning: Et logistisk eksperiment

Rygtespredning: Et logistisk eksperiment Rygtespredning: Et logistisk eksperiment For at det nu ikke skal ende i en omgang teoretisk tørsvømning er det vist på tide vi kigger på et konkret logistisk eksperiment. Der er selvfølgelig flere muligheder,

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Statistik Lektion 16 Multipel Lineær Regression

Statistik Lektion 16 Multipel Lineær Regression Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25.

Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. Hjemmeopgave Basal statistik for sundhedsvidenskabelige forskere, forår 2015 Udleveret 3. marts, afleveres senest ved øvelserne i uge 13 (24.-25. marts) En stikprøve bestående af 65 mænd og 65 kvinder

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger

Økonometri 1. Inferens i den lineære regressionsmodel 25. september 2006. Oversigt: De næste forelæsninger Oversigt: De næste forelæsninger Økonometri Inferens i den lineære regressionsmodel 5. september 006 Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan drage konklusioner på

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion

Økonometri lektion 5 Multipel Lineær Regression. Inferens Modelkontrol Prædiktion Økonometri lektion 5 Multipel Lineær Regression Inferens Modelkontrol Prædiktion Multipel Lineær Regression Data: Sæt af oservationer (x i, x i,, x ki, y i, i,,n y i er den afhængige variael x i, x i,,

Læs mere

Regressionsanalyse i SAS

Regressionsanalyse i SAS Københavns Universitet Statistik for Biokemikere Det naturvidenskabelige fakultet Inge Henningsen Afdeling for Anvendt Matematik og Statistik December 2006 Regressionsanalyse uden gentagelser Regressionsanalyse

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Trivsel og fravær i folkeskolen

Trivsel og fravær i folkeskolen Trivsel og fravær i folkeskolen Sammenfatning De årlige trivselsmålinger i folkeskolen måler elevernes trivsel på fire forskellige områder: faglig trivsel, social trivsel, støtte og inspiration og ro og

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares)

Oversigt. 1 Motiverende eksempel: Højde-vægt. 2 Lineær regressionsmodel. 3 Mindste kvadraters metode (least squares) Kursus 02402/02323 Introducerende Statistik Forelæsning 8: Simpel lineær regression Oversigt Motiverende eksempel: Højde-vægt 2 Lineær regressionsmodel 3 Mindste kvadraters metode (least squares) Klaus

Læs mere

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling.

Privatansatte mænd bliver desuden noget hurtigere chef end kvinderne og forholdsvis flere ender i en chefstilling. Sammenligning af privatansatte kvinder og mænds løn Privatansatte kvindelige djøfere i stillinger uden ledelsesansvar har en løn der udgør ca. 96 procent af den løn deres mandlige kolleger får. I sammenligningen

Læs mere

Simpel Lineær Regression: Model

Simpel Lineær Regression: Model Simpel Lineær Regression: Model Sidst så vi på simpel lineære regression. Det er en statisisk model på formen y = β 0 + β 1 x + u, hvor fejlledet u, har egenskaben E[u x] = 0. Dette betyder bl.a. E[y x]

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004

Økonometri 1. Interne evalueringer af forelæsninger. Kvalitative variabler. Dagens program. Dummyvariabler 21. oktober 2004 Dagens program Økonometri 1 Dummyvariabler 21. oktober 2004 Emnet for denne forelæsning er kvalitative egenskaber i den multiple regressionsmodel (Wooldridge kap. 7.1-7.6) Kvalitative variabler generelt

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Multipel regression 22. Maj, 2012

Multipel regression 22. Maj, 2012 Data: Det færøske kviksølv-studie Simpel linær regression Confounding Multipel lineær regression Fortolkning af parametre Vekselvirkning Kollinearitet Modelkontrol Multipel regression 22. Maj, 2012 Esben

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Basal statistik. 23. september 2008

Basal statistik. 23. september 2008 Basal statistik 23. september 2008 Korrelation og regression Simpel lineær regression Todimensionale normalfordelinger Korrelation vs. regression Modelkontrol Diagnostics Thomas Scheike, Biostatistisk

Læs mere

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25. Hjemmeopgave Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.-27 marts) Garvey et al. interesserer sig for sammenhængen mellem

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger

Læs mere

Module 3: Statistiske modeller

Module 3: Statistiske modeller Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med

Læs mere

SENIORKURSUS STATA OG BIOSTATISTIK

SENIORKURSUS STATA OG BIOSTATISTIK SENIORKURSUS STATA OG BIOSTATISTIK Aarhus Universitet juni 011 Genopfriskning af statistik Basale tankegange og begreber (i dag) Sammenligninger (i morgen) Sammenhænge (i overmorgen) Brug af programpakken

Læs mere

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i

(tæt på N(0,1) hvis n ikke alt for lille). t i god til at checke for outliers som kan have stor indflydelse på estimaterne s 2 og ˆσ 2 e i Da er r i = e i ˆσ ei t(n 3) (tæt på N(0,1) hvis n ikke alt for lille). Program 1. lineær regression: opgave 3 og 13 (sukker-temperatur). 2. studentiserede residualer, multipel regression. Tommelfinger-regel:

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som

MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,

Læs mere

Kapitel 3 Centraltendens og spredning

Kapitel 3 Centraltendens og spredning Kapitel 3 Centraltendens og spredning Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Centraltendens 3 Spredning 4 Praktisk beregning 5 Fraktiler 6 Opsamling 1 Indledning

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Af Karen Helle Sloth og Flemming Skjøth, AgroTech Sammendrag

Læs mere

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol

Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price

Læs mere

β 2 : forskel i skæring polymer 1 og 2. β 3 forskel i skæring polymer 1 og 3.

β 2 : forskel i skæring polymer 1 og 2. β 3 forskel i skæring polymer 1 og 3. Program suspended 200 250 300 350 400 1 2 3 6.5 7.0 7.5 8.0 8.5 9.0 1. kategoriske variable - kodning som indikator variable. 2. model selektion, R 2, F-test samt eksempler. ph Model: forskellig skæring

Læs mere

Perspektiver i Matematik-Økonomi: Linær regression

Perspektiver i Matematik-Økonomi: Linær regression Perspektiver i Matematik-Økonomi: Linær regression Jens Ledet Jensen H2.21, email: jlj@imf.au.dk Perspektiver i Matematik-Økonomi: Linær regression p. 1/34 Program for i dag 1. Indledning: sammenhæng mellem

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Økonometri: Lektion 6 Emne: Heteroskedasticitet

Økonometri: Lektion 6 Emne: Heteroskedasticitet Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Elektron- og lysdiffraktion

Elektron- og lysdiffraktion Elektron- og lysdiffraktion Fysik 8: Kvantemekanik II Joachim Mortensen, Michael Olsen, Edin Ikanović, Nadja Frydenlund 19. marts 2009 1 Elektron-diffraktion 1.1 Indledning og kort teori Formålet med denne

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere