Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)

Størrelse: px
Starte visningen fra side:

Download "Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)"

Transkript

1 Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark Oversigt 1 2 Model 3 Beregning - variationsopspaltning og ANOVA tabellen 4 5 Post hoc sammenligninger 6 Model kontrol Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Udvikling af TV hos Bang & Olufsen Lyd- og billedkvalitet måles med det menneskelige måleinstrument: Bang & Olufsen data i R: ## # Getting the Bang and Olufsen data from the lmertest-package: library(lmertest) # (Udviklet af os) data(tvbo) # Each of 8 assessors scored each of 12 combinations 2 times # Let's look at only a single picture and one of the two reps: # And let us look at the sharpness TVbosubset <- subset(tvbo,picture==1 & Repeat==1)[,c(1, 2, 9)] sharp <- matrix(tvbosubset$sharpness, nrow=8, byrow=t) colnames(sharp) <- c("tv3", "TV2", "TV1") rownames(sharp) <- c("person 1", "Person 2", "Person 3", "Person 4", "Person 5", "Person 6", "Person 7", "Person 8") Vi har udviklet et værktøj, som bla. bruges af B&O til variansanalyse: PanelCheck (Viser Panelcheck programmet med TV data) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 library(xtable) xtable(sharp) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29

2 Bang & Olufsen data i R: Tovejs variansanalyse - eksempel TV3 TV2 TV1 Person Person Person Person Person Person Person Person Samme data som for envejs, dog ved vi nu at forsøget var inddelt i blokke Gruppe A Gruppe B Gruppe C Blok Blok Blok Blok dvs. tre grupper på fire blokke el. tre behandlinger på fire personer el. tre afgrøder på fire marker (deraf blokke) el. lign. Envejs vs. tovejs ANOVA Completely randomized design vs. Randomized block design Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Tovejs variansanalyse - eksempel Samme data som for envejs, dog ved vi nu at forsøget var udført på fire blokke (personer) Behandling A Behandling B Behandling C Blok Blok Blok Blok Besvar: Er der signifikant forskel (i middel) på grupperne A, B og C? Variansanalyse (ANOVA) kan anvendes til analysen såfremt observationerne i hver gruppe kan antages at være normalfordelte (dog med mange samples dækker CLT) ## Observationer y <- c(2.8, 3.6, 3.4, 2.3, 5.5, 6.3, 6.1, 5.7, 5.8, 8.3, 6.9, 6.1) ## Behandlinger (grupper, afgrøder) treatm <- factor(c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)) ## Blokke (personer, marker) block <- factor(c(1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4)) ## Til formler senere (k <- length(unique(treatm))) (l <- length(unique(block))) ## Plots par(mfrow=c(1,2)) ## Plot histogrammer inddelt ved behandlinger plot(treatm, y, xlab="treatments", ylab="y") ## Plot histogrammer inddelt ved blokke plot(block, y, xlab="blocks", ylab="y") Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29

3 Model Tovejs variansanalyse, model Model Estimater af parametrene i modellen Opstil en model hvor afvigelsen ɛ ij N(0, σ 2 ) og i.i.d. µ er middelværdi for alle målinger α i angiver effekt for behandling i β j angiver niveau for blok i der er k behandlinger og l blokke j tæller målinger i grupperne, fra 1 til n i for behandling i Vi kan beregne estimater af parametrene (ˆµ og ˆα i, og ˆβ j ) ˆµ =ȳ = 1 k l ˆα i = 1 l ˆβ j = ( 1 k ## Sample mean (muhat <- mean(y)) ## Sample mean for hver behandling (alphahat <- tapply(y, treatm, mean) - muhat) ## Sample mean for hver blok (betahat <- tapply(y, block, mean) - muhat) j=1 i=1 j=1 y ij ˆµ ) y ij ˆµ i=1 y ij Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Beregning - variationsopspaltning og ANOVA tabellen Tovejs variansanalyse, opspaltning og ANOVA tabellen Beregning - variationsopspaltning og ANOVA tabellen Formler for kvadratafvigelsessummer Med modellen kan den totale variation i data opspaltes: SST = SS(Tr) + SS(Bl) + SSE Tovejs hentyder til, at der er to faktorer i forsøget Metoden kaldes variansanalyse, fordi testningen foregår ved at sammenligne varianser Kvadratafvigelsessum ("den totale varians") (samme som for envejs) SST = i=1 j=1 (y ij ˆµ) 2 Kvadratafvigelsessum for behandling ("Varians forklaret af behandlingdel af modellen") SS(T r) = l i=1 ˆα 2 i Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29

4 Beregning - variationsopspaltning og ANOVA tabellen Formler for kvadratafvigelsessummer Tovejs ANOVA: hypotese om forskellig effekt af behandling Kvadratafvigelsessum for blokke (personer) ("Varians forklaret af blokdel af modellen") SS(Bl) = k Kvadratafvigelsessum af residualer ("Varians tilbage efter model") SSE = i=1 j=1 j=1 ˆβ 2 j (y ij ˆα i ˆβ j ˆµ) 2 Vi vil nu sammenligne (flere end to) middelværdier µ + α i i modellen Opstil hypotesen Under H 0,T r følger H 0,T r : α i = 0 for alle i H 1,T r : α i 0 for mindst et i F T r = SS(T r)/(k 1) SSE/((k 1)(l 1)) en F-distribution med k 1 og (k 1)(l 1) frihedsgrader Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Tovejs ANOVA: hypotese om forskelligt niveau for personer (blokke) Vi vil nu sammenligne (flere end to) middelværdier µ + β i i modellen Opstil hypotesen Under H 0,Bl følger H 0,Bl : β i = 0 for alle i H 1,Bl : β i 0 for mindst et i F Bl = SS(Bl)/(l 1) SSE/((k 1)(l 1)) F-fordeling og hypotese for behandlinger ## Husk, dette er under H0 (altså vi regner som om H0 er sand): ## Sekvens til plot xseq <- seq(0, 10, by=0.1) ## Plot F fordelingens tæthedsfunktion plot(xseq, df(xseq, df1=k-1, df2=(k-1)*(l-1)), type="l") ## Kritisk værdi for signifikans niveau 5 pct. cr <- qf(0.95, df1=k-1, df2=(k-1)*(l-1)) ## Tegn den i plottet abline(v=cr, col="red") ## Test statistikkens værdi: ## Værdien (Ftr <- (SSTr/(k-1)) / (SSE/((k-1)*(l-1)))) ## p-værdien er da (1 - pf(ftr, df1=k-1, df2=(k-1)*(l-1))) en F-distribution med l 1 og (k 1)(l 1) frihedsgrader Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29

5 F-fordeling og hypotese for blokke ## Husk, dette er under H0 (altså vi regner som om H0 er sand): ## Sekvens til plot xseq <- seq(0, 10, by=0.1) ## Plot F fordelingens tæthedsfunktion plot(xseq, df(xseq, df1=l-1, df2=(k-1)*(l-1)), type="l") ## Kritisk værdi for signifikans niveau 5 pct. cr <- qf(0.95, df1=l-1, df2=(k-1)*(l-1)) ## Tegn den i plottet abline(v=cr, col="red") ## Test statistikkens værdi: ## Værdien (Fbl <- (SSBl/(l-1)) / (SSE/((k-1)*(l-1)))) ## p-værdien er da (1 - pf(fbl, df1=l-1, df2=(k-1)*(l-1))) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Variansanalysetabel Variations- Friheds- Kvadrat- Gns. kvadratafv. Test- p- kilde grader afvi. sum sum størrelse F værdi Source of Deg. of Sums of Mean sum of Test- p- variation freedom squares squares statistic F value Behandling k 1 SS(T r) MS(Tr) = SS(Tr) k 1 Block l 1 SS(Bl) MS(Bl) = SS(Bl) Residual (k 1)(l 1) SSE MSE = Total n 1 SST anova(lm(y ~ treatm + block)) l 1 SSE (k 1)(l 1) F Tr = MS(Tr) MSE F Bl = MS(Bl) MSE ## Analysis of Variance Table ## ## Response: y ## Df Sum Sq Mean Sq F value Pr(>F) ## treatm e-05 *** ## block * ## Residuals ## --- ## Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 P (F > F Tr ) P (F > F Bl ) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Post hoc sammenligninger Post hoc konfidensinterval Post hoc sammenligninger Post hoc parvis hypotesetest Som ved envejs, skift (n k) frihedsgrader ud med (k 1)(l 1) (og brug MSE fra tovejs). Gøres med enten behandlinger eller blokke En enkelt forudplanlagt sammenligning af forskelle på behandling i og j findes ved ( 1 ȳ i ȳ j ± t 1 α/2 MSE + 1 ) n i n j hvor t 1 α/2 er fra t-fordelingen med (k 1)(l 1) frihedsgrader. Hvis alle kombinationer af parvise konfidensintervaller brug formlen M gange, men med α Bonferroni = α/m Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 In enkelt forudplanlagt hypotesetest på α signifikansniveau om forskel af behandling i og j udføres ved og H 0 : µ i = µ j, H 1 : µ i µ j ȳ i ȳ j t obs = ( ) (1) MSE ni nj p value = 2P (t > t obs ) hvor t-fordelingen med (k 1)(l 1) frihedsgrader anvendes Hvis alle M = k(k 1)/2 kombinationer af hypotesetests: korrigeret signifikans niveau α Bonferroni = α/m Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29

6 Model kontrol Model kontrol Varians homogenitet Normalfordelingsantagelse Se på box-plot om spredning af residualer ser ud til at afhænge af gruppen ## Gem fittet fit <- lm(y ~ treatm + block) ## Box plot par(mfrow=c(1,2)) plot(treatm, fit$residuals, y, xlab="treatment") ## Box plot plot(block, fit$residuals, xlab="block") Se på qq-normal plot ## qq-normal plot af residualer qqnorm(fit$residuals) qqline(fit$residuals) ## Eller med et Wally plot require(mess) qqwrap <- function(x, y,...) {qqnorm(y, main="",...); qqline(y)} ## Kan vi se et afvigende qq-norm plot? wallyplot(fit$residuals, FUN = qqwrap) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29 Oversigt Oversigt 1 2 Model 3 Beregning - variationsopspaltning og ANOVA tabellen 4 5 Post hoc sammenligninger 6 Model kontrol Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 11 Foråret / 29

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff. Kursus 02402 Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner

Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner Tovejs-ANOVA (Faktoriel) Regler og problemer kan generaliseres til mere end to hovedfaktorer med tilhørende interaktioner I modsætning til envejs-anova kan flervejs-anova udføres selv om der er kun én

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics

Statistisk forsøgsplanlægning. med benyttelse af Statgraphics MOGENS ODDERSHEDE LARSEN Statistisk forsøgsplanlægning med benyttelse af Statgraphics Vekselvirkning CD 10 8 C 1 udbytte 6 4 0 1 3 4 D 11 udgave 00, DTU FORORD Dette notat er baseret på at de studerende

Læs mere

Variansanalyse (ANOVA)

Variansanalyse (ANOVA) 3 / 46 2 / 46 4 / 46 Faculty of Health Sciences Indhold dag 2 Variansanalyse (ANOVA) Ulla B Mogensen Biostatistisk Afd., SUND, KU. Mail: ulmo@sund.ku.dk T-testet fra dag 1 Ensidet variansanalyse. Modelkontrol.

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Statistisk bearbejdning af overvågningsdata - Trendanalyser

Statistisk bearbejdning af overvågningsdata - Trendanalyser Danmarks Miljøundersøgelser Miljøministeriet Teknisk anvisning fra DMU nr. 4, 006 Statistisk bearbejdning af overvågningsdata - Trendanalyser NOVANA (Tom side) Danmarks Miljøundersøgelser Miljøministeriet

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics)

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK II Regressionsanalyse (TI-89 og Statgraphics) DANMARKS TEKNISKE UNIVERSITET 6 udgave 005 FORORD Dette notat kan læses på baggrund af en statistisk viden

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder

Spar Nord Banks ansøgningsscoremodel. - et ekspertbaseret ratingsystem for nye udlånskunder Spar Nord Banks ansøgningsscoremodel - et ekspertbaseret ratingsystem for nye udlånskunder Mål for ansøgningsscoremodel Rating af nye udlånskunder som beskrives vha. en række variable: alder, boligform,

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere

Oversigt. 1 Praktisk Information. 2 Introduction to Statistics - a primer. 3 Intro Case historier: IBM Big data, Novo Nordisk small data, Skive fjord

Oversigt. 1 Praktisk Information. 2 Introduction to Statistics - a primer. 3 Intro Case historier: IBM Big data, Novo Nordisk small data, Skive fjord Course 02402/02323 Introducerende Statistik Forelæsning 1: Intro, R og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet

Projekt 1 Spørgeskemaanalyse af Bedst på Nettet Projekt 1 Spørgeskemaanalyse af Bedst på Nettet D.29/2 2012 Udarbejdet af: Katrine Ahle Warming Nielsen Jannie Jeppesen Schmøde Sara Lorenzen A) Kritik af spørgeskema Set ud fra en kritisk vinkel af spørgeskemaet

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

WPS / R day. Rune Juhl (DTU Technical University of Denmark. 11th December 2013. DTU Compute Department of Applied Mathematics and Computer Science

WPS / R day. Rune Juhl (DTU Technical University of Denmark. 11th December 2013. DTU Compute Department of Applied Mathematics and Computer Science WPS / R day Rune Juhl DTU Technical University of Denmark DTU Compute Department of Applied Mathematics and Computer Science 11th December 2013 DTU WPS Compute / R day Department of Applied 11th December

Læs mere

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres)

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Til Gribskovløbet 006 gennemførte 118 kvinder 1,4 km distancen. Fordelingen af kvindernes løbstider

Læs mere

Statistik (deskriptiv)

Statistik (deskriptiv) Statistik (deskriptiv) Ikke-grupperede data For at behandle ikke-grupperede data i TI, skal data tastes ind i en liste. Dette kan gøres ved brug af List, hvis ikon er nr. 5 fra venstre på værktøjsbjælken

Læs mere

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit

Program. Statistisk inferens En enkelt stikprøve og lineær regression Stat. modeller, estimation og konfidensintervaller. Fordeling af gennemsnit Faculty of Life Sciece Program Statitik ifere E ekelt tikprøve og lieær regreio Stat. modeller, etimatio og kofideitervaller Clau Ektrøm E-mail: ektrom@life.ku.dk Fordelig af geemit Statitik ifere for

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

STATISTIK MED SAS. MORTEN FENGER Cand.merc.(scm.) på den nemme måde med step-by-step cases, som alle kan forholde sig til.

STATISTIK MED SAS. MORTEN FENGER Cand.merc.(scm.) på den nemme måde med step-by-step cases, som alle kan forholde sig til. MORTEN FENGER Cand.merc.(scm.) Denne e-bog introducerer dig til markedets stærkeste statistikværktøj. SAS kan alt inden for analytics og er samtidig let at lære. Derfor er det bare med at komme i gang

Læs mere

VIDEREGÅENDE STATISTIK

VIDEREGÅENDE STATISTIK MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK herunder kvalitetskontrol Udgave 10a 015 FORORD Denne lærebog kan læses på baggrund af en statistisk viden svarende til lærebogen M. Oddershede Larsen :

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

R i 02402: Introduktion til Statistik

R i 02402: Introduktion til Statistik R i 02402: Introduktion til Statistik Per Bruun Brockhoff DTU Informatik, DK-2800 Lyngby 20. juni 2011 Indhold 1 Anvendelse af R på Databar-systemet på DTU 5 1.1 Adgang......................................

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

VIDEREGÅENDE STATISTIK

VIDEREGÅENDE STATISTIK MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK herunder kvalitetskontrol Udgave 10.b 015 FORORD Denne lærebog kan læses på baggrund af en statistisk viden svarende til lærebogen M. Oddershede Larsen :

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh141-mat/b-23052014 Fredag den 23. maj 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5

Læs mere

En meget kort introduktion til R på polit

En meget kort introduktion til R på polit En meget kort introduktion til R på polit Sebastian Barfort sebastian.barfort@econ.ku.dk Indhold 1 Introduktion 1 2 R som lommeregner 2 3 Tabeller, grafer og estimation 6 4 Økonomiske figurer 11 1 Introduktion

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

Spørgeskemaundersøgelser og databehandling

Spørgeskemaundersøgelser og databehandling DASG. Nye veje i statistik og sandsynlighedsregning. side 1 af 12 Spørgeskemaundersøgelser og databehandling Disse noter er udarbejdet i forbindelse med et tværfagligt samarbejde mellem matematik og samfundsfag

Læs mere

Bilag 1: Beregning af omkostningsækvivalenter

Bilag 1: Beregning af omkostningsækvivalenter Bilag 1: Beregning af omkostningsækvivalenter Bilaget indeholder den tekniske beregning af omkostningsækvivalenterne til brug for benchmarkingen 2013. FORSYNINGSSEKRETARIATET FEBRUAR 2013 INDLEDNING...

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.

18. december 2013 Mat B eksamen med hjælpemidler Peter Harremoës. P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0. Opgave 6 Vi sætter P = 1000 og isolerer x i ligningen Se Bilag 2! P = 100 x 0.6 y 0.4 1000 = 100 x 0.6 y 0.4 10 = x 0.6 y 0.4 10 y 0.4 = x 0.6 ( 10 y 0.4 )1 /0.6 = x 10 1 /0.6 y 0.4 /0.6 = x x = 10 5 /3

Læs mere

EVALUERINGSENHEDEN. Analyse af karaktereffekten af. deltagelse i manuduktion på HA 2. år. Copenhagen Business School

EVALUERINGSENHEDEN. Analyse af karaktereffekten af. deltagelse i manuduktion på HA 2. år. Copenhagen Business School EVALUERINGSENHEDEN Copenhagen Business School Analyse af karaktereffekten af deltagelse i manuduktion på HA 2. år 12. april 2011 INDHOLD 1. Undersøgelsens metode og formål 3 1.1. Evalueringernes gennemførelse.

Læs mere

Program dag 2 (11. april 2011)

Program dag 2 (11. april 2011) Program dag 2 (11. april 2011) Dag 2: 1) Hvordan kan man bearbejde data; 2) Undersøgelse af datamaterialet; 3) Forskellige typer statistik; 4) Indledende dataundersøgelser; 5) Hvad kan man sige om sammenhænge;

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 9. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 OPSAMLING EKSAKTE MODELLER Fordele: Praktiske til initierende analyser/dimensionering

Læs mere

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark

ISCC. IMM Statistical Consulting Center. Brugervejledning til beregningsmodul til robust estimation af nugget effect. Technical University of Denmark IMM Statistical Consulting Center Technical University of Denmark ISCC Brugervejledning til beregningsmodul til robust estimation af nugget effect Endelig udgave til Eurofins af Christian Dehlendorff 15.

Læs mere

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet

Flerniveau modeller. Individuelt studieforløb. Efterårssemesteret 2002. Folkesundhedsvidenskab ved Københavns Universitet Individuelt studieforløb Efterårssemesteret 2002 Flerniveau modeller Folkesundhedsvidenskab ved Københavns Universitet Vejleder: Jørgen Holm Petersen Eksamensnummer 20 Indholdsfortegnelse 1. Indledning...3

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hh123-mat/b-17122012 Mandag den 17. december 2012 kl. 9.00-13.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle.

At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. At træffe sine valg i en usikker verden - eller den statistiske modellerings rolle. Af E. Susanne Christensen. Lektor i statistik. Institut for Matematiske Fag. Aalborg Universitet. I mange tilfælde og

Læs mere

Engelsk-dansk ordliste jfr. bogens indeksregister

Engelsk-dansk ordliste jfr. bogens indeksregister Engelsk-dansk ordliste jfr. bogens indeksregister Absolute variation Numerisk variation (uden fortegn) Acceptable Quality Level (AQL) Tilfredsstillende kvalitetsniveau Acceptance number Godkendelses tal

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter.

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Eksempel I Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Per Bruun Brockhoff IMM DTU 02402 Eksempler 1 Eksempel I Tiden mellem kundeankomster på et posthus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2013/14

Læs mere

Hvordan finder man en god skala vha. Raschmetoden? Svend Kreiner & Tine Nielsen

Hvordan finder man en god skala vha. Raschmetoden? Svend Kreiner & Tine Nielsen Hvordan finder man en god skala vha. Raschmetoden? Svend Kreiner & Tine Nielsen 1 Svaret: Man spørger en, der har forstand på det, som man gerne vil måle 2 Eksempel: Spiritualitet Peter A., Peter G. &

Læs mere

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11.

Side 1 af 8. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2010/11. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2010/11 Institution Uddannelse Fag og niveau Lærer(e) Hold Zealand Business College Hhx Matematik

Læs mere

Efficiency og Effectiveness i Survey Research. Carsten Stig Poulsen, Aalborg Universitet

Efficiency og Effectiveness i Survey Research. Carsten Stig Poulsen, Aalborg Universitet Efficiency og Effectiveness i Survey Research Carsten Stig Poulsen, Aalborg Universitet Disposition Personlig baggrund og erfaring Survey research og IT Efficiency: doing things right Effectiveness: doing

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

Noter i statistik. Indholsfortegnelse. 2 - Beskrivende statistik. 3 - Fordelinger. 4 - Variation. 1 of 117 05/02/10 13.49

Noter i statistik. Indholsfortegnelse. 2 - Beskrivende statistik. 3 - Fordelinger. 4 - Variation. 1 of 117 05/02/10 13.49 Noter i statistik Thomas Bendsen 2008 VIA University College Bioanalytikeruddannelsen Indholsfortegnelse 1 - Introduktion 1.1 - Introduktion 1.2 - Brug af disse sider 1.3 - Analysenavne 1.4 - DANAK 1.5

Læs mere

MønsterGenkendelse Forår 2001. S. I. Olsen

MønsterGenkendelse Forår 2001. S. I. Olsen MønsterGenkendelse Forår 2001 S. I. Olsen Dette skrift er 3. udkast til et notesæt til brug i kurset Mønstergenkendelse. Noterne dækker primært områderne: Statistiske mønstergenkendelse, Klyngeanalyse,

Læs mere

Kalvedødelighed i økologiske besætninger. 2013 1

Kalvedødelighed i økologiske besætninger. 2013 1 Dødfødte kalve i økologiske besætninger Af Anne Mette Kjeldsen, Jacob Møller Smith og Tinna Hlidarsdottir, AgroTech Kalvedødelighed i økologiske besætninger. 2013 1 INDHOLD Indhold... 2 Sammendrag... 4

Læs mere

Teknisk rapport 11-11 Ekstremværdianalyse af nedbør i Danmark 1874-2010. Sisse Camilla Lundholm. www.dmi.dk/dmi/tr11-11 side 1 af 14

Teknisk rapport 11-11 Ekstremværdianalyse af nedbør i Danmark 1874-2010. Sisse Camilla Lundholm. www.dmi.dk/dmi/tr11-11 side 1 af 14 Ekstremværdianalyse af nedbør i Danmark 1874-2010 Sisse Camilla Lundholm www.dmi.dk/dmi/tr11-11 side 1 af 14 København 2011 www.dmi.dk/dmi/tr11-11 side 2 af 14 Kolofon Serietitel: Teknisk rapport 11-11

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx141-mat/a-305014 Fredag den 3. maj 014 kl. 9.00-14.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Baggrundsnotat: Modelteknisk

Baggrundsnotat: Modelteknisk Sekretariatet for Energitilsynet Baggrundsnotat: Modelteknisk materiale Store forskelle i varmepriserne hvorfor? Center for Varme Tekniske bilag I dette baggrundsnotat gennemgås de økonometriske forhold

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

En statistisk analyse af aktieafkast

En statistisk analyse af aktieafkast En statistisk analyse af aktieafkast Af cand.scient.oecon. Erik Christiansen IBC Kolding Efterår 2008 Forord Kan man ved bruge af statistiske modeller og de historiske aktiekurser forudsige fremtidens

Læs mere

Karrierekvinder og -mænd

Karrierekvinder og -mænd Rockwool Fondens Forskningsenhed Arbejdspapir 35 Karrierekvinder og -mænd Hvem er de? Og hvor travlt har de? Jens Bonke København 2015 Karrierekvinder og -mænd Hvem er de? Og hvor travlt har de? Arbejdspapir

Læs mere

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3

Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3 Bilag 1: Prisudvikling, generelt effektiviseringskrav og robusthedsanalyser FORSYNINGSSEKRETARIATET AUGUST 2014 VERSION 3 Indholdsfortegnelse Indledning Prisudvikling 2.1 Prisudviklingen fra 2014 til

Læs mere

Sådan forløber en præstationsprøvning

Sådan forløber en præstationsprøvning Sådan forløber en præstationsprøvning Når et laboratorium er tilmeldt deltagelse i årets program, er det videre forløb for hver præstationsprøvning som beskrevet nedenfor. 1 Påmindelse om tilmelding Cirka

Læs mere

Hvad har vi lært? 23-02-2012 PROJEKTPLANLÆGNING, ØKONOMI. Torsdag: Hvad har vi lavet? (projektevaluering) Er det en god idé?

Hvad har vi lært? 23-02-2012 PROJEKTPLANLÆGNING, ØKONOMI. Torsdag: Hvad har vi lavet? (projektevaluering) Er det en god idé? Torsdag: PROJEKTPLANLÆGNING, ØKONOMI Er det en god idé? Hvad har vi lært? (CBA/BC) Hvad har vi lavet? (projektevaluering) Hvornår har vi et projekt? (projektgeografi) Hvad skal vi levere? (produktmål)

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)...

χ 2 test Formål med noten... 2 Goodness of fit metoden (GOF)... 2 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... χ Indhold Formål med noten... Goodness of fit metoden (GOF)... 1) Eksempel 1 er stikprøven repræsentativ for køn? (1 frihedsgrad)... ) χ -fordelingerne (fordelingsfunktionernes egenskaber)... 6 3) χ -

Læs mere

GRUNDLÆGGENDE STATISTIK

GRUNDLÆGGENDE STATISTIK Stephan Skovlund APRIL 2013 GRUNDLÆGGENDE STATISTIK Statistik med fokus på anvendelighed i erhvervslivet Statistik Excel - Dataanalyse Statlearn.com Indholdsfortegnelse FORORD... 6 KAPITEL 1: STATISTIKKENS

Læs mere

Microsoft Excel - en kort introduktion. Grundlag

Microsoft Excel - en kort introduktion. Grundlag Microsoft Excel - en kort introduktion Grundlag Udover menuer og knapper - i princippet som du kender det fra Words eller andre tekstbehandlingsprogrammer - er der to grundlæggende vigtige størrelser i

Læs mere

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp.

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp. Udarbejdet af Thomas Jensen og Morten Overgård Nielsen Indhold Introduktion til materialet. s. 2 Introduktion til chi i anden test. s. 4 Et eksempel hastighed og ulykker på motorveje s. 8 Sådan udregnes

Læs mere

Aktivitetsmappe for introkurset til Naturvidenskabeligt grundforløb 2008

Aktivitetsmappe for introkurset til Naturvidenskabeligt grundforløb 2008 Den eksperimentelle metode i statistik Den naturvidenskabelige metode er i fokus efter gymnasiereformen. Det starter med naturvidenskabeligt grundforløb: Aktivitetsmappe for introkurset til Naturvidenskabeligt

Læs mere