Oversigt. Kursus Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff.

Størrelse: px
Starte visningen fra side:

Download "Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 10: Statistik ved hjælp af simulering. Per Bruun Brockhoff."

Transkript

1 Kursus Introduktion til Statistik Forelæsning 10: Statistik ved hjælp af simulering Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark Oversigt 1 Introduktion til simulering Eksempel Eksempel 3 4 Vha. bootstrap konfidensintervaller Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Motivation Introduktion til simulering Introduktion til simulering Hvad er simulering egentlig? Table 8.1 har et "hul : Små stikprøver som IKKE kommer fra en normalfordeling?? I gl. dage: non-parametriske tests, e.g. Kapitel 14. Mere almindeligt nu: Simuleringsbaseret: Konfidensintervaller er meget nemmere at opnå De er meget nemmere at anvende i mere komplicerede situationer De "forgrover ikke informationen i samme udstrækning De afspejler i højere grad dagens virkelighed - de anvendes simpelt hen nu i rigtig mange sammenhænge Kræver: Brug af computer - R er et super værktøj til dette! (Pseudo)tilfældige tal genereret af en computer En tilfældighedsgenerator er en algoritme der kan generere x i+1 ud fra x i En sekvens af tal "ser tilfældige ud Kræver en "start - kaldet "seed.(bruger typisk uret i computeren) Grundlæggende simuleres den uniforme fordeling, og så bruges: Hvis U Uniform(0, 1) og F er en fordelingsfunktion for en eller anden sandsynlighedsfordeling, så vil F 1 (U) følge fordelingen givet ved F Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27

2 I praksis i R Introduktion til simulering Eksempel 1 Introduktion til simulering Eksempel 1 De forskellige fordelinger er gjort klar til simulering: rbinom Binomialfordelingen rpois Poissonfordelingen rhyper Den hypergeometriske fordeling rnorm Normalfordelingen rlnorm Lognormalfordelingen rexp Eksponentialfordelingen runif Den uniforme(lige) fordeling rt t-fordelingen rchisq χ 2 -fordelingen rf F-fordelingen En virksomhed producerer rektangulære plader. Længden af pladerne (i meter), X, antages at kunne beskrives med en normalfordeling N(2, ) og bredden af pladerne (i meter), Y, antages at kunne beskrives med en normalfordeling N(3, ). Man er interesseret i arealet, som jo så givet ved A = XY. Hvad er middelarealet? Hvad er spredningen i arealet fra plade til plade? Hvor ofte sådanne plader har et areal, der afviger mere end 0.1m 2 fra de 6m 2? Sandsynligheden for andre mulige hændelser? Generelt: Hvad er sandsynlighedsfordelingen for A? Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Eksempel 1, løsning i R Introduktion til simulering Eksempel 1 Kode: k=10000 X=rnorm(k,2,0.1) Y=rnorm(k,3,0.2) A=X*Y mean(a) sd(a) sum(abs(a-6)>0.1)/k Resultat: > mean(a) [1] > sd(a) [1] > sum(abs(a- 6)>0.1)/k [1] Skal kunne finde: σ 2 f(x 1,...,X n) = Var(f(X 1,..., X n )) Vi kender allerede: σ 2 f(x 1,...,X n) = n a 2 i σi 2, hvis f(x 1,..., X n ) = i=1 Ny regel for ikke-lineære funktioner: n ( ) 2 f σf(x 2 1,...,X n) σi 2 X i i=1 n a i X i i=1 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27

3 Eller ved simulering: Simuler k udfald af samtlige n målinger som N(X i, σi 2 ): X (j) i, j = 1..., k Beregn spredningen direkte som den observerede spredning af de k værdier for f: σ f(x1,...,x n) = k i=1 (f j f) 2 1 k 1 f j = f(x (j) 1,..., X (j) n ) Vi har allerede brugt simulerings-metoden i første del af eksemplet. To konkrete målinger for X og Y, er givet: x = 2.05m og y = 2.99m. Hvad er "fejlen" på A = = 6.13 fundet ved den ikke-lineære fejlophobningslov? Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Faktisk kan man finde variansen for A = XY teoretisk: Var(XY ) = E [ (XY ) 2] [E(XY )] 2 = E(X 2 )E(Y 2 ) E(X) 2 E(Y ) 2 = [ Var(X) + E(X) 2] [ Var(Y ) + E(Y ) 2] E(X) 2 E(Y ) 2 = Var(X)Var(Y ) + Var(X)E(Y ) 2 + Var(Y )E(X) 2 = = = What to do med en lille stikprøve, som IKKE er normalfordelt? To mulige løsninger 1 Find/identificer/antag en anden og mere rigtig fordeling for populationen("systemet") 2 Undlad at antage nogen fordeling overhovedet Bootstrapping findes i to versioner: 1 Parametrisk bootstrap: Simuler gentagne stikprøver fra den antagede fordeling. 2 Ikke-parametrisk bootstrap: Simuler gentagne stikprøver direkte fra data. Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27

4 Ikke-parametrisk bootstrap for one-sample situationen Data: x 1,..., x n. 100(1 α)%-konfidensintervallet for µ: Simuler k stikprøver af størrelse n ved at udtage tilfældigt blandt de tilgængelige data (med tilbagelægning - stort k, e.g. k > 1000) Beregn gennemsnittet i hver af de k stikprøver: x 1,..., x k Beregn 100α/2%- og 100(1 α/2)% fraktilerne for disse Intervallet er: [ fraktil 100α/2%, fraktil 100(1 α/2)% ] I et studie undersøgte man kvinders cigaretforbrug før og efter fødsel. Man fik følgende observationer af antal cigaretter pr. dag: før efter før efter Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Eksempel 2, løsning i R Dataindlæsning: x1=c(8,24,7,20,6,20,13,15,11,22,15) x2=c(5,11,0,15,0,20,15,19,12,0,6) dif=x1-x2 R-Metode 1: k=10000 mysamples = replicate(k, sample(dif, replace = TRUE)) mymeans = apply(mysamples, 2, mean) quantile(mymeans,c(0.025,0.975)) R-Metode 2: (Installer først pakken "bootstrap") library(bootstrap) quantile(bootstrap(dif,k,mean)$thetastar,c(0.025,0.975)) Data: x 1,..., x n1 og y 1,..., y n2 100(1 α)%-konfidensintervallet for µ 1 µ 2 : Simuler k sæt af 2 stikprøver af størrelse n 1 og n 2 ved at udtage tilfældigt blandt de tilgængelige data (med tilbagelægning - stort k, e.g. k > 1000) Beregn forskellen i gennemsnittene for hver af de k stikprøvepar: x 1 ȳ 1,..., x k ȳ k Beregn 100α/2%- og 100(1 α/2)% fraktilerne for disse Intervallet er: [ fraktil 100α/2%, fraktil 100(1 α/2)% ] Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27

5 Eksempel 3 Eksempel 3 Eksempel 3 Eksempel 3, løsning i R I et studie ville man undersøge, om børn der havde fået mælk fra flaske som barn havde dårligere eller bedre tænder end dem, der ikke havde fået mælk fra flaske. Fra 19 tilfældigt udvalgte børn registrerede man hvornår de havde haft deres første tilfælde af karies. flaske alder flaske alder flaske alder nej 9 nej 10 ja 16 ja 14 nej 8 ja 14 ja 15 nej 6 ja 9 nej 10 ja 12 nej 12 nej 12 ja 13 ja 12 nej 6 nej 20 ja 19 ja 13 Dataindlæsning: x=c(9,10,12,6,10,8,6,20,12) y=c(14,15,19,12,13,13,16,14,9,12) Bootsrapping i R: k=10000 xsamples = replicate(k, sample (x, replace = TRUE)) ysamples = replicate(k, sample (y, replace = TRUE)) mymeandifs = apply(xsamples, 2, mean)-apply(ysamples, 2, mean) quantile(mymeandifs,c(0.025,0.975)) Find konfidensintervallet for forskellen! Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Vha. bootstrap konfidensintervaller Hypotesetest ved hjælp af bootstrap konfidensintervaller Sammenhæng mellem hypotese og konfidensinterval: H 0 : θ = θ 0 accepteres θ 0 ligger i konfidensintervallet for θ Vi fortsætter cigaretforbrugseksemplet. Man vil nu gerne påvise, at cigaretforbruget er faldet efter fødslen: H 0 : µ 1 µ 2 = 0 mod H 1 : µ 1 µ 2 > 0 P-værdien findes i R som: sum(mymeans<0)/k F.eks.ensidet hypotese-test vha. bootstrap: H 0 : θ = θ 0 mod H 1 : θ > θ 0 accepteres θ 0 > 100α%-fraktilen for bootstrapværdierne for θ Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27

6 Vi har nu stikprøverne: x 1,..., x n1 og y 1,..., y n2 ˆµ 1 = x og ˆµ 2 = ȳ Et permutationstest for hypotesen µ 1 = µ 2 er defineret ved: Simuler k sæt af 2 stikprøver af størrelse n 1 og n 2 ved at permutere de tilgængelige data (stort k, e.g. k > 1000) Beregn forskellen i gennemsnittene for hver af de k stikprøvepar: x 1 ȳ 1,..., x k ȳ k Vi fortsætter eksemplet med tænderne. Vi ønsker at udføre et tosidet test for om µ 1 = µ 2. Følgende R-kode gennemfører beregningerne: x=c(9,10,12,6,10,8,6,20,12) y=c(14,15,19,12,13,13,16,14,9,12) k= perms = replicate(k,sample(c(x,y))) mymeandifs = apply(perms[1:9,], 2, mean)-apply(perms[10:19,], 2, mean) sum(abs(mymeandifs)>abs(mean(x)-mean(y)))/k Find P-værdien ud fra positionen af x ȳ i denne fordeling (2-sidet eller 1-sidet - på sædvanlig vis) Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27 Oversigt 1 Introduktion til simulering Eksempel Eksempel 3 4 Vha. bootstrap konfidensintervaller Per Bruun Brockhoff Introduktion til Statistik, Forelæsning 10 Foråret / 27

R i 02402: Introduktion til Statistik

R i 02402: Introduktion til Statistik R i 02402: Introduktion til Statistik Per Bruun Brockhoff DTU Informatik, DK-2800 Lyngby 20. juni 2011 Indhold 1 Anvendelse af R på Databar-systemet på DTU 5 1.1 Adgang......................................

Læs mere

Forelæsning 9: Inferens for andele (kapitel 10)

Forelæsning 9: Inferens for andele (kapitel 10) Kursus 02402 Introduktion til Statistik Forelæsning 9: Inferens for andele (kapitel 10) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information

Oversigt. Kursus 02402 Introduktion til Statistik. Forelæsning 1: Intro og beskrivende statistik. Per Bruun Brockhoff. Praktisk Information Kursus 02402 Forelæsning 1: Intro og beskrivende statistik Oversigt 1 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800 Lyngby Danmark e-mail:

Læs mere

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger

1 enote 1: Simple plots og deskriptive statistik. 2 enote2: Diskrete fordelinger. 3 enote 2: Kontinuerte fordelinger Kursus 02402/02323 Introduktion til statistik Forelæsning 13: Et overblik over kursets indhold Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Building 324, Room 220 Danish Technical University

Læs mere

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter.

Eksempel I. Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Eksempel I Tiden mellem kundeankomster på et posthus er eksponential fordelt med middelværdi µ =2minutter. Per Bruun Brockhoff IMM DTU 02402 Eksempler 1 Eksempel I Tiden mellem kundeankomster på et posthus

Læs mere

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test)

Oversigt. 1 Intro: Regneeksempel og TV-data fra B&O. 2 Model. 3 Beregning - variationsopspaltning og ANOVA tabellen. 4 Hypotesetest (F-test) Kursus 02402/02323 Introducerende Statistik Forelæsning 11: Tovejs variansanalyse, ANOVA Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistik for ankomstprocesser

Statistik for ankomstprocesser Statistik for ankomstprocesser Anders Gorst-Rasmussen 20. september 2006 Resumé Denne note er en kortfattet gennemgang af grundlæggende statistiske værktøjer, man kunne tænke sig brugt til at vurdere rimeligheden

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Kapitel 4 Sandsynlighed og statistiske modeller

Kapitel 4 Sandsynlighed og statistiske modeller Kapitel 4 Sandsynlighed og statistiske modeller Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 Indledning 2 Sandsynlighed i binomialfordelingen 3 Normalfordelingen 4 Modelkontrol

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag

statistik statistik viden fra data statistik viden fra data Jens Ledet Jensen Aarhus Universitetsforlag Aarhus Universitetsforlag Jens Ledet Jensen på data, og statistik er derfor et nødvendigt værktøj i disse sammenhænge. Gennem konkrete datasæt og problemstillinger giver Statistik viden fra data en grundig indføring i de basale

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Efterår 2014 Institution Niels Brock Uddannelse Fag og niveau Lærer Hold HHX Matematik - Niveau A Peter Harremoës GSK hold t14gymaau1o2 Oversigt over gennemførte undervisningsforløb

Læs mere

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M.

Kursusindhold: X i : tilfældig værdi af ite eksperiment. Antag X i kun antager værdierne 1, 2,..., M. Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 9, 2015 Sandsynlighedsregning og lagerstyring Normalfordelingen

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema:

2. Ved et roulettespil kan man vinde 0,10,100, 500 og 1000 kr. Sandsynligheden for gevinsterne ses af følgende skema: Der er hjælp til opgaver med # og facit på side 6 1. Et eksperiment kan beskrives med følgende skema: u 1 2 3 4 5 P(u) 0,3 0,2 0,1 0,2 x Bestem x og sandsynligheden for at udfaldet er et lige tal.. 2.

Læs mere

Temaopgave i statistik for

Temaopgave i statistik for Temaopgave i statistik for matematik B og A Indhold Opgave 1. Kast med 12 terninger 20 gange i praksis... 3 Opgave 2. Kast med 12 terninger teoretisk... 4 Opgave 3. Kast med 12 terninger 20 gange simulering...

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 19 sider. Skriftlig prøve, den: 20. december 2006 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side af 9 sider Skriftlig prøve, den: 0. december 006 Kursus nr : 0405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: navn underskrift bord

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12

Program. 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Program 1. Varianskomponent-modeller (Random Effects) 2. Transformation af data. 1/12 Dæktyper og brændstofforbrug Data fra opgave 10.43, side 360: cars 1 2 3 4 5... radial 4.2 4.7 6.6 7.0 6.7... belt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2014 Institution Vejen Business College Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik niveau

Læs mere

Vejledning til Gym18-pakken

Vejledning til Gym18-pakken Vejledning til Gym18-pakken Copyright Maplesoft 2014 Vejledning til Gym18-pakken Contents 1 Vejledning i brug af Gym18-pakken... 1 1.1 Installation... 1 2 Deskriptiv statistik... 2 2.1 Ikke-grupperede

Læs mere

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning

CIVILINGENIØREKSAMEN. Side 1 af 18 sider. Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405. Kursus navn: Sandsynlighedsregning CIVILINGENIØREKSAMEN Side 1 af 18 sider Skriftlig prøve, den: 2. juni 2009 Kursus nr : 02405 Kursus navn: Sandsynlighedsregning Tilladte hjælpemidler: Alle Dette sæt er besvaret af: (navn) (underskrift)

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i.

Tænk på a og b som to n 1 matricer. a 1 a 2 a n. For hvert i = 1,..., n har vi y i = x i β + u i. Repetition af vektor-regning Økonometri: Lektion 3 Matrix-formulering Fordelingsantagelse Hypotesetest Antag vi har to n-dimensionelle (søjle)vektorer a 1 b 1 a 2 a =. og b = b 2. a n b n Tænk på a og

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 IBC-Kolding

Læs mere

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave]

Statistik med TI-Nspire CAS version 3.2. Bjørn Felsager September 2012. [Fjerde udgave] Statistik med TI-Nspire CAS version 3.2 Bjørn Felsager September 2012 [Fjerde udgave] Indholdsfortegnelse Forord Beskrivende statistik 1 Grundlæggende TI-Nspire CAS-teknikker... 4 1.2 Lister og regneark...

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring

matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring matx.dk Undersøgelsesdesign Statistik Dennis Pipenbring 7. april 2011 Indhold 1 Undersøgelsesdesign 5 1.1 Kausalitet............................. 5 1.2 Validitet og bias......................... 6 1.3

Læs mere

Simulering af stokastiske fænomener med Excel

Simulering af stokastiske fænomener med Excel Simulering af stokastiske fænomener med Excel John Andersen, Læreruddannelsen i Aarhus, VIA Det kan være en ret krævende læreproces at udvikle fornemmelse for mange begreber fra sandsynlighedsregningen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014 IBC-Kolding

Læs mere

Epidemiologi og Biostatistik

Epidemiologi og Biostatistik Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Juni 2013 Roskilde

Læs mere

Aktivitetsmappe for introkurset til Naturvidenskabeligt grundforløb 2008

Aktivitetsmappe for introkurset til Naturvidenskabeligt grundforløb 2008 Den eksperimentelle metode i statistik Den naturvidenskabelige metode er i fokus efter gymnasiereformen. Det starter med naturvidenskabeligt grundforløb: Aktivitetsmappe for introkurset til Naturvidenskabeligt

Læs mere

IDRÆTSSTATISTIK BIND 1

IDRÆTSSTATISTIK BIND 1 IDRÆTSSTATISTIK BIND 1 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-05-1 Bd.1 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater

Økonometri: Lektion 4. Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater Økonometri: Lektion 4 Multipel Lineær Regression: F -test, justeret R 2 og aymptotiske resultater 1 / 35 Hypotesetest for én parameter Antag vi har model y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi

Læs mere

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul

Statistik. Deskriptiv statistik, normalfordeling og test. Karsten Juul Statistik Deskriptiv statistik, normalfordeling og test Karsten Juul Intervalhyppigheder En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid det tager dem

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Statistik i GeoGebra

Statistik i GeoGebra Statistik i GeoGebra Peter Harremoës 13. maj 2015 Jeg vil her beskrive hvordan man kan lave forskellige statistiske analyser ved hjælp af GeoGebra 4.2.60.0. De statistiske analyser svarer til pensum Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Th. Langs HF og VUC Uddannelse Fag og niveau Lærer Hold Hfe Mat A Viktor Kristensen

Læs mere

Lær nemt! Statistik - Kompendium

Lær nemt! Statistik - Kompendium David Brink Lær nemt! Statistik - Kompendium Ventus wwwventusdk Lær nemt! Statistik - Kompendium 005 David Brink Nielsen og Ventus Download kompendiet gratis på wwwventusdk ISBN 87-7681-01-7 Ventus Falkoner

Læs mere

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren

Program. Sammenligning af grupper Ensidet ANOVA. Case 3, del II: Fiskesmag i lammekød. Case 3, del I: A-vitamin i leveren Faculty of Life Sciences Program Sammenligning af grupper Ensidet ANOVA Claus Ekstrøm E-mail: ekstrom@life.ku.dk Sammenligning af to grupper: tre eksempler Sammenligning af mere end to grupper: ensidet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2015 Institution Vejen Business College Uddannelse Fag og niveau HHX Matematik niveau B Lærer(e)

Læs mere

Statistisk beskrivelse og test

Statistisk beskrivelse og test Statistisk beskrivelse og test 005 Karsten Juul Kapitel 1. Intervalhyppigheder Afsnit 1.1: Histogram En elevgruppe på et gymnasium har spurgt 100 tilfældigt valgte elever på gymnasiet om hvor lang tid

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: maj-juni 2011/2012 ZBC Ringsted Hhx Matematik B Jens Jørvad 12hhx21 Oversigt over

Læs mere

Statistik noter - Efterår 2009 Keller - Statistics for management and economics

Statistik noter - Efterår 2009 Keller - Statistics for management and economics Statistik noter - Efterår 2009 Keller - Statistics for management and economics Jonas Sveistrup Hansen - stud.merc.it 22. september 2009 1 Indhold 1 Begrebsliste 3 2 Forelæsning 1 - kap. 1-3 3 2.1 Kelvin

Læs mere

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen

Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Bilag til Statistik i løb : Statistik og Microsoft Excel tastevejledning / af Lars Bo Kristensen Microsoft Excel har en del standard anvendelsesmuligheder i forhold til den beskrivende statistik og statistisk

Læs mere

STATISTIKNOTER Simple binomialfordelingsmodeller

STATISTIKNOTER Simple binomialfordelingsmodeller STATISTIKNOTER Simple binomialfordelingsmodeller Jørgen Larsen IMFUFA Roskilde Universitetscenter Februar 1999 IMFUFA, Roskilde Universitetscenter, Postboks 260, DK-4000 Roskilde. Jørgen Larsen: STATISTIKNOTER:

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt?

Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projekt 8.3 Hvordan undersøges om et talmateriale normalfordelt? Projektet drejer sig om at udvikle en metode, til at undersøge om et givet talmateriale med rimelighed kan siges at være normalfordelt.

Læs mere

Simpel Lineær Regression

Simpel Lineær Regression Simpel Lineær Regression Mål: Forklare variablen y vha. variablen x. Fx forklare Salg (y) vha. Reklamebudget (x). Vi antager at sammenhængen mellem y og x er beskrevet ved y = β 0 + β 1 x + u. y: Afhængige

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

ANVENDT STATISTIK (med anvendelse af Excel)

ANVENDT STATISTIK (med anvendelse af Excel) MOGENS ODDERSHEDE LARSEN ANVENDT STATISTIK (med anvendelse af Excel) Hyppighed 0 18 16 14 1 10 8 6 4 0 6,94 7,0 7,1 7,18 7,6 7,34 7,4 7,5 7,58 7,66 Mere Hyppighed. udgave 008 FORORD Notatet er bygget op

Læs mere

Oversigt. 1 Praktisk Information. 2 Introduction to Statistics - a primer. 3 Intro Case historier: IBM Big data, Novo Nordisk small data, Skive fjord

Oversigt. 1 Praktisk Information. 2 Introduction to Statistics - a primer. 3 Intro Case historier: IBM Big data, Novo Nordisk small data, Skive fjord Course 02402/02323 Introducerende Statistik Forelæsning 1: Intro, R og beskrivende statistik Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet

Læs mere

Byggeøkonomuddannelsen

Byggeøkonomuddannelsen Byggeøkonomuddannelsen Risikoanalyse Successiv kalkulation Ken L. Bechmann 18. november 2013 1 Dagens emner Risikoanalyse og introduktion hertil Kalkulation / successiv kalkulation Øvelser og småopgaver

Læs mere

MønsterGenkendelse Forår 2001. S. I. Olsen

MønsterGenkendelse Forår 2001. S. I. Olsen MønsterGenkendelse Forår 2001 S. I. Olsen Dette skrift er 3. udkast til et notesæt til brug i kurset Mønstergenkendelse. Noterne dækker primært områderne: Statistiske mønstergenkendelse, Klyngeanalyse,

Læs mere

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF

Et matematikeksperiment: Bjørn Felsager, Haslev Gymnasium & HF Sammenligning af to måleserier En af de mest grundlæggende problemstillinger i statistik består i at undersøge om to forskellige måleserier er signifikant forskellige eller om forskellen på de to serier

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2013/14

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Normalfordelingen. Erik Vestergaard

Normalfordelingen. Erik Vestergaard Normalfordelingen Erik Vestergaard Erik Vestergaard www.matematiksider.dk Erik Vestergaard, 008. Billeder: Forside: jakobkramer.dk/jakob Kramer Side 7: istock.com/elenathewise Side 8: istock.com/jaroon

Læs mere

Hvad er meningen? Et forløb om opinionsundersøgelser

Hvad er meningen? Et forløb om opinionsundersøgelser Hvad er meningen? Et forløb om opinionsundersøgelser Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004

Læs mere

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable

Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable IMM, 00--6 Poul Thyregod Supplement til kapitel 4 Om sandsynlighedsmodeller for flere stokastiske variable Todimensionale stokastiske variable Lærebogens afsnit 4 introducerede sandsynlighedsmodeller formuleret

Læs mere

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005

IMFUFA TEKST NR 435 2004. TEKSTER fra ROSKILDE UNIVERSITETSCENTER BASISSTATISTIK. Jørgen Larsen 2004, 2005 TEKST NR 435 2004 BASISSTATISTIK Jørgen Larsen 2004, 2005 TEKSTER fra IMFUFA INSTITUT ROSKILDE UNIVERSITETSCENTER FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES FUNKTIONER I UNDERVISNING, FORSKNING OG ANVENDELSER

Læs mere

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L

F I N N H. K R I S T I A N S E N KUGLE SIMULATIONER MÅLSCORE I HÅNDBOLD G Y L D E N D A L RÆSONNEMENT & 1BE V I S F I N N H. K R I S T I A N S E N GNING 2 EGNEARK KUGLE 5 MÅLING SIMULATIONER 3 G Y L D E N D A L MÅLSCORE I HÅNDBOLD Faglige mål: Håndtere simple modeller til beskrivelse af sammenhænge

Læs mere

Indblik i statistik - for samfundsvidenskab

Indblik i statistik - for samfundsvidenskab Indblik i statistik - for samfundsvidenskab Læs mere om nye titler fra Academica på www.academica.dk Nikolaj Malchow-Møller og Allan H. Würtz Indblik i statistik for samfundsvidenskab Academica Indblik

Læs mere

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp.

Løs nu opgaverne i a) brug alt materialet her samt evt. regnearkene i Fronter som hjælp. Udarbejdet af Thomas Jensen og Morten Overgård Nielsen Indhold Introduktion til materialet. s. 2 Introduktion til chi i anden test. s. 4 Et eksempel hastighed og ulykker på motorveje s. 8 Sådan udregnes

Læs mere

Sandsynlighedsbaserede metoder

Sandsynlighedsbaserede metoder Metodeartikel 29 Sandsynlighedsbaserede metoder Monte Carlo-metoden Daniel Kjær I sidste udgave af Famøs kunne læseren finde første halvdel af en todelt artikelserie om sandsynlighedsbaserede metoder under

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n =

Opgave 6. Opgave 7. Peter Harremoës Matematik A med hjælpemidler 26 maj 2015. a) Se Bilag 2! b) Variablen n isoleres. L = 2 z 1 α. L = 2 z 1 α L = n = Opgave 6 a) Se Bilag 2! b) Variablen n isoleres ( L = 2 z 1 α 2 ) 2 L = 2 z 1 α 2 L = 2 z 1 α 2 n = ( ˆp (1 ˆp) n ˆp (1 ˆp) n ˆp (1 ˆp) ( n ( ˆp (1 ˆp) ) 1/2 ) 2 L 2 z 1 α 2 n ) 1/2 Opgave 7 n = 4ˆp (1

Læs mere

IDRÆTSSTATISTIK BIND 2

IDRÆTSSTATISTIK BIND 2 IDRÆTSSTATISTIK BIND 2 ii Det Naturvidenskabelige Fakultet Aarhus Universitet Reprocenter Preben Blæsild og Jørgen Granfeldt 2001 ISBN 87-87436-07-8 Bd.2 iii Forord Denne bog er skrevet til brug i et statistikkursus

Læs mere

Matematik B. Højere handelseksamen

Matematik B. Højere handelseksamen Matematik B Højere handelseksamen hhx132-mat/b-16082013 Fredag den 16. august 2013 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Datafri analyse ved simulation SAS Analytics Netværk 19. november 2008 Indhold

Datafri analyse ved simulation SAS Analytics Netværk 19. november 2008 Indhold Indhold Hvordan beregnes præmien i et forsikringsselskab Simulation af en ny branches skadeforløb Resultat og konklusion 1 Præmieberegning Kundens præmie består af to elementer: Risikopræmie Omkostninger+profit

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Sandsynlighedregning

Sandsynlighedregning MOGENS ODDERSHEDE LARSEN Sandsynlighedregning + = - P(A B) = P(A) + P(B) P(A B). 1. udgave 2007 FORORD Dette notat giver en kort gennemgang af de grundlæggende begreber i sandsynlighedsregning. Det forudsættes,

Læs mere

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres)

Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Grupperede observationer et eksempel. (begreber fra MatC genopfriskes og varians og spredning indføres) Til Gribskovløbet 006 gennemførte 118 kvinder 1,4 km distancen. Fordelingen af kvindernes løbstider

Læs mere

Statistisk bearbejdning af overvågningsdata - Trendanalyser

Statistisk bearbejdning af overvågningsdata - Trendanalyser Danmarks Miljøundersøgelser Miljøministeriet Teknisk anvisning fra DMU nr. 4, 006 Statistisk bearbejdning af overvågningsdata - Trendanalyser NOVANA (Tom side) Danmarks Miljøundersøgelser Miljøministeriet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2012-2015 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold Stx Matematik A MT 3.a Matematik Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Skolesektionen på www.ballerup.dk

Skolesektionen på www.ballerup.dk Skolesektionen på www.ballerup.dk Louise Callisen Dyhr (ldyh) Marie Louise Gottlieb Frederiksen (mgfr) Janus Askø Madsen (jaam) Nanna Petersen (nshy) Antal tegn: 28319 Afleveringsdato: 21. maj 2014 1 Indledning...

Læs mere

Stokastiske processer og køteori

Stokastiske processer og køteori Stokastiske processer og køteori 9. kursusgang Anders Gorst-Rasmussen Institut for Matematiske Fag Aalborg Universitet 1 OPSAMLING EKSAKTE MODELLER Fordele: Praktiske til initierende analyser/dimensionering

Læs mere

Oversigt over gennemførte undervisningsforløb. Uddannelse. Basal talbehandling. Lineære funktioner. Eksponentielle funktioner. Beskrivende statistik

Oversigt over gennemførte undervisningsforløb. Uddannelse. Basal talbehandling. Lineære funktioner. Eksponentielle funktioner. Beskrivende statistik Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2010 - juni 2012 Institution Handelsgymnasiet Tradium, Rådmands Boulevard Uddannelse Fag og niveau

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 11/12 Institution VUC Holstebro-Lemvig-Struer Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx141-mat/a-305014 Fredag den 3. maj 014 kl. 9.00-14.00 Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål. Besvarelsen

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014

Matematik B. Højere handelseksamen. Mandag den 15. december 2014 kl. 9.00-13.00. hhx143-mat/b-15122014 Matematik B Højere handelseksamen hhx143-mat/b-15122014 Mandag den 15. december 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i

Læs mere

Løsningsforslag til Stokastik 1.-10. klasse

Løsningsforslag til Stokastik 1.-10. klasse 1 Løsningsforslag til Stokastik 1.-10. klasse Bemærk, at vi benytter betegnelsen øvelser som en meget bred betegnelse. Derfor er der også nogle af vores øvelser, der nærmer sig kategorien undersøgelser,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2013 IBC-Kolding

Læs mere

Simpsons Paradoks. Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser. Inge Henningsen

Simpsons Paradoks. Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser. Inge Henningsen Simpsons Paradoks Et emnearbejde om årsag og sammenhæng i kvantitative undersøgelser Afdeling for Anvendt Matematik og Statistik Københavns Universitet 1 Simpsons Paradoks -Et emnearbejde om årsag og sammenhæng

Læs mere

Sandsynlighedsregning og statistik

Sandsynlighedsregning og statistik og statistik Jakob G. Rasmussen, Institut for Matematiske Fag jgr@math.aau.dk Litteratur: Walpole, Myers, Myers & Ye: Probability and Statistics for Engineers and Scientists, Prentice Hall, 8th ed. Slides

Læs mere

Noter i statistik. Indholsfortegnelse. 2 - Beskrivende statistik. 3 - Fordelinger. 4 - Variation. 1 of 117 05/02/10 13.49

Noter i statistik. Indholsfortegnelse. 2 - Beskrivende statistik. 3 - Fordelinger. 4 - Variation. 1 of 117 05/02/10 13.49 Noter i statistik Thomas Bendsen 2008 VIA University College Bioanalytikeruddannelsen Indholsfortegnelse 1 - Introduktion 1.1 - Introduktion 1.2 - Brug af disse sider 1.3 - Analysenavne 1.4 - DANAK 1.5

Læs mere

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave

Per Vejrup-Hansen STATISTIK. med Excel. 2. udgave Per Vejrup-Hansen STATISTIK med Excel 2. udgave Per Vejrup-Hansen Statistik med Excel Per Vejrup-Hansen Statistik med Excel 2. trykte udgave 2012 1. e-bogsudgave 2012 Samfundslitteratur 2012 e-isbn: 978-87-593-1736-5

Læs mere

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014

Matematik B. Højere handelseksamen. Mandag den 18. august 2014 kl. 9.00-13.00. hhx142-mat/b-18082014 Matematik B Højere handelseksamen hhx142-mat/b-18082014 Mandag den 18. august 2014 kl. 9.00-13.00 Matematik B Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt

Læs mere

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF

Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Fagligt samspil mellem Ma-B og SA-A Lisbeth Basballe, Mariagerfjord Gymnasium og Marianne Kesselhahn, Egedal Gymnasium og HF Vi ønskede at planlægge og afprøve et undervisningsforløb, hvor anvendelse af

Læs mere

VIDEREGÅENDE STATISTIK

VIDEREGÅENDE STATISTIK MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK herunder kvalitetskontrol Udgave 10.b 015 FORORD Denne lærebog kan læses på baggrund af en statistisk viden svarende til lærebogen M. Oddershede Larsen :

Læs mere

WPS / R day. Rune Juhl (DTU Technical University of Denmark. 11th December 2013. DTU Compute Department of Applied Mathematics and Computer Science

WPS / R day. Rune Juhl (DTU Technical University of Denmark. 11th December 2013. DTU Compute Department of Applied Mathematics and Computer Science WPS / R day Rune Juhl DTU Technical University of Denmark DTU Compute Department of Applied Mathematics and Computer Science 11th December 2013 DTU WPS Compute / R day Department of Applied 11th December

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere