Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
|
|
|
- Anders Johannsen
- 10 år siden
- Visninger:
Transkript
1 Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Odds og odds-ratios (igen) 20 møl udsættes for forskellige doser af et pesticid, og det registreres, hvor mange der dør. Har hidtil snakket om differencen mellem successandsynligheder for to binomialfordelinger. Det svarer altså til en ændring i procentpoint. Procentpoint kan dække over forholdsmæssige store og små ændringer. I alt 120 møl. Dosis Døde Et andet mål kunne være forholdet. Odds for en hændelse A er odds for A = P(A) 1 P(A). Slide 3 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Slide 4 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression
2 Odds-ratio Odds-ratio er forholdet mellem to odds, fx. odds fra to grupper: θ = p 1 1 p 1 p 2 1 p 2 = p 1 (1 p 2 ) p 2 (1 p 1 ) Her svarer en værdi på 1 til ingen forskel mellem de to odds. Et test for H 0 : θ = 1 svarer altså et test for at odds i de to grupper er ens! Den centrale grænseværdisætning giver, at log ˆθ opfører sig pænt, og at estimatet har en standard error på 1 SE(log ˆθ) = , y 11 y 12 y 21 y 22 Kan altså bruge dette til at lave konfidensinterval for logθ. Hvorfor: fortolkning anderledes: forhold vs forskel. Parametrisering i mere komplicerede modeller. Den logistiske regressionsmodel Den logistiske regressionsmodel modellerer en binær responsvariabel som funktion af en eller flere kategoriske og/eller kontinuerte forklarende variable. Den logistiske regressionsmodel er givet ved Y i bin(1,p i ), i = 1,...,n, hvor Y i angiver om observation i var en succes (Y i = 1) eller en fiasko (Y i = 0). Vi kan lade successandsynligheden for hver enkelt observation, p i, afhænge af forskellige forklarende variable: kontinuerte og/eller kategoriske. Slide 5 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Slide 6 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Den logistiske regressionsmodel II logit Den logistiske regressionsmodel er givet ved Y i bin(1,p i ), i = 1,...,n, (1) hvor Y i angiver om observation i var en succes (Y i = 1) eller en fiasko (Y i = 0). Log odds for hændelsen Y = 1 kaldes også logit af p i og defineres som ( ) pi logit (p i ) = log. (2) 1 p i Vi kan modellere de individuelle successandsynligheder som logit (p i ) = α + β 1 x i1 + + β d x id, i = 1,...,n. (3) logit (p) p p logit (p) p i = exp(α + β 1x i1 + + β d x id ) 1 + exp(α + β 1 x i1 + + β d x id ). (4) Slide 7 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Slide 8 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression
3 Inferens i den logaritmiske regressionsmodel Har allerede grundideerne i det, som vi skal bruge Vi kan bruge tankegangen fra de tidligere uger til estimation (maximum likelihood), test af hypoteser (likelihood-ratio tests / Wald tests), konfidens- og prædiktionsintervaller og modelkontrol. Ideerne er helt de samme vi skal ikke komme ind på de konkrete metoder. > dose <- c(1, 2, 4, 8, 16, 32) > moths <- matrix(c(1, 4, 9, 13, 18, 20, + 19, 16, 11, 7, 2, 0), ncol=2) > logreg <- glm(moths ~dose, family=binomial) > summary(logreg) Call: glm(formula = moths ~ dose, family = binomial) Deviance Residuals: Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) e-06 *** dose e-06 *** Slide 9 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Slide 10 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Inferens for logistisk regressionsmodeller Konfidensintervaller for parametre i logistiske regressionsmodeller udregnes som sædvanligt (brug normalfordelingsfraktiler): estimat ± fraktil SE(estimat). Test af hypoteser for en enkelt parameter kan foretages ved et Wald test estimat sande værdi Z obs = SE(estimat) og Z obs er approksimativt normeret normalfordelt, N(0,1). Sammensatte hypoteser kan altid testes ved hjælp af et likelihood ratio test LR = 2 (log(l full ) log(l 0 )), (5) > summary(logreg) Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) e-06 *** dose e-06 *** > logreg2 <- glm(moths ~ 1, family=binomial) > anova(logreg2, logreg, test="chisq") Analysis of Deviance Table Model 1: moths ~ 1 Model 2: moths ~ dose Resid. Df Resid. Dev Df Deviance P(> Chi ) e-16 *** Slide 11 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Slide 12 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression
4 Modelkontrol Som altid bør man checke sine modelantagelser Pearson residualer defineres som r i = y i ŷ i ŷi (1 ŷ i ), (6) så de svarer til de almindelige residualer delt med deres estimerede spredning af y i. Lav et standardiseret residualplot som sædvanligt. Kan se lidt spøjst ud. Grafisk modelkontrol > phi <- summary(model)$dispersion > hi <- hatvalues(model) > rstd <- residuals(model, + type="pearson")/sqrt(phi*(1-hi)) > plot(fitted(model), rstd, + xlab="predicted", ylab="std. Pearson") Slide 13 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Slide 14 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Modelkontrol: Pearsons chi-square test Alternativ til grafisk modelkontrol: sammenlign observerede og fittede andele. Gruppér kontinuerte variable for at ende med grupperede data. Pearsons chi-square goodness-of-fit test X 2 = J j=1 (obs j forv j ) 2 = forv j J j=1 (obs j n j ˆp j ) 2 Summér over alle mulige grupper J, for responsen og de forklarende variable n j antal observationer i gruppe j. ˆp j estimeret relativ frekvens for gruppe j. n j ˆp j, (7) Teststørrelsen følger en χ 2 -fordeling med J/2 r frihedsgrader (r parametre i modellen, og J/2 er det mulige antal grupper). Modelkontrol: Pearson test > obs <- 20 > expect <- obs * fitted(logreg) > expect2 <- obs * (1-fitted(logreg)) > sum((deaths-expect)**2/expect) + + sum((alive-expect2)**2/expect2) [1] > 1-pchisq( , df=6-2) [1] Slide 15 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression Slide 16 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression
5 Dagens hovedpunkter Logistisk regression Inferens for logistisk regression Modelkontrol Slide 17 Statistisk Dataanalyse 1 (Uge 8-1) Logistisk regression
Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration
Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: [email protected] Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion
Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data
Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: [email protected] Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration
Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren
Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: [email protected] Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse
Logistisk regression
Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008
Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
Forelæsning 11: Kapitel 11: Regressionsanalyse
Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22
Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Program. Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve I SAS. Øvelse: effekt af diæter
Program Konfidensinterval og hypotesetest, del 2 en enkelt normalfordelt stikprøve Helle Sørensen E-mail: [email protected] I formiddag: Øvelse: effekt af diæter. Repetition fra sidst... Parrede og ikke-parrede
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
To samhørende variable
To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen
Statistiske Modeller 1: Kontingenstabeller i SAS
Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
Logistisk regression
Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] 21. marts 2013 Dagens program Chi-i-anden (χ 2 )-testet Sandsynligheder,
Hvad er danskernes gennemsnitshøjde? N = 10. X 1 = 169 cm. X 2 = 183 cm. X 3 = 171 cm. X 4 = 113 cm. X 5 = 174 cm
Kon densintervaller og vurdering af estimaters usikkerhed Claus Thorn Ekstrøm KU Biostatistik [email protected] Marts 18, 2019 Slides @ biostatistics.dk/talks/ 1 Population og stikprøve 2 Stikprøvevariation
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
Skriftlig eksamen Science statistik- ST501
SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Modul 6: Regression og kalibrering
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 6: Regression og kalibrering 6.1 Årsag og virkning................................... 1 6.2 Kovarians og korrelation...............................
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 32 Konsekvenser af Heteroskedasticitet Antag her (og i resten) at MLR.1 til MLR.4 er opfyldt. Antag MLR.5 ikke er opfyldt, dvs. vi har heteroskedastiske
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på
men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller
Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =
Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)
Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen
Simpel og multipel logistisk regression
Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende
Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.
Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller
Logistisk regression
Logistisk regression Anvendt statistik Anders Tolver Jensen Institut for Grundvidenskab og Miljø Onsdag d. 25/2-2009 ATJ (IGM KU-LIFE) Logistisk regression Anvendt statistik 25/2-2009 1 / 12 (Multinomial)
Lineær regression. Simpel regression. Model. ofte bruges følgende notation:
Lineær regression Simpel regression Model Y i X i i ofte bruges følgende notation: Y i 0 1 X 1i i n i 1 i 0 Findes der en linie, der passer bedst? Metode - Generel! least squares (mindste kvadrater) til
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.
1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Konfidensintervaller og Hypotesetest
Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller
Tema. Dagens tema: Indfør centrale statistiske begreber.
Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller
Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mantel-Haenszel analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Mantel-Haenszel analyser Mantel-Haenszel analyser Sidst lærte vi om stratificerede analyser. I dag kigger vi på et specialtilfælde: både exposure
Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol
Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price
Modul 7: Eksempler. 7.1 Beskrivende dataanalyse. 7.1.1 Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik
Forskningsenheden for Statistik ST501: Science Statistik Bent Jørgensen Modul 7: Eksempler 7.1 Beskrivende dataanalyse............................... 1 7.1.1 Diagrammer.................................
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19
Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større
Faculty of Health Sciences. Basal Statistik. Logistisk regression mm. Lene Theil Skovgaard. 5. marts 2018
Faculty of Health Sciences Basal Statistik Logistisk regression mm. Lene Theil Skovgaard 5. marts 2018 1 / 22 APPENDIX vedr. SPSS svarende til diverse slides: To-gange-to tabeller, s. 3 Plot af binære
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
Program. 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18
Program 1. Repetition 2. Fordeling af empirisk middelværdi og varians, t-fordeling, begreber vedr. estimation. 1/18 Fordeling af X Stikprøve X 1,X 2,...,X n stokastisk X stokastisk. Ex (normalfordelt stikprøve)
3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve
Modul 11: Simpel lineær regression
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................
Besvarelse af vitcap -opgaven
Besvarelse af -opgaven Spørgsmål 1 Indlæs data Dette gøres fra Analyst med File/Open, som sædvanlig. Spørgsmål 2 Beskriv fordelingen af vital capacity og i de 3 grupper ved hjælp af summary statistics.
Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge
Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange
Lagrange multiplier test. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet. Konsekvenser af Heteroskedasticitet
Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Økonometri: Lektion 6 Håndtering ad heteroskedasticitet Antag vi har model: y = β 0 + β 1 x 2 + + β k x k + u. Vi ønsker
Løsning til opgave i logistisk regression
Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator
Økonometri: Lektion 6 Emne: Heteroskedasticitet
Økonometri: Lektion 6 Emne: Heteroskedasticitet 1 / 34 Lagrange multiplier test Et alternativ til F -testet af en eller flere parametre. Antag vi har model: Vi ønsker at teste hypotesen y = β 0 + β 1 x
Lineær regression i SAS. Lineær regression i SAS p.1/20
Lineær regression i SAS Lineær regression i SAS p.1/20 Lineær regression i SAS Simpel lineær regression Grafisk modelkontrol Multipel lineær regression SAS-procedurer: PROC REG PROC GPLOT Lineær regression
Overlevelsesanalyse. Faculty of Health Sciences
Faculty of Health Sciences Overlevelsesanalyse Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Program Overlevelsesdata Kaplan-Meier estimatoren
Regressionsanalyser. Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer.
Regressionsanalyser Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer. Hvilke faglige problemer kan man løse vha. regressionsanalyser? 1 Regressionsanalyser Det primære problem
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter
Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013
Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.
Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved
Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,
Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014
Vejledende besvarelse af hjemmeopgave i Basal Statistik, forår 2014 Garvey et al. interesserer sig for sammenhængen mellem anæstesi og allergiske reaktioner (se f.eks. nedenstående reference, der dog ikke
Opgavebesvarelse, logistisk regression
Opgavebesvarelse, logistisk regression Data ligger i rop.xls på kursushjemmesiden: http://staff.pubhealth.ku.dk/ jufo/courses/logistic/ Når du har gemt data på din computer, kan det indlæses i SAS med
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Statistik Lektion 16 Multipel Lineær Regression
Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk
Forelæsning 9: Inferens for andele (kapitel 10)
Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.
Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)
Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser
Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier
Program. Simpel og multipel lineær regression. I tirsdags: model og estimation. I tirsdags: Prædikterede værdier og residualer
Program Simpel og multipel lineær regression Helle Sørensen E-mail: [email protected] Simpel LR: repetition, konfidensintervaller, test, prædiktionsintervaller, mm. Multipel LR: estimation, valg af model,
Reeksamen i Statistik for Biokemikere 6. april 2009
Københavns Universitet Det Naturvidenskabelige Fakultet Reeksamen i Statistik for Biokemikere 6. april 2009 Alle hjælpemidler er tilladt, og besvarelsen må gerne skrives med blyant. Opgavesættet er på
Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.
Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte
Module 3: Statistiske modeller
Department of Statistics ST502: Statistisk modellering Pia Veldt Larsen Module 3: Statistiske modeller 31 ANOVA 1 32 Variabelselektion 4 321 Multipel determinationskoefficient 5 322 Variabelselektion med
Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1
Basal Statistik Logistisk Regression Judith L. Jacobsen, PhD. Lene Theil Skovgaard http://staff.pubhealth.ku.dk/~lts/basal13_ [email protected] Dagens Tekst Logistisk regression Binære data Logit transformation
Morten Frydenberg 26. april 2004
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.
MLR antagelserne. Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som
MLR antagelserne Antagelse MLR.1:(Lineære parametre) Den statistiske model for populationen kan skrives som y = β 0 + β 1 x 1 + β 2 x 2 + + β k x k + u, hvor β 0, β 1, β 2,...,β k er ukendte parametere,
Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model
Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H
Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.
Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes
Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning
1 Multipel regressions model Eksempel Multipel regressions model Den generelle model Estimation Multipel R-i-anden F-test for effekt af prædiktorer Test for vekselvirkning PSE (I17) ASTA - 11. lektion
Basal Statistik Kategoriske Data
Basal Statistik Kategoriske Data 8 oktober 2013 E 2013 Basal Statistik - Kategoriske data Michael Gamborg Institut for sygdomsforebyggelse Københavns Universitetshospital [email protected]
Normalfordelingen. Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige
1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.
Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller
