Af Marc Skov Madsen PhD-studerende Aarhus Universitet

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk"

Transkript

1 Af Marc Skov Madsen PhD-studerende Aarhus Universitet 1 Besøgstjenesten Jeg vil gerne bruge lidt spalteplads til at reklamere for besøgstjenesten ved Institut for Matematiske Fag i Århus. Vi er to PhD.-studerende, som er ansat til at tage ud og formidle matematik. Det kan være sig i form af eksempelvis foredrag. Jeg har også været med til at opbygge en matematikstand, som bl.a. kan byde på verdens hurtigste rutchebane (cykloiden). Den kommer jeg også gerne ud og stiller op. Nedenstående artikel om kryptografi er bygget over et foredrag, som jeg har holdt, for gymnasieelever. Foredraget kan bestilles ved at skrive til 2 Kryptografi Kryptografi er læren om, hvordan en tekst skrevet i et sædvanligt sprog, kan forvandles, så teksten bliver uforståelig for uvedkommende, men så den godt kan læses af indviede. Selve processen kan skitseres som følger. Kryptering dusmxos4js d2g4klj2d fdxtad9fsk Kryptotekst Dekryptering Læg mærke til, at kryptering svarer til at låse teksten, mens dekryptering svarer til at låse den op igen. 3 Alice, Bob og Eva Vi forestiller os den situation, at Alice er en person, som gerne vil sende en hemmelig besked til Bob over internettet, og at Eva er en spion, der ønsker at aflytte og forstå den hemmelige besked. 3.1 Konventionelt kryptosystem I gamle dage (konventionelt kryptosystem) var det nødvendigt for Alice og Bob først at mødes for at få et kryptosystem op at stå. De skulle nemlig mødes for at udveksle en fælles nøgle ( ). Det kunne være, at de eksempelvis aftalte at forskyde bogstaverne i alfabetet 3 pladser, så eksempelvis beskeden hej ville blive til khm. Et konventionelt kryptosystem kan illustreres på følgende vis. 1

2 Kryptering dusmxos4js d2g4klj2d fdxtad9fsk Kryptotekst Dekryptering Konventionel kryptering har det problem, at det kan være både for dyrt og besværligt for Alice og Bob at få aftalt en fælles nøgle. Prøv eksempelvis at forestille dig, at Alice bor i Ansager og Bob i Bilbao! 3.2 Public Key kryptering I et Public Key kryptosystem behøves Alice og Bob ikke at mødes, før de kan kommunikere hemmeligt over nettet. Der sker nemlig det, at Bob laver en offentlig nøgle ( ) og en hemmelig nøgle ( ). Den offentlige nøgle lægger Bob ud på nettet, så alle kan finde den. Den hemmelige nøgle gemmer han eksempelvis på sin harddisk. Nu er pointen den, at hvis den offentlige nøgle bruges til at låse med, så er det kun den hemmelige nøgle, som kan låse op igen! Når Alice vil skrive til Bob skal hun blot gå ud på nettet, slå hans offentlige nøgle op og bruge den til at låse/ kryptere med. Når Bob vil dekryptere en besked, så bruger han sin hemmelige nøgle. Kryptering dusmxos4js d2g4klj2d fdxtad9fsk Kryptotekst Dekryptering Det viser sig, at man vha. matematiske emner som talteori, gruppeteori og algebraisk geometri kan lave en del forskellige praktiske Public Key kryptosystemer. Vi vil nu se nærmere på det mest anvendte eksempel. 4 RSA RSA systemet blev udviklet af Rivest, Shamir og Adleman i 1977, og det bruges idag i bl.a. Internet Explorer og Netscape Navigator. Dermed bruges det også, når man bruger homebanking. Vi kan f.eks. tage et kig på Danske Netbanks offentlige nøgle. 2

3 5 Matematikken bag RSA For at kunne få indblik i RSA kryptering skal man ihvertfald kende lidt til restregning og primtal. 5.1 Division med rest Matematikere ynder at skrive sande udsagn op som sætninger. Her er sætningen om division med rest. Sætning 5.1 (Division med rest). For alle positive, hele tal m og d findes præcis et helt tal q og et helt tal r så m qd r 0 r d Et eksempel er at Vi siger at der er 2 til rest. Vi vil skrive m mod d for resten ved division af m med d. Så eksempelvis 35 mod 6 5. Hele pointen er nu, at vi kan regne med rester! Det siger følgende sætning nemlig. Sætning: Antag m n og d er hele, positive tal. Lad m m mod d og n n mod d. Da gælder m n mod d m n mod d Vi kan tage et eksempel, hvor vi bruger sætningen: mod mod Primtal Et primtal p er et tal 1, som kun har 1 og p som divisorer. Eksempler er og Grunden til, at primtallene er så vigtige, er, at de er byggestenene for de hele tal. 3

4 Sætning 5.2 (Entydig faktorisering). Ethvert helt, positivt tal større end 1 kan på entydig vis faktoriseres i primtal. Vi kan tage et eksempel Det er vigtigt at få fastslået, at der er grænser for hvor store tal, man idag kan faktorisere inden for en overskuelig tid. Eksempelvis er der endnu ingen som har faktoriseret nedenstående tal på 174 cifre på trods af, at der på hjemmesiden er udlovet en præmie på $ for at faktorisere tallet RSA - hvordan gør man? 6.1 Konstruktion af nøglepar Vælg to (store) primtal p og q. Beregn n pq. Beregn M p 1 q 1 Find et helt tal 0 e M så e og M er uden fælles divisorer. Find et helt tal 0 d M så ed mod M 1. Offentlig nøgle: e n Hemmelig nøgle: d Hele RSA-kryptosystemet, som vi skal se i næste afsnit, virker nu pga. følgende sætning Sætning 6.1. Hvis e n og d er konstrueret som beskrevet, så gælder m ed mod n m for alle 0 m n 4

5 6.2 Krypteringsprotokol en m er her et tal så 0 m n. Kryptering: m m e mod n c Dekryptering: c c d mod n 6.3 RSA eksempel Vi kan tage et eksempel baseret på nogle små primtal. Vi vælger p=13 og q=17. Så er n=221 og M=192, Vi kan vælge e=5 og finder at d=77 virker. Den offentlige nøgle er og den hemmelige nøgle er 77. Vi kan vælge at kryptere bogstavet f. klartekst: m 6 (f er det sjette bogstav i alfabetet) kryptotekst: c 41 ( 6 5 mod 221) klartekst: m 6 ( mod 221) 6.4 Kan RSA brydes? Ja, hvis man ikke er omhyggelig nok, så kan det. Hvis Eva kan finde de to primtal p og q, som Bob brugte i starten, så er det faktisk nemt for hende at finde den hemmelige nøgle d. Dermed vil hun have brudt systemet. Lad os lave det tankeeksperiment, at Eva gik ud på nettet og aflæste Bobs n til at være 35. Så kunne hun faktorisere Så p 5 og q 7, og hun ville have brudt systemet. Moralen er at p og q skal vælges så store, at n ikke kan faktoriseres indenfor rimelig tid. I øjeblikket anbefaler man, at p og q skal være på ca. 500 cifre hver. 7 Digital signatur En ting som Public Key kryptering åbner op for er digital signatur. En digital signatur er en underskrift i elektronisk form. Den kan bruges af Alice til at signere eksempelvis en mail, så Bob kan være sikker på, at den kommer fra hende. Når Alice vil sende en (ukrypteret) mail til Bob, så bruger hun bare sin hemmelige nøgle til at låse mailen med. Bob kan da tjekke om mailen kommer fra Alice ved at finde hendes offentlige nøgle ude på nettet og bruge den til at låse op med. Sikkerheden bygger igen på, at nøglerne passer sammen: Er der blevet låst med den hemmelige nøgle, så er det kun den offentlige nøgle, som kan låse op igen. 5

6 underskriver diem4ls lskasm# lamcyald Signeret tekst checker underskrift digitale signatur og kryptering kan selvfølgelig kombineres. Den 8 Hvis du vil vide mere Som introduktion til emnet kan jeg anbefale følgende bøger: Simon Sing: Kodebogen. og Peter Landrock og Knud Nissen: Kryptologi - Fra viden til videnskab. 6

Kryptografi Anvendt Matematik

Kryptografi Anvendt Matematik Kryptografi Anvendt Matematik af Marc Skov Madsen PhD-studerende Matematisk Institut, Aarhus Universitet email: marc@imf.au.dk Kryptografi p.1/23 Kryptografi - Kryptografi er læren om, hvordan en tekst

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

Camp om Kryptering. Datasikkerhed, RSA kryptering og faktorisering. Rasmus Lauritsen. August 27,

Camp om Kryptering. Datasikkerhed, RSA kryptering og faktorisering. Rasmus Lauritsen. August 27, Camp om Kryptering Datasikkerhed, RSA kryptering og faktorisering Rasmus Lauritsen August 27, 2013 http://users-cs.au.dk/rwl/2013/sciencecamp Indhold Datasikkerhed RSA Kryptering Faktorisering Anvendelse

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 24. august 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede

Læs mere

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Disposition 1 PKI - Public Key Infrastructure Symmetrisk kryptografi Asymmetrisk kryptografi 2 Regning med rester Indbyrdes primiske tal

Læs mere

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet RSA Kryptosystemet Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Kryptering med RSA Her følger først en kort opridsning af RSA kryptosystemet, som vi senere skal bruge til at lave digitale signaturer.

Læs mere

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk)

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk) Kryptologi og RSA Jonas Lindstrøm Jensen (jonas@imf.au.dk) 1 Introduktion Der har formodentlig eksisteret kryptologi lige så længe, som vi har haft et sprog. Ønsket om at kunne sende beskeder, som uvedkommende

Læs mere

Konfidentialitet og kryptografi 31. januar, Jakob I. Pagter

Konfidentialitet og kryptografi 31. januar, Jakob I. Pagter Konfidentialitet og kryptografi 31. januar, 2009 Jakob I. Pagter Oversigt Kryptografi autenticitet vs. fortrolighed ubetinget vs. beregningsmæssig sikkerhed Secret-key fortrolighed Public-key fortrolighed

Læs mere

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi)

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) 1. Klassiske krypteringsmetoder 1.1 Terminologi klartekst kryptotekst kryptering dekryptering 1.2 Monoalfabetiske kryptosystemer 1.3 Additive

Læs mere

Kryptologi 101 (og lidt om PGP)

Kryptologi 101 (og lidt om PGP) Kryptologi 101 (og lidt om PGP) @jchillerup #cryptopartycph, 25. januar 2015 1 / 27 Hvad er kryptologi? define: kryptologi En gren af matematikken, der blandt andet handler om at kommunikere sikkert over

Læs mere

Hvad er KRYPTERING? Metoder Der findes to forskellige krypteringsmetoder: Symmetrisk og asymmetrisk (offentlig-nøgle) kryptering.

Hvad er KRYPTERING? Metoder Der findes to forskellige krypteringsmetoder: Symmetrisk og asymmetrisk (offentlig-nøgle) kryptering. Hvad er KRYPTERING? Kryptering er en matematisk teknik. Hvis et dokument er blevet krypteret, vil dokumentet fremstå som en uforståelig blanding af bogstaver og tegn og uvedkommende kan således ikke læses

Læs mere

Perspektiverende Datalogi 2014 Uge 39 Kryptologi

Perspektiverende Datalogi 2014 Uge 39 Kryptologi Perspektiverende Datalogi 2014 Uge 39 Kryptologi Dette dokument beskriver en række opgaver. Diskutter opgaverne i små grupper, under vejledning af jeres instruktor. Tag opgaverne i den rækkefølge de optræder.

Læs mere

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet Sikre Beregninger Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Introduktion I denne note skal vi kigge på hvordan man kan regne på data med maksimal sikkerhed, dvs. uden at kigge på de tal

Læs mere

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard RSA-kryptosystemet RSA-kryptosystemet Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 007. Billeder: Forside: istock.com/demo10 Erik Vestergaard www.matematikfysik.dk 3 1. Indledning

Læs mere

Køreplan Matematik 1 - FORÅR 2005

Køreplan Matematik 1 - FORÅR 2005 Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange

Læs mere

Fortroligt dokument. Matematisk projekt

Fortroligt dokument. Matematisk projekt Fortroligt dokument Matematisk projekt Briefing til Agent 00-DiG Velkommen til Kryptoafdeling 1337, dette er din første opgave. Det lykkedes agenter fra Afdelingen for Virtuel Efterretning (AVE) at opsnappe

Læs mere

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb.

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. lemma: Hvis a, b og c er heltal så gcd(a, b) = 1 og a bc da vil a c. lemma: Hvis p er et primtal og p a 1 a 2 a n hvor hvert

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen Introduktion til Kryptologi Mikkel Kamstrup Erlandsen Indhold 1 Introduktion 2 1.1 Om Kryptologi.......................... 2 1.2 Grundlæggende koncepter.................... 2 1.3 Bogstaver som tal........................

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Johan P. Hansen 18. april 2013 Indhold 1 Indbyrdes primiske hele tal 1 2 Regning med rester 3 3 Kryptering

Læs mere

Roskilde Universitetscenter, Datalogisk Afdeling Kryptering. Niels Christian Juul. N&P 11: 2001 April 18th

Roskilde Universitetscenter, Datalogisk Afdeling   Kryptering. Niels Christian Juul. N&P 11: 2001 April 18th Roskilde Universitetscenter, Datalogisk Afdeling E-mail: ncjuul@acm.org Kryptering Niels Christian Juul N&P 11: 2001 April 18th Om kryptering, DES, RSA, PGP og SSL Copyright 1998-2001, Niels Christian

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Større Skriftlig Opgave

Større Skriftlig Opgave Uddannelse: Højere Handelseksamen Skole: Fag og niveau: Informationsteknologi, niveau A Område: Kryptering og Certifikater Vejleder: Werner Burgwald Afleveringsdato: Fredag den 11. februar. Opgavetitel:

Læs mere

Koder og kryptering. Foredrag UNF 4. december 2009 Erik Zenner (Adjunkt, DTU)

Koder og kryptering. Foredrag UNF 4. december 2009 Erik Zenner (Adjunkt, DTU) Koder og kryptering Foredrag UNF 4. december 2009 Erik Zenner (Adjunkt, DTU) I. Indledende bemærkninger Hvad tænker I på, når I hører kryptologi? Hvad tænker jeg på, når jeg siger kryptologi? Den matematiske

Læs mere

Moderne kryptografi. Olav Geil Institut for Matematiske Fag Aalborg Universitet. Elektronik og IT-Gruppen 24. april 2008

Moderne kryptografi. Olav Geil Institut for Matematiske Fag Aalborg Universitet. Elektronik og IT-Gruppen 24. april 2008 Moderne kryptografi Olav Geil Institut for Matematiske Fag Aalborg Universitet Elektronik og IT-Gruppen 24. april 2008 Matematik og ingeniørvidenskab Uden ingeniørvidenskab var komplekse tal blot en kuriøsitet

Læs mere

Hvordan kryptering af chat, mail og i cloud services og social networks virker

Hvordan kryptering af chat, mail og i cloud services og social networks virker Hvordan kryptering af chat, mail og i cloud services og social networks virker Alexandra Instituttet Morten V. Christiansen Kryptering Skjuler data for alle, som ikke kender en bestemt hemmelighed (en

Læs mere

Integer Factorization

Integer Factorization Integer Factorization Per Leslie Jensen DIKU 2/12-2005 kl. 10:15 Overblik 1 Faktorisering for dummies Primtal og aritmetikkens fundamentalsætning Lille øvelse 2 Hvorfor er det interessant? RSA 3 Metoder

Læs mere

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, matjph@imf.au.dk Matematisk Institut, Aarhus

Læs mere

Den digitale signatur

Den digitale signatur 3. Å RG A N G NR. 3 / 2004 Den digitale signatur - anvendt talteori og kryptologi Fra at være noget, der kun angik den militære ledelse og diplomatiet, har kryptologi med brugen af internettet fået direkte

Læs mere

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, matjph@imf.au.dk Matematisk Institut, Aarhus

Læs mere

RSA-KRYPTERING. Studieretningsprojekt. Blerim Cazimi. Frederiksberg Tekniske Gymnasium. Matematik A. Vejleder: Jonas Kromann Olden

RSA-KRYPTERING. Studieretningsprojekt. Blerim Cazimi. Frederiksberg Tekniske Gymnasium. Matematik A. Vejleder: Jonas Kromann Olden 14. DEC 2014 RSA-KRYPTERING Studieretningsprojekt Blerim Cazimi Frederiksberg Tekniske Gymnasium Matematik A Vejleder: Jonas Kromann Olden Informationsteknologi B Vejleder: Kenneth Hebel Indhold Indledning...

Læs mere

Introduktion til Kryptologi

Introduktion til Kryptologi Introduktion til Kryptologi September 22, 2014 Kryptologi Datasikkerhed Sikker kommunikation over usikre kanaler Kryptografi: Bygge systemer Kryptoanalyse: Bryde systemer Avancerede Protokoller Data er

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Assembly Voting ApS. Kompagnistræde 6, København K CVR:

Assembly Voting ApS. Kompagnistræde 6, København K CVR: Assembly Voting ApS Kompagnistræde 6, 2. 1208 København K CVR: 25600665 Afstemningssystem, Systembeskrivelse Assembly Votings systemer og hostingmiljøer er designet til at imødekomme såvel lovkrav som

Læs mere

Projekt 0.6 RSA kryptering

Projekt 0.6 RSA kryptering Projekt 0.6 RSA kryptering 1. Introduktion. Nøgler til kryptering Alle former for kryptografi prøver at løse følgende problem: En afsender, A ønsker at sende en mdelelse til en modtager, M, såles at den

Læs mere

Hvornår er der økonomi i ITsikkerhed?

Hvornår er der økonomi i ITsikkerhed? Hvornår er der økonomi i ITsikkerhed? Anders Mørk, Dansk Supermarked Erfaringsbaggrund 2 Teoretisk tilgang 3 Den akademiske metode 4 Er det så enkelt? Omkostningerne er relativt enkle at estimere Men hvad

Læs mere

Kommunikationssikkerhed til brugere bibliotek.dk projekt 2006-23

Kommunikationssikkerhed til brugere bibliotek.dk projekt 2006-23 Kommunikationssikkerhed til brugere bibliotek.dk projekt 2006-23 Formål Formålet med dette notat er at beskrive forskellige løsninger for kommunikationssikkerhed til brugerne af bibliotek.dk, med henblik

Læs mere

Fredag 12. januar David Pisinger

Fredag 12. januar David Pisinger Videregående Algoritmik, DIKU 2006/07 Fredag 2. januar David Pisinger Kryptering Spartanere (500 f.kr.) strimmelrulle viklet omkring cylinder Julius Cæsar: substituering af bogstaver [frekvensanalyse]

Læs mere

Sikker mail Kryptering af s Brugervejledning

Sikker mail Kryptering af  s Brugervejledning Sikker mail Kryptering af e-mails Brugervejledning side 1/9 Indholdsfortegnelse 1 Introduktion... 3 2 Anvendelse (Quick start)... 3 2.1 Sikker e-mail... 3 3 Brugergrænsefladen (detaljeret)... 3 3.1 Send

Læs mere

Introduktion til MPLS

Introduktion til MPLS Introduktion til MPLS Henrik Thomsen/EUC MIDT 2005 VPN -Traffic Engineering 1 Datasikkerhed Kryptering Data sikkerheds begreber Confidentiality - Fortrolighed Kun tiltænkte modtagere ser indhold Authentication

Læs mere

Digital Signatur Infrastrukturen til digital signatur

Digital Signatur Infrastrukturen til digital signatur Digital Signatur Infrastrukturen til digital signatur IT- og Telestyrelsen December 2002 Resumé: I fremtiden vil borgere og myndigheder ofte have brug for at kunne kommunikere nemt og sikkert med hinanden

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

P vs. NP. Niels Grønbæk Matematisk Institut Københavns Universitet 3. feb. 2012

P vs. NP. Niels Grønbæk Matematisk Institut Københavns Universitet 3. feb. 2012 P vs. NP Niels Grønbæk Matematisk Institut Københavns Universitet 3. feb. 2012 Den handelsrejsendes problem Kan det lade sig gøre at besøge n byer forbundet ved et vejnet, G, inden for budget, B? Hvad

Læs mere

Kursusgang 3: Autencificering & asymmetrisk kryptering. Krav til autentificering. Kryptering som værktøj ved autentificering.

Kursusgang 3: Autencificering & asymmetrisk kryptering. Krav til autentificering. Kryptering som værktøj ved autentificering. Krav til autentificering Vi kan acceptere, at modtager (og måske afsender) skal bruge hemmelig nøgle Krav til metode: må ikke kunne brydes på anden måde end ved udtømmende søgning længde af nøgler/hemmeligheder/hashkoder

Læs mere

RSA og den heri anvendte matematiks historie - et undervisningsforløb til gymnasiet

RSA og den heri anvendte matematiks historie - et undervisningsforløb til gymnasiet - I, OM OG MED MATEMATIK OG FYSIK RSA og den heri anvendte matematiks historie - et undervisningsforløb til gymnasiet Uffe Thomas Jankvist januar 2008 nr. 460-2008 blank Roskilde University, Department

Læs mere

Fejlkorrigerende koder, secret sharing (og kryptografi)

Fejlkorrigerende koder, secret sharing (og kryptografi) Fejlkorrigerende koder, secret sharing (og kryptografi) Olav Geil Afdeling for Matematiske Fag Aalborg Universitet Møde for Matematiklærere i Viborg og Ringkøbing amter 7. november, 2006 Oversigt Fejlkorrigerende

Læs mere

Jens Holm. Er du nervøs for, at uvedkommende læser med, når du sender mails? Og er det overhovedet sikkert at sende en god gammeldags e-mail?

Jens Holm. Er du nervøs for, at uvedkommende læser med, når du sender mails? Og er det overhovedet sikkert at sende en god gammeldags e-mail? 1 af 16 29-01-2014 12:15 Publiceret 22. januar 2014 kl. 16:01 på cw.dk/art/229651 Printet 29. januar 2014 Guide: Så nemt kommer du i gang med e-mail-kryptering Undgå at andre kan snage i dine e-mails og

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Kryptering. xhafgra ng tøer hyæfryvtg AALBORG UNIVERSITET ELLER

Kryptering. xhafgra ng tøer hyæfryvtg AALBORG UNIVERSITET ELLER Kryptering ELLER xhafgra ng tøer hyæfryvtg P0 Anders Rune Jensen Ole Laursen Jasper Kjersgaard Juhl Martin Qvist 21. september 2001 AALBORG UNIVERSITET Det Teknisk-Naturvidenskabelige Fakultet Aalborg

Læs mere

3. Moderne krypteringsmetoder

3. Moderne krypteringsmetoder 3. Moderne krypteringsmetoder 3.1 Konventionelle systemer De systemer, vi indtil nu har beskrevet, har alle den egenskab, at der ikke er nogen principiel forskel på enkrypterings- og dekrypteringsalgoritmen.

Læs mere

Krypter dine mails når det er nødvendigt

Krypter dine mails når det er nødvendigt Krypter dine mails når det er nødvendigt Af Thomas Bødtcher-Hansen Hvor og hvornår skal vi kryptere vores mails? De paranoide mennesker krypterer alle deres mails og de naive mennesker ingen af deres mails.

Læs mere

Opgaveformulering studieretningsprojekt (SRP) 2015

Opgaveformulering studieretningsprojekt (SRP) 2015 Opgaveformulering studieretningsprojekt (SRP) 2015 Navn: Emil Sommer Desler Klasse: 2013.4 Fag: Matematik A Fag: Informationsteknologi B Vejleder: Signe Koch Hviid E-mail: skh@rts.dk Vejleder: Karl G Bjarnason

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Kort og godt om NemID. En ny og sikker adgang til det digitale Danmark

Kort og godt om NemID. En ny og sikker adgang til det digitale Danmark Kort og godt om NemID En ny og sikker adgang til det digitale Danmark Hvad er NemID? NemID er en ny og mere sikker løsning, når du skal logge på offentlige hjemmesider, dit pengeinstitut og private virksomheders

Læs mere

Matematikken. bag løsningen af Enigma. Opgaver i permutationer og kombinatorik

Matematikken. bag løsningen af Enigma. Opgaver i permutationer og kombinatorik Matematikken bag løsningen af Enigma Opgaver i permutationer og kombinatorik 2 Erik Vestergaard www.matematiksider.dk Erik Vestergaard Haderslev, 2008. Redigeret december 2015. Erik Vestergaard www.matematiksider.dk

Læs mere

S TUDIER ETNINGSP ROJEKT

S TUDIER ETNINGSP ROJEKT SRP 22. december 2011 3.Z Matematik A Historie A S TUDIER ETNINGSP ROJEKT Kryptologi Med Fokus På Enigma Og Dens Brydning Abstract The following study examines cryptography based especially on Enigma,

Læs mere

Bilag Omfang. Besvarelsens omfang forventes at være mellem 15 og 20 sider, hvortil kommer bilag i form af eksperimentelle data, grafer og lignende.

Bilag Omfang. Besvarelsens omfang forventes at være mellem 15 og 20 sider, hvortil kommer bilag i form af eksperimentelle data, grafer og lignende. Hovedfag Matematik A Inddragne fag Fysik B (Astronomi C) Område Astronomisk navigation Opgave Astronomisk navigation og sfærisk geometri Gør rede for grundbegreberne i sfærisk geometri, herunder sfæriske

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Finanstilsynets indberetningssystem. Vejledning til indsendelse af xml-filer via sikker e- mail (signeret og krypteret e-mail)

Finanstilsynets indberetningssystem. Vejledning til indsendelse af xml-filer via sikker e- mail (signeret og krypteret e-mail) Finanstilsynets indberetningssystem Vejledning til indsendelse af xml-filer via sikker e- mail (signeret og krypteret e-mail) Finanstilsynet - 8. udgave oktober 2009 Indholdsfortegnelse 1 INTRODUKTION...

Læs mere

Ringe og Primfaktorisering

Ringe og Primfaktorisering Ringe og Primfaktorisering Michael Knudsen 16. marts 2005 1 Ringe Lad Z betegne mængden af de hele tal, Z = {..., 2, 1,0,1,2,...}. På Z har to regneoperationer, + (plus) og (gange), der til to hele tal

Læs mere

Praktisk kryptering i praksis

Praktisk kryptering i praksis Praktisk kryptering i praksis Jakob I. Pagter Security Lab Alexandra Instituttet A/S Alexandra Instituttet A/S Almennyttig anvendelsorienteret forskning fokus på IT GTS Godkendt Teknologisk Service (1

Læs mere

Store Uløste Problemer i Matematikken. Lisbeth Fajstrup Aalborg Universitet

Store Uløste Problemer i Matematikken. Lisbeth Fajstrup Aalborg Universitet Store Uløste Problemer i Matematikken. Lisbeth Fajstrup Aalborg Universitet Oversigt Hvad er et stort problem i matematik Eksempler fra 1900 og fra 2000 Problemer om tal perfekte tal, primtal. Meget store

Læs mere

Statistisk sproggenkendelse anvendt i kryptoanalyse

Statistisk sproggenkendelse anvendt i kryptoanalyse Statistisk sproggenkendelse anvendt i kryptoanalyse Søren Møller UNF Matematikcamp 2010 12.07.2010 Problemet Kryptering Markov kæder Unigrammer Bigrammer Statistiker Maskinen Nøglerum Kryptering Problemet

Læs mere

HVOR SIKKER ER ASSYMETRISK KRYPTERING? Nat-Bas Hus 13.2 1 semesters projekt, efterår 2004 Gruppe 12

HVOR SIKKER ER ASSYMETRISK KRYPTERING? Nat-Bas Hus 13.2 1 semesters projekt, efterår 2004 Gruppe 12 HVOR SIKKER ER ASSYMETRISK KRYPTERING? Nat-Bas Hus 13.2 1 semesters projekt, efterår 2004 Gruppe 12 Udarbejdet af: Vejleder: Tomas Rasmussen Mads Rosendahl. Abstract Dette projekt har til formål at undersøge

Læs mere

Elektronisk Afstemning

Elektronisk Afstemning Elektronisk Afstemning P2-PROJEKT, 4. FEBRUAR 27. MAJ 2002 Aalborg Universitet Det Teknisk-Naturvidenskabelige Fakultet Storgruppe 0134 Af Anders Gorst-Rasmussen e Lea Mwelwa Grønager Lars Hornbæk Jensen

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

Termer og begreber i NemID

Termer og begreber i NemID Nets DanID A/S Lautrupbjerg 10 DK 2750 Ballerup T +45 87 42 45 00 F +45 70 20 66 29 info@danid.dk www.nets-danid.dk CVR-nr. 30808460 Termer og begreber i NemID DanID A/S 26. maj 2014 Side 1-11 Indholdsfortegnelse

Læs mere

Foredrag i Eulers Venner 30. nov. 2004

Foredrag i Eulers Venner 30. nov. 2004 BSD-prosper.tex Birch og Swinnerton-Dyer formodningen Johan P. Hansen 26/11/2004 13:34 p. 1/20 Birch og Swinnerton-Dyer formodningen Foredrag i Eulers Venner 30. nov. 2004 Johan P. Hansen matjph@imf.au.dk

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

DIGITAL SIGNATUR l OUTLOOK 2010

DIGITAL SIGNATUR l OUTLOOK 2010 DIGITAL SIGNATUR l OUTLOOK 2010 For at kunne bruge signeret og krypteret e-mail i Outlook skal der være et digitalt certifikat installeret på den gældende computer. Certifikatet kan enten være et privat

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

Ekspertudtalelse om kryptering

Ekspertudtalelse om kryptering Ekspertudtalelse om kryptering Professor Lars R. Knudsen Opsummerering I konsulentkontrakt med rekvisitionsnummer 62010142 mellem Digitaliseringsstyrelsen og undertegnede bedes om bistand til ekspertudtalelse

Læs mere

certifiedkid.dk Hej, jeg hedder Lotte og er 12 år. Skal vi skrive sammen? 50.000 gange om året oplever børn og unge en skjult voksen på internettet.

certifiedkid.dk Hej, jeg hedder Lotte og er 12 år. Skal vi skrive sammen? 50.000 gange om året oplever børn og unge en skjult voksen på internettet. Udvalget for Videnskab og Teknologi 2009-10 UVT alm. del Bilag 287 Offentligt TIL ELEVER OG FORÆLDRE certifiedkid.dk ONLINE SECURITY FOR KIDS 9 16 POWERED BY TELENOR Hej, jeg hedder Lotte og er 12 år.

Læs mere

Java Smart Card (JSC) Digitale signaturer

Java Smart Card (JSC) Digitale signaturer Java Smart Card (JSC) Digitale signaturer Nikolaj Aggeboe & Sune Kloppenborg Jeppesen aggeboe@it-c.dk & jaervosz@it-c.dk IT-C København 21. december 2001 Indhold 1 Indledning 4 2 Smart cards 5 2.1 Hvad

Læs mere

RSA og den heri anvendte matematiks historie et undervisningsforløb til gymnasiet Jankvist, Uffe Thomas

RSA og den heri anvendte matematiks historie et undervisningsforløb til gymnasiet Jankvist, Uffe Thomas RSA og den heri anvendte matematiks historie et undervisningsforløb til gymnasiet Jankvist, Uffe Thomas Publication date: 2008 Document Version Også kaldet Forlagets PDF Citation for published version

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2008 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Kursusgang 1: Introduktion. Hvorfor er sikker kommunikation vigtig? Kursets tre dele. Formål. 1. Kursusintroduktion

Kursusgang 1: Introduktion. Hvorfor er sikker kommunikation vigtig? Kursets tre dele. Formål. 1. Kursusintroduktion Kursusgang 1: Introduktion. Hvorfor er sikker kommunikation vigtig? 1. Kursusintroduktion 2. Begrebsapparat. 3. Kryptering: introduktion til værktøjer og anvendelser 4. God. 5. Talteori. 6. Introduktion

Læs mere

Tysklands brug af koder under Anden Verdenskrig, særligt i U-bådskrigen mod England Studieretningsprojekt i matematik (A) og historie (A)

Tysklands brug af koder under Anden Verdenskrig, særligt i U-bådskrigen mod England Studieretningsprojekt i matematik (A) og historie (A) 07.04.2007 Flóvin Tór Nygaard Næs, Kristian Priisholm og Line Thorup Tysklands brug af koder under Anden Verdenskrig, særligt i U-bådskrigen mod England Studieretningsprojekt i matematik (A) og historie

Læs mere

Artikel om... Digital signatur. OpenOffice.org

Artikel om... Digital signatur. OpenOffice.org Artikel om... Digital signatur OpenOffice.org Rettigheder Dette dokument er beskyttet af Copyright 2005 til bidragsyderne, som er oplistet i afsnittet Forfattere. Du kan distribuere og/eller ændre det

Læs mere

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007 Funktionalligninger Anders Schack-Nielsen 5. februar 007 Disse noter er en introduktion til funktionalligninger. En funktionalligning er en ligning (eller et ligningssystem) hvor den ubekendte er en funktion.

Læs mere

Instrukser for brug af it

Instrukser for brug af it it sikkerhed Instrukser for brug af it Må Skal ikke Kan Januar 2010 Version 1.0 Indhold Forord................................................... 3 Resumé.................................................

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Deling - primtal - kryptografi. Johan P. Hansen. 15. september Indledning 2

Deling - primtal - kryptografi. Johan P. Hansen. 15. september Indledning 2 Deling - primtal - kryptografi Johan P. Hansen 15. september 2011 Indhold 1 Indledning 2 2 Primtal og heltalsdeling 3 2.1 Primtalsfaktorisering.............................. 4 2.1.1 Primtalsfaktoriseringens

Læs mere

Med udgangspunkt i FIPS-197-standarden AES, baseret på Rijndael-algoritmen. Af Mathias Vestergaard

Med udgangspunkt i FIPS-197-standarden AES, baseret på Rijndael-algoritmen. Af Mathias Vestergaard Med udgangspunkt i FIPS-97-standarden AES, baseret på Rijndael-algoritmen Af Mathias Vestergaard F O R O R D " " " # # " $ # % '(%) '(%) %* %* +,-.), ) ( " $ 0 2 2 + 3 $ ' {0000} $, AA ) 4555 67 +8 9 :;

Læs mere

NemID Problemløsningsguide. Hjælpeværktøj for offentlige RA-medarbejdere

NemID Problemløsningsguide. Hjælpeværktøj for offentlige RA-medarbejdere NemID Problemløsningsguide Hjælpeværktøj for offentlige RA-medarbejdere 1. Indledning... 3 1.1 Om denne guide... 3 1.2 Generelle anbefalinger... 3 2. Hvad er borgerens nuværende situation... 4 2.1 Har

Læs mere

meget svært ved at anvende et enkelt layout i elektroniske tekster Er usædvanlig god til/meget god til/god til/har svært ved/har

meget svært ved at anvende et enkelt layout i elektroniske tekster Er usædvanlig god til/meget god til/god til/har svært ved/har Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan for It-kompetence STATUS it 2. klasse 4. klasse 6. klasse 9. klasse Produktion og formidling layout Computerskrift og tekstbehandling

Læs mere

Kryptologi og 2. verdenskrig

Kryptologi og 2. verdenskrig Studieretningsprojekt 2014 Kryptologi og 2. verdenskrig Kryptering under 2. verdenskrig Louise Vesterholm Møller Matematik A & Historie A Birgitte Pedersen & Thomas von Jessen 18-12-2014 G a m m e l H

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

Vidensmedier på nettet

Vidensmedier på nettet Vidensmedier på nettet En sociokulturel forståelse af læring kan bringe os til at se bibliotekernes samlinger som læringsressourcer og til at rette blikket mod anvendelsespotentialerne. fra Aarhus Universitet

Læs mere

I løbet af 2017 vil C-drevet på alle UCL s bærbare computere automatisk blive krypteret med BitLocker.

I løbet af 2017 vil C-drevet på alle UCL s bærbare computere automatisk blive krypteret med BitLocker. BitLocker BitLocker kan bruges til kryptering af drev for at beskytte alle filer, der er gemt på drevet. Til kryptering af interne harddiske, f.eks. C-drevet, bruges BitLocker, mens man bruger BitLocker

Læs mere

Secure Mail. 1. juni Hvem læser dine s?

Secure Mail. 1. juni Hvem læser dine  s? Secure Mail 1. juni 2017 Hvem læser dine emails? Agenda Hvorfor nu kryptering og signering Den danske digitale infrastruktur SecureMail-løsning E-boksintegration CEO fraud Peter Åkerwall Partner Account

Læs mere

KÆRE MEDARBEJDER OG LEDER

KÆRE MEDARBEJDER OG LEDER Region Hovedstaden 1 KÆRE MEDARBEJDER OG LEDER Adgang til informationer i it-systemer og elektronisk kommunikation er for de fleste medarbejdere i Region Hovedstaden en selvfølgelig del af arbejdsdagen.

Læs mere

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel.

Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Gruppeteori Michael Knudsen 8. marts 2005 1 Motivation For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Eksempel 1.1. Lad Z betegne mængden af de hele tal, Z = {..., 2, 1, 0,

Læs mere

Informationssikkerhed regler og råd

Informationssikkerhed regler og råd Informationssikkerhed regler og råd TAP-området Kære kollegaer Formålet med denne folder er at oplyse dig om RMCs regler og råd inden for informationssikkerhed. Folderen skal være med til at sikre, at

Læs mere

4. Sikkerhed i EDIFACT

4. Sikkerhed i EDIFACT 05.05.2000 4. Sikkerhed i EDIFACT 1. Indledning... 2 2. Kravene til sikkerhed... 2 3. Standardisering... 2 4. TeleSeC... 3 4.1 Formål... 3 4.2 TeleSeC-egenskaber... 3 4.3 TeleSeC-opbygning... 4 4.4 Certifikater...

Læs mere

BEBOERINDSKUD ILLUSTRERET BRUGERREJSE // EDS 2014

BEBOERINDSKUD ILLUSTRERET BRUGERREJSE // EDS 2014 BEBOERINDSKUD ILLUSTRERET BRUGERREJSE // EDS 2014 Nanna er 34 år og bor alene med sine katte i en boligforening i København. Hun er på førtidspension pga. posttraumatisk stress og depression. Hun har færdiggjort

Læs mere