Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Størrelse: px
Starte visningen fra side:

Download "Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression"

Transkript

1 Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

2 Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives P( Svar Ja) 0 P(Svar Ja) 1 Sandsynligheden for at Svar Nej P( Svar Nej) 1 P(Svar Ja) Odds et for at Svar Ja er P(Svar Ja) P(Svar Ja) Odds(Svar Ja) P(Svar Nej) 1 P(Svar Ja) Logit for Svar Ja Logit(Svar Ja) ln P(Svar Ja) 1 P(Svar Ja) ( Odds(Svar Ja) ) ln < Logit(Svar Ja) < 0 Odds(Svar Ja) <

3 Logistisk regression: Motivation Sammenhængen ml. køn og selvvurdering Køn Dreng % Pige % Total % Er du en god læser Nej Ja Total % % % % % % Afhænger selvvurdering af kønnet? Er de 13.6% signifikant forskellige fra de 9.0%?

4 Lidt mere sandynlighedsregning Sandsynlighed for at Ja til at være en god læser givet at man er en dreng skrives: P( God læser Ja Køn Dreng) Sandsynlighed for at Ja til at være en god læser givet at man er en pige skrives: P( God læser Ja Køn Pige) 1 P(God læser Ja Køn Dreng) Oddset for at være svare Ja til at være god læser givet man er en dreng er ( doven notation) P(Ja Dreng) Odds(Ja Dreng) 1 P(Ja Dreng)

5 Hvis ingen afhængighed Hvis selvvurdering ikke afhænger af kønnet må der gælder følgende: P ( Ja Dreng) P(Ja Pige) P( Ja Dreng) P(Ja Pige) 1 Odds ( Ja Dreng) Odds(Ja Pige) Odds( Ja Dreng) Odds(Ja Dreng) 1 ( Odds(Ja Dreng) Odds(Ja Dreng) ) 0 ln logit (Ja Dreng) logit(ja Pige) 0 Odds-ratio Logit-forskel

6 Omkodning Vi omkoder de dikotome variable til binære variable: Køn Dreng > X 0 Køn Pige > X 1 God læser Nej > Y 0 God læser Ja > Y 1

7 Generel 2x2 tabel Generel tabel: To binære variable X og Y: Y 0 1 X 0 1-p 0 P(Y0 X0) p 0 P(Y1 X0) 1 1-p 1 P(Y0 X0) p 1 P(Y1 X0) Er der en sammenhæng? Hvis p 0 p 1 er X og Y uafhængige.

8 Odds og logit Lad X være binær variabel med P(X1)p. Definition odds: Hvor 0 Odds( X 1) < Odds( X 1) p 1 p Fortolkning: Odds(X1)2 betyder at X1 er dobbelt så sandsynligt som X0 Definition logit: Hvor Logit( X < Logit( X 1) < 1) ln p 1 p ( Odds( X 1) ) ln

9 Hen til Logit og tilbage igen Antag Logit( X 1) α Så er Odds et α ( Logit( X 1 ) e Odds ( X 1) exp ) Og sandsynligheden er P( X 1) α e 1+ e α

10 Odds og odds-ratio De to betingede odds: Odds( Y 1 X p0 0) 1 p 0 og Odds( Y 1 X 1) p1 1 p 1 Odds-ratio: Oddsratio( Y 1) Odds( Y Odds( Y 1 X 1 X 1) 0) p p 1 0 (1 (1 p p 0 1 ) ) Hvis X og Y uafhængige har vi og Odds( Y 1 X 0) Odds( Y 1 X 1) Oddsratio( Y 1) 1

11 Logit og logit-forskelle De to betingede logits: Logit ( Y 1 X 0) Logit-forskel: Logit forskel( Y p0 ln 1 p 1) 0 p1 ln 1 p og Logit( Y 1 X 1 p0 ln 1 p 0 1) ln p1 ln 1 p p p 1 0 (1 p (1 p ) ) Hvis X og Y uafhængige har vi og Logit( Y 1 X 0) Logit( Y 1 X 1) Logit forskel( Y 1) 0

12 Logistisk regression: 2 binære var. Statistisk model: Antag Logit( Y 1 X x) α + βx Bemærk hvordan højresiden ligner lineær regression Vores modelantagelse giver: Logit( Y 1 X 0) α Logit( Y 1 X 1) α + β Dermed er logit-forskellen: Logit( Y 1 X 1) Logit( Y 1 X 0) α + β α β Vi er altså interesseret i undersøge om β 0.

13 Odds og Odds-ratio Hvis Logit( Y 1 X x) α + βx Så er Odds er Odds( Y 1 X x) e α +βx Odds-ratio et er α + β Odds( Y 1 X 1) e OR ( Y 1) α Odds( Y 1 X 0) e e β Da e 0 1 passer β 0 stadig med ingen sammenhæng.

14 Estimation: Likelihood-funktionen Definer Likelihood funktionen L( α, β ; data). L(α, β ; data) siger, hvor troelig (likely) data er under vores model for givne valg af α og β.

15 Estimation Lad αˆ og βˆ betegne estimaterne af de sande, men ukendte parametre α og β. Parametrene α og β estimeres ved maximum-likelihood metoden: Vi vælger αˆ og βˆ så L ( αˆ, βˆ ; data) er størst mulig (ordnes af SPSS). Vi kalder αˆ og βˆ maximum-likelihood (ML) estimater.

16 Estimaternes fordeling. Antag β er den sande værdi og βˆ er et ML estimat. For hver data-indsamling får vi lidt forskellige estimater af β pga. af tilfældig variation i data. Hvis vi har indsamlet data nok, så gælder der ˆ β ~ N ( ˆ) ) 2 β, SE( β Normal-fordeling med middelværdi β og varians (SE( βˆ )) 2 Dvs. βˆ i gennemsnit estimerer korrekt (central). Standard fejlen SE( βˆ ) afhænger af mængden af data.

17 Konfidensinterval for β ˆ ( ˆ, ( ) ) Da β ~ N β SE β 2 gælder følgende: P ( β 1.96 SE( β ) < ˆ β < β SE( β )) 0.95 P ( ˆ β 1.96SE( β ) < β < ˆ β SE( β )) 0. 95

18 Konfidensinterval for β Vi har altså at det sande β er indeholdt i intervallet [ ˆ β 1.96SE ( ˆ) β ; ˆ β SE( ˆ)] β med 95% sandsynlighed. Sandsynligheden gælder vel at mærke et endnu ikke udført eksperiment. Når data er indsamlet og konfidensintervallet er udregnet, så inderholder konfidensintervallet enten β ellers så gør det ikke. Derfor hedder det et 95% konfidens-interval og ikke et 95% sandsynligheds-interval.

19 Konfidens-interval for logit-forskel Et 95% konfidens-interval for logit-forskel β: [ ˆ β 1.96SE ( ˆ) β ; ˆ β SE( ˆ)] β Husk: Logit-forskel ln(odds-ratio), dvs. Odds-ratio exp(logit-forskel). Et 95% konfidens-interval for odds-ratio: [ e ˆ β 1.96SE( ˆ β ) ; e ˆ β SE( ˆ β ) ]

20 Signifikanstest Hypoteser H 0 : β 0 (uafhængighed) H 1 : β 0 (afhængighed) Teststørrelse: 2 Z ( ˆ β SE( ˆ) β ) 2 (Wald teststør.) Under H 0 gælder: Z 2 ~ χ 2 ( 1) Store værdier af Z 2 er ufordelagtige for H 0.

21 Hypotesetest og Konfidensintervaller Betragt følgende hypoteser H 0 : β K H 1 : β K Lad [a,b] være et 95% konfidens-interval for β. Hvis K er udenfor intervallet [a,b], så kan vi afvise H 0 på signifikansniveau α Hvis K ligger i intervallet [a,b], kan vi ikke afvise H 0 på signifikansniveau α 0.05.

22 SPSS Output Model: Logit( Y 1 X x) α Model: Logit( Y 1 X x) α + βx β SE(β) Ζ 2 p-værdi α e β 95% konf-int. for exp(β)

23 Kategorisk forklarende variabel Eksempel: Sammenhængen ml. læsehastighed og selvvurdering? Sætningslæsning Hurtig % Langsom % Usikker % Total % Er du en god læser Nej Ja Total % % % % % % % % Odds for Ja givet hastighed 1199/ / / Logit for Ja givet hastighed ln(14.99) ln(2.56) 0.94 ln(1.81) 0.59

24 Uafhængighed I den ideelle verden: Hvis der er uafhængighed skal de tre mulige Odds i tabellen være ens: Odds(God Ja Hastighed Hurtig) Odds(God Ja Hastighed Langsom) Odds(God Ja Hastighed Usikker) Vi sammenligner par af Odds vha et Odds-ratio. Her er der k (k-1) 3 26 mulige Odds-ratios!

25 Sammenligning af mange Odds Vi vælger en reference-kategori, fx. Læsehastighed Hurtig. Vi sammenligner nu Odds for hver kategori med Odds for reference-kategorien, vha. et Odds-ratio. På den måde har vi kun (k-1) Odds-ratios. Uafhængighed i den ideelle verden: Alle Odds er ens og dermed er alle (k-1) Odds-ratios 1. Tilsvarende er alle logit-forskelle 0.

26 Logistisk Regressionsmodel Model: Logit(Ja Hastighed) α + β Hastighed Logit(Ja Hurtig) α + β Hurtig Logit(Ja Langsom) α + β Langsom Logit(Ja Usikker) α + β Usikker Overparametriseret! (hvorfor?) For reference-kategorien sæt β Hurtig 0.

27 Logit-forskelle Logit(Ja Langsom) - Logit(Ja Hurtig) (α + β Langsom ) - α β Langsom Logit(Ja Usikker) - Logit(Ja Hurtig) (α + β Usikker ) - α β Usikker Dvs. β Langsom og β Usikker er de to logit-forskelle af interesse.

28 Hypotesetest Uinteressant hypotse (hvorfor?) H 0 : β Langsom 0 H 1 : β Langsom 0 Interessant hypotese (hvorfor?) H 0 : β Langsom β Usikker 0 H 1 : β Langsom 0 og/eller β Usikker 0 Teststørrelse: Wald ~ χ 2 (df ) df antal parametre involveret i H 0.

29 SPSS *Klik* Fortæl SPSS hvilke forklarende variable der er kategoriske og hvilken kategori er reference-kategorien.

30 SPSS Output NB! Bemærk hvordan SPSS koder den afhængige variabel. SPSS opskriver modellen som Logit(Y1 ). I dette tilfælde vil det sige Logit(Ja ). H 0 : β Lansom β Usikker 0 To parametre i H 0 : β Lansom og β Usikker. β Lansom β Usikker H 0 : β Usikker 0

31 Alternativ: Dummy-variable For hver kategori introducer en binær variabel: x Hurtig x Langsom og x Usikker. x Hurtig 0 altid x Langsom 1 hvis Hastighed Langsom x Langsom 0 hvis Hastighed Langsom x Usikker 1 hvis Hastighed Usikker x Usikker 0 hvis Hastighed Usikker

32 Dummy-variable: Nu Som Tabel Hastighed x Langsom x Usikker Hurtig 0 0 Langsom 1 0 Usikker 0 1

33 Dummy-variable Model: Eksempel: Usikker Usikker Langsom Langsom Hurtig Hurtig x x x Hastighed Ja Logit β β β α ) ( Langsom Usikker Langsom Hurtig Langsom Ja Logit β α β β β α ) (

34 Logistisk Regression: Generel Form Med en omkodning til binære dummy-variable kan den logistiske regression skrives på den generelle form: + i ix i X Y Logit β α ) 1 ( i i i i i i x x x x e e X Y P i i i i i i β α β α β α β α exp 1 exp 1 ) 1 (

35 Skala forklarende variabel Eksempel: Afhængig variabel: Er du en god læser (Ja/Nej) Forklarende variable: Antal rigtige i test (0 20) Plot: Andel Ja er for hver score.

36 Logistisk Regressionsmodel Model: Logit(Ja Scorex) α + βx Sandsynlighed: P( Ja Score x) e 1+ e α + βx α + βx Plot: Logit(Ja Scorex)

37 Logistiske funktion e 1+ x e x e 1+ e x x

38 Fortolkning Logit-forskel: Logit( Ja Score x ( α + β ( x + 1) ) ( α + βx) α + βx + + 1) Logit( Ja β α βx β Score x) Så hver gang score stiger med 1 stiger logit med β. Odds-ratio: Odds( Ja Score x + 1) Odds( Ja Score x) e e ( x+ ) α + β 1 α + βx e β Så hver gang score stiger med 1 ændres Odds et med en faktor e β.

39 Hypotesetest H 0 : β 0 H 1 : β 0 Ingen logit-lineær sammenhæng mellem selvvurdering og test-score. Der er en logit-lineær sammenhæng mellem selvvurdering og test-score. Teststørrelse: Wald ˆ β SE ( β ) Hvis vi afviser H 0 siger vi at β er signifikant.

40 SPSS Output Estimerede model: Logit( Ja Score x) x Fortolkning: Odds et for at svare Ja ændres med en faktor exp(β) 1,208, hver gang scoren stiger med 1.

41 Modelkontrol: Ikke logit-lineær Udvid model med ikke-lineært led, fx: Logit(Ja Scorex) α + β 1 x + β 2 x 2 Hvis β 2 ikke er signifikant, så er en logit-lineær model passende.

42 Modelkontrol: Hosmer-Lemeshows χ 2 -test Ide: Sammenlign observerede antal Ja er og forventede antal Ja er i den tilpassede model. O x observerede antal personer med score x, der svarer Ja. N x antal personer med score x. E x forventede antal personer med score x, der svarer Ja. E x N x P( Ja Score x) N x e 1+ e α + βx α + βx

43 Modelkontrol: Hosmer-Lemeshows χ 2 -test Teststørrelse: 2 χ ( E O ) x E x x x 2 Hvis vores værdier af a og b er korrekte gælder χ 2 ~ χ 2 Hvor df antal led i summen ( df ) antal parametre i modellen Hvis χ 2 er for stor tror vi ikke på modellen. Hvis den tilsvarende p-værdi er < 0.05 er modelkontrollen kikset.

44 SPSS Output Data inddelt i 10 grupper. Modellen har to parametre. Dvs. df Da p-værdien > 0.05 kan vi ikke afvise at modellen er passende.

45 Multipel Logistisk Regression Ide: Mere end en forklarende variabel. Model: Logit( Ja Køn, Hastighed) α + β + β Køn Hastighed Reference-kategorier: Dreng og Hurtig Dvs: β Dreng 0 og β Hurtig 0 Logit(Ja Dreng,Hurtig) α+β Dreng +β Hurtig α+0+0 α Logit(Ja Pige,Langsom) α+β Pige +β Langsom

46 Logit-forskelle Logit(Ja Køn,Langsom) - Logit(Ja Dreng,Hurtig) (α+β Køn +β Langsom ) - (α+β Køn +β Hurtig ) β Langsom. Dvs. β Langsom beskriver logit-forskellen mellem hurtig og langsom læser uanset kønnet. Logit(Ja Pige,Hastighed) - Logit(Ja Dreng,Hastighed) (α+β Pige +β Hastighed ) - (α+β Dreng +β Hastighed ) β Pige. Dvs. β Pige beskriver logit-forskellen mellem piger og drenge uanset læsehastigheden.

47 Interaktion / Vekselvirkning Hvad nu hvis logit-forskellen mellem piger og drenge faktisk afhænger af hastigheden at der er en interaktion? Indfør interaktionsled β Køn,Hastighed. Model: Logit(Ja Køn,Hastighed) α + β Køn + β Hastighed + β Køn,Hastighed

48 Interaktion / Vekselvirkning Parametere der refererer til en eller flere referencekategorier sættes lig nul: β Dreng,Hurtig 0 β Pige, Hurtig 0 β Dreng, Langsom 0 β Pige, Langsom 0 β Dreng, Usikker 0 β Pige, Usikker 0

49 Logit Tabel Tabel over Logit(Ja Køn, Hastighed) Køn Dreng Pige Læsehastighed Hurtig α α+β Pige Langsom α+β Langsom α+β Pige +β Langsom +β Pige,Langsom Usikker α+β Usikker α+β Pige +β Usikker +β Pige,Usikker Bemærk: Hver celle har et individuelt logit. Vi kalder denne model den mættede model.

50 Logit-forskelle logit(ja pige,hurtig) logit(ja dreng,hurtig) β Pige logit(ja pige,usikker) logit(ja dreng,usikker) β Pige + β Pige,Usikker. Dvs. β Pige,Usikker er forskellen i logit-forskellen mellem hurtige og usikre læsere. logit(ja Dreng,Usikker) logit(ja Dreng,Hurtig) β Usikker logit(ja Pige,Usikker) logit(ja Pige,Hurtig) β Usikker + β Pige,Usikker. Dvs. β Pige,Usikker er forskellen i logit-forskellen mellem hurtige og usikre læsere.

51 Hypotse H 0 : β Pige,Langsom β Pige,Usikker 0 Dvs. der er ingen interaktion mellem Køn og Hastighed. H 1 : β Pige,Langsom 0 og/eller β Pige,Usikker 0 Dvs. der er interaktion mellem Køn og Hastighed.

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lktion Lidt sandsynlighdsrgning Lidt mr om signifikanstst Logistisk rgrssion Lidt sandsynlighdsrgning Lad A vær n hændls (t llr flr mulig udfald af t ksprimnt ) Fx A Dt rgnr i morgn P(A)

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1 Logistiske regressionsmodeller

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008 Indholdsfortegnelse 1 INDLEDNING OG PROBLEMSTILLING... 2 1.1 OVERVÆGT SOM CASE... 2 2 ANALYSEFORBEREDELSER... 4 2.1 HEPRO-UNDERSØGELSEN... 4 2.2 DEN AFHÆNGIGE VARIABEL VIGTIGHED AF ÆNDRINGEN AF VÆGT...

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Skriftlig eksamen Science statistik- ST501

Skriftlig eksamen Science statistik- ST501 SYDDANSK UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Science statistik- ST501 Torsdag den 21. januar Opgavesættet består af 5 opgaver, med i alt 13 delspørgsmål, som vægtes ligeligt.

Læs mere

MPH specialmodul Epidemiologi og Biostatistik

MPH specialmodul Epidemiologi og Biostatistik MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Cox regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside:

Læs mere

To samhørende variable

To samhørende variable To samhørende variable Statistik er tal brugt som argumenter. - Leonard Louis Levinsen Antagatviharn observationspar x 1, y 1,, x n,y n. Betragt de to tilsvarende variable x og y. Hvordan måles sammenhængen

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder Spar Nord Banks ansøgningsscoremodel - et ekspertbaseret ratingsystem for nye udlånskunder Mål for ansøgningsscoremodel Rating af nye udlånskunder som beskrives vha. en række variable: alder, boligform,

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Stastistik og Databehandling på en TI-83

Stastistik og Databehandling på en TI-83 Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen (jonas@imf.au.dk). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at

Læs mere

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900.

2 -test. Fordelingen er særdeles kompleks at beskrive med matematiske formler. 2 -test blev opfundet af Pearson omkring år 1900. 2 -fordeling og 2 -test Generelt om 2 -fordelingen 2 -fordelingen er en kontinuert fordeling, modsat binomialfordelingen som er en diskret fordeling. Fordelingen er særdeles kompleks at beskrive med matematiske

Læs mere

Test nr. 5 af centrale elementer 02402

Test nr. 5 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 5 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning

Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, foråret 2015 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Rygtespredning: Et logistisk eksperiment

Rygtespredning: Et logistisk eksperiment Rygtespredning: Et logistisk eksperiment For at det nu ikke skal ende i en omgang teoretisk tørsvømning er det vist på tide vi kigger på et konkret logistisk eksperiment. Der er selvfølgelig flere muligheder,

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Introduktion til overlevelsesanalyse

Introduktion til overlevelsesanalyse Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper

Program. Forsøgsplanlægning og tosidet variansanalyse. Eksempel: fuldstændigt randomiseret forsøg. Forsøgstyper Program Forsøgsplanlægning og tosidet variansanalyse Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Forsøgstyper og forsøgsplanlægning Analyse af data fra fuldstændigt randomiseret blokforsøg: tosidet

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4.

MAT A HHX FACITLISTE TIL KAPITEL 8. Øvelser. Øvelse 1 Graf tegnes med CAS. Øvelse 2. Bedste rette linie: Øvelse 3. Øvelse 4. 1 af 12 MAT A HHX Udskriv siden FACITLISTE TIL KAPITEL 8 Øvelser Øvelse 1 Graf tegnes med CAS. Øvelse 2 Bedste rette linie: Øvelse 3 Bedste rette linie: Øvelse 4 Bedste rette linie: Øvelse 5 ad øvelse

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A

Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår bonus A Analyse af sociale baggrundsfaktorer for elever, der opnår Bonus A Forfattere: Jeppe Christiansen og Lone Juul Hune UNI C UNI C, juni

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Bilag I afrapportering af signifikanstest i tabeller i artikel er der benyttet følgende illustration af signifikans: * p

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Preben Blæsild og Jens Ledet Jensen

Preben Blæsild og Jens Ledet Jensen χ 2 Test Preben Blæsild og Jens Ledet Jensen Institut for Matematisk Fag Aarhus Universitet Egå Gymnasium, December 2010 Program 8.15-10.00 Forelæsning 10.15-12.00 Statlab: I arbejder, vi cirkler rundt

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Statistiske modeller

Statistiske modeller Statistiske modeller Statistisk model Datamatrice Variabelmatrice Hændelse Sandsynligheder Data Statistiske modeller indeholder: Variable Hændelser defineret ved mulige variabel værdier Sandsynligheder

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning

Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Side 1 af 6 Statistik vejledende læreplan og læringsmål, efteråret 2013 SmartLearning Litteratur: Kenneth Hansen & Charlotte Koldsø: Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave,

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 20 sider. Skriftlig prøve: 15. december 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Vejledende løsninger kapitel 9 opgaver

Vejledende løsninger kapitel 9 opgaver KAPITEL 9 OPGAVE 1 a) Hypoteser H 0 : Der er uafhængighed (ingen sammenhæng) i kontingenstabellen H 1 : Der er afhængighed (sammenhæng) i kontingenstabellen Observerede værdier Ny metode Gammel metode

Læs mere

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif).

SAS-øvelse: Vi starter ud med model et hvor x=(kvotient, eksald, halvaar, kvinde, MatB,, Gif). Vi vil formulere en model for et kvalitativ variabel y i med to udfald, at bestå og ikke at bestå første årsprøve. Derefter modeller vi respons-sandsynligheden: Specifikation af sandsynligheden for at

Læs mere

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet Individuelt studieforløb Efterårssemesteret 2002 Flerniveau modeller Folkesundhedsvidenskab ved Københavns Universitet Vejleder: Jørgen Holm Petersen Eksamensnummer 20 Indholdsfortegnelse 1. Indledning...3

Læs mere

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet! Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi

Dansk Erhvervs gymnasieeffekt - sådan gjorde vi Dansk Erhvervs gymnasieeffekt - sådan gjorde vi INDHOLD Formålet har været at undersøge, hvor dygtige de enkelte gymnasier er til at løfte elevernes faglige niveau. Dette kan man ikke undersøge blot ved

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Poul Thyregod, 14. marts Specialkursus vid.stat. foraar 2005. side 182

Poul Thyregod, 14. marts Specialkursus vid.stat. foraar 2005. side 182 Dagens program: Mandag den 14 marts Eksempler på generaliserede lineære modeller Regressions- og faktormodeller, forskellige responsfordelinger Resume Poisson regression (brug af offset). Data nematod

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

BILAG 3: DETALJERET REDEGØ- RELSE FOR REGISTER- ANALYSER

BILAG 3: DETALJERET REDEGØ- RELSE FOR REGISTER- ANALYSER Til Undervisningsministeriet (Kvalitets- og Tilsynsstyrelsen) Dokumenttype Bilag til Evaluering af de nationale test i folkeskolen Dato September 2013 BILAG 3: DETALJERET REDEGØ- RELSE FOR REGISTER- ANALYSER

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Af Karen Helle Sloth og Flemming Skjøth, AgroTech Sammendrag

Læs mere

Projekt 6.1 Rygtespredning - modellering af logistisk vækst

Projekt 6.1 Rygtespredning - modellering af logistisk vækst Projekt 6.1 Rygtespredning - modellering af logistisk vækst (Projektet anvender værktøjsprogrammet TI Nspire) Alle de tilstedeværende i klassen tildeles et nummer, så med 28 elever i klassen uddeles numrene

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Inklusions rapport i Rebild Kommune Elever fra 4. til 10. klasse Rapport status Læsevejledning Indholdsfortegnelse Analyse Din Klasse del 1

Inklusions rapport i Rebild Kommune Elever fra 4. til 10. klasse Rapport status Læsevejledning Indholdsfortegnelse Analyse Din Klasse del 1 Inklusions rapport i Rebild Kommune Elever fra 4. til 10. klasse Nærværende rapport giver et overblik over, hvorledes eleverne fra 4. til 10. klasse i Rebild Kommune trives i forhold til deres individuelle

Læs mere

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion

! Husk at udfylde spørgeskema 3. ! Lineær sandsynlighedsmodel. ! Eksempel. ! Mere om evaluering og selvselektion Dagens program Økonometri 1 Dummy variable 4. marts 003 Emnet for denne forelæsning er kvalitative variable i den multiple regressionsmodel (Wooldridge kap. 7.5-7.6+8.1)! Husk at udfylde spørgeskema 3!

Læs mere

Teoretisk Statistik, 13 april, 2005

Teoretisk Statistik, 13 april, 2005 Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ

Læs mere

Fortolkning, illustration mm. af interaktion i lineære regressionsmodeller ved hjælp af MS Excel og SPSS

Fortolkning, illustration mm. af interaktion i lineære regressionsmodeller ved hjælp af MS Excel og SPSS Fortolkning, illustration mm. af interaktion i lineære regressionsmodeller ved hjælp af MS Excel og SPSS KIM MANNEMAR SØNDERSKOV Tlf. 8942 1260 E-mail: ks@ps.au.dk INSTITUT FOR STATSKUNDSKAB AARHUS UNIVERSITET

Læs mere