Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Størrelse: px
Starte visningen fra side:

Download "Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet"

Transkript

1 Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 24. august 2009

2 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig med kryptologi, at hvis en person Alice ønskede at sende en krypteret besked til en anden person Bob, så var Alice og Bob nødt til at mødes inden og udveksle en hemmelig nøgle. Dette lyder måske ikke som et stort problem, men i 1970 erne var eksempelvis banker begyndt at sende elektroniske beskeder til hinanden. Og det er nemt at se hvilke problemer, der i dag ville være med mange millioner brugere af Internettet, der ønsker at kunne lave sikre nethandler i mange tusinde netbutikker. Midt i 70 erne finder Whitfield Diffie og Martin Hellman på en protokol 1, hvor Alice og Bob uden at dele nogen nøgle i forvejen og uden at mødes kan generere en hemmelig nøgle, der bagefter kan bruges til kryptering. Diffie og Hellman viste, at den tidligere antagelse om, at Alice og Bob skal mødes og udveksle nøgler inden, de kan kommunikerer ikke passer. Deres arbejde inspirerer Ron Rivest, Adi Shamir og Len Adleman til at opfinde RSA kryptosystemet, som er det første kryptosystem med offentlige nøgler. Ideen bag offentlige nøgler er den følgende: Vi forestiller os at Bob får lavet et stort antal ens hængelåse, men kun en nøgle til dem. Bob sender nu hængelåse til alle posthuse. Når Alice vil sende en besked til Bob, putter hun beskeden i en kasse, går ned på posthuset og får udleveret en af Bobs hængelåse som hun smækker og låser kassen, derefter sender hun den låste kasse til Bob. Bob kan nu åbne kassen og læse beskeden, men da ingen andre end Bob har en nøgle, er det kun Bob, der kan læse beskeden. For at dette skal kunne virke i praksis skal de fysiske hængelåse skiftes ud med en matematisk funktion en såkaldt envejsfunktion altså en funktion som det er let at udføre (lukke en hængelås), men hvor det er svært at beregne den inverse funktion (åbne hængelåsen) med mindre man har noget ekstra information (nøgler). I det følgende skal vi se at sådan en funktion kan laves på baggrund af talteori. 2 RSA kryptosystemet En af de envejsfunktioner som RSA bygger på er primtalsfaktorisering. Det er meget nemt at gange to tal sammen, ved brug af en almindelig computer kan dette gøres på få millisekunder også selv om tallene indeholder over 150 cifre 2. Derimod antages det, at det tager millioner af år for en supercomputer at udregne tallene p og q udfra tallet N, hvis p og q er ca. ligestore primtal og N = pq. Nu har vi fundet noget der kunne bruges som den envejsfunktion, vi leder efter, vi skal bare have denne funktion hægtet på beskeden, så denne bliver skjult. 1 En protokol er en beskrivelse af kommunikation mellem to parter. F.eks. hvordan en mail blir sendt fra en computer til en anden, eller hvordan to computere kan udveksle krypterede filer 2 Et tal med 150 cifre er meget stort - det antages at antallet af atomer i Universet er et tal med cirka 80 cifre 1

3 Generering af nøgler Hvis Bob ønsker at lave et sæt RSA nøgler gøres det følgende: 1. Vælg to meget store (over 150 cifre) primtal p og q 2. Beregn N = pq og φ(n) = (p 1)(q 1) 3. Vælg et heltal e så 0 < e < φ(n) og sådan at e og φ(n) er indbyrdes primiske 3 4. Beregn d så ed 1 mod φ(n) Den offentlige nøgle er {N, e} og den hemmelige nøgle er {N, d}. Altså hængelåsen som alle kan bruge til at låse beskeden inde eller kryptere den er {N, e}, og den nøgle som bob kan låse beskederne op eller dekryptere dem med er {N, d}. Kryptering og dekryptering Hvis Alice vil sende en krypteret besked til Bob, og hun kender Bobs offentlige nøgle, kan hun gøre det på følgende måde: Lad beskeden m være et heltal < N, cifferteksten c er nu givet ved følgende beregning: c = m e mod N Bob kan dekryptere c med følgende beregning: m = c d mod N Hvorfor virker RSA? Når Bob dekryptere beskeden med ovenstående beregning, virker det på grund af det følgende: Først skal vi huske på at: ed 1 mod φ(n) der eksisterer et heltal k så: ed = 1 + kφ(n), og at den krypterede besked c er udregnet så c = m e mod N. Vi vil nu vise at når vi dekryptere c med udregningen: c e mod N får vi beskeden m igen: c d (m e ) d (1) m (ed) (2) m (1+kφ(N)) (3) (m 1 )(m φ(n) ) k (4) m1 k m mod N (5) tal er 1 Linie (4) til linie (5) er sand pga. Eulers sætning. 3 Indbyrdes primiske betyder at kun 1 går op i begge tal, altså at største fælles divisor mellem de to FiXme Note: Infør at det kun gælder, hvis m er indbyrdes primisk med N 2

4 Sikkerheden af RSA Sikkerheden i RSA hviler på, at hvis man ikke kender p og q er det umådeligt svært at regne φ(n) ud og dermed beregne d. Og på at hvis man ikke kender m er det umådeligt svært at regne m ud givet m e mod N, selv hvis man kender N og e. Det er klart at hvis primtalsfaktorisering er nemt, er det også nemt at regne φ(n) ud. Det at det er svært at regne m ud givet m e mod N kaldes for diskret logaritme og er et problem der også antages at være svært, på samme måde som primtalsfaktorisering. 3 Digitale signaturer Indtil nu har vi beskæftiget os med kryptering, det vil sige det at sende en hemmelig besked, dette kaldes også for konfidentialitet - at holde noget hemmeligt. En anden lige så vigtig del af kryptologi er authentifikation - at bevise over for andre at man er den man påstår man er og at bevise at en besked kommer uændret frem. Hvis vi kort overvejer hvordan ganske almindelige underskrifter (signaturer) virker, eller i hvert fald burde virke. Jeg kan underskrive et dokument hvilket gør at: 1. Det kan afgøres, at det er mig personligt, der har skrevet under. 2. Jeg er juridisk bundet af indholdet. 3. Modtageren af dokumentet kan vise det til en tredjepart, som kan verificere ovenstående. Først forsøger vi at implementere den digitale version af underskrifter på følgende måde, der ligner den analoge udgave: Når Alice ønsker at underskrive et dokument vedhæfter hun en indskaning af hendes underskrift til dokumentet, og sender det afsted. Dette har oplagt den fejl at en anden person, lad os kalde hende Eve, kan kopiere underskriften og underskrive alle de dokumenter hun har lyst til. Derfor er det meget vigtigt, at underskriften på en eller anden måde både hænger sammen med indholdet af dokumentet og vedkommende der skriver under. Her kommer RSA algoritmerne os endnu en gang til hjælp. RSA signaturer Når Alice vil sende en besked til Bob, sådan at Bob kan være sikker på, at den kommer fra Alice og kan bevise dette overfor en tredje person, gør Alice det følgende: 1. Alice krypterer beskeden m med sin hemmelige nøgle så signaturen σ = m d mod N 2. Alice sender beskeden m og signaturen σ til Bob 3. Bob accepterer signaturen, hvis: m = σ e mod N Det er nu klart at hvis en anden person har ændret beskeden uden at kende til d så vil Bob ikke godtage signaturen. 3

5 4 Hemmelighedsdeling og sikre flere-partsberegninger I et tidligere afsnit så vi på kryptering som giver konfidentialitet, altså hemmeligholdelse mellem to parter. Dette giver os at Alice kan sende en besked til Bob uden at Eve kan opsnappe den og læse beskeden. En anden form for konfidentialitet er den følgende: Alice har en hemmelighed, eksempelvis hendes Dankort pinkode, som hun gerne vil opbevare hemmeligt. Alice kan selvfølgelig give koden til Bob, og hvis hun senere glemmer den, kan hun få den igen fra Bob. Denne løsning har det oplagte problem, at Bob lærer hele hemmeligheden (pinkoden). Heldigvis kender Alice til kryptologi så i stedet for at give hele hemmeligheden til Bob, deler hun den mellem Bob og Claire på følgende måde: Alice finder på et tilfældigt tal h 1 og udregner et andet tal h 2 sådan at h 2 = pin h 1. Nu giver hun h 1 til Bob og h 2 til Claire. Hvis Alice senere glemmer pinkoden, kan hun få de to tal h 1 og h 2 fra Bob og Claire og udregne pinkoden igen, men hverken Bob eller Claire kender til pinkoden. Disse dele af hemmeligheden kalder vi shares. For at undgå problemer hvis Bob eller Claire også er lidt glemsomme, kan det ovenstående udvides til et system, der tager højde for at de personer Alice giver dele af hemmeligheden til, måske også kan glemme disse dele. Det kræver flere folk til at huske på dele af hemmeligheden, men kan i så fald gøres på følgende måde: Alice vælger en tilfældig ret linie i et koordinatsystem givet ved f(x), sådan at f(0) er lig med hemmeligheden, nu er share 1 = f(1), share 2 = f(2), share 3 = f(3) og så videre. Hvis man kun har en share (et punkt), er der uendeligt mange linier og derfor er hemmeligheden stadig hemmelig. Hvis man har to shares (punkter) er linien entydigt givet, og man kan regne hemmeligheden ud. Dette kan udvides yderligere, så man i stedet for linier bruger polynomier (2. grads, 3. grads osv. ligninger), dette bygger på følgende fact: et polynomium af grad t er entydigt givet af t + 1 punkter. Dette kaldes Shamir secret sharing (samme Shamir som fra RSA). Det er selvfølgeligt meget smart at kunne gemme hemmeligheder, men der er en endnu mere smart ting ved overstående. Man kan regne på disse hemmeligheder, hvilket kaldes sikre flere-partsberegninger. Hvis Alice, Bob og Claire hver har et hemmeligt tal, og de gerne vil udregne summen uden at oplyse de enkelte tal, kan det gøres på følende måde: De deler hver deres hemmelighed op i tre dele og giver en til hver. Nu lægger de hver deres tre shares sammen, og deres resultater er nu shares af resultatet af hemmelighederne (Se opgave 5). Det er bevist, at alle beregninger, der kan udføres af en computer, også i teorien kan udregnes som sikre flere-partsberegninger. 5 Opgaver Først en tak til Ivan Damgård for lån af opgaverne 3 og 4. Opgave 1: Eksempel på RSA kryptering til at systemet er sikkert. Brug følgende tal: Dette er et eksempel med alt for små tal 4

6 p = 3, q = 11, d = 7 og e = 3. Beskederne kan så være tal i intervallet 0 til Beregn N og φ(n) og vis at nøgleparret opfylder kravene til en nøgle. 2. Prøv at kryptere og dekryptere nogle værdier. Opgave 2: Usikker brug af sikkert kryptosystem Alice har hørt at det er meget svært at bryde RSA kryptosystemet, derfor vælger hun at bruge RSA til at sende en besked til Bob. Hun gør det på følgende måde: Bogstaverne nummereres så A = 0, B = 1,..., Å = 28. Hvert enkelt bogstav i beskeden krypteres hvert for sig med Bobs offentlige nøgle, og de krypterede bogstaver sendes til Bob. Bob kan med sin hemmelige nøgle dekryptere de modtagne bogstaver, og får beskeden. Hvorfor er dette ikke sikkert ligegyldigt hvor mange bit der er i nøglen? (Hint: Hvordan vil beskeden hejmeddig komme til at se ud i krypteret tilstand, (tænk evt. på foredraget omkring historiske kryptosystemer, hvis I har hørt det.)) Det der oftest sker når man bruger kryptering er, at man kryptere blokke af mindst 128 bit (dette svarer ca. til 16 bogstaver af gangen). Når man gør dette der for mange muligheder til at svaret på opgaven er et problem i virkeligheden. Opgave 3: Deling af den hemmelige nøgle Tallene der skal bruges til RSA i praksis er så store at de på ingen måde kan huskes i hovedet. Man er derfor nødt til at opbevare den hemmelige nøgle et eller andet sted, og der er derfor en vis risiko for, at den kan blive stjålet. Vi skal nu se nærmere på, hvordan man kan reducerer risikoen for, at det sker, ved at dele den hemmelige nøgle op i to dele. Det gør man ved at vælge to tal d 1, d 2 helt tilfældigt, dog sådan at d 1 + d 2 = d (6) Nu opbevares disse to tal forskellige steder, f.eks. to forskellige computere. I eksemplet fra opgave 1), hvor d = 7, kunne vi f.eks. have d 1 = 17 og d 2 = ) Argumenter for, at hvis nogen får fat i d 1 eller d 2, men ikke dem begge, så har vedkommende stadig ingen anelse om hvad d er. Ideen er nu at lave en underskrift på m ved, at den computer der har d 1 beregner m d 1 mod N, tilsvarende beregnes m d 2 mod N af den computer der kender d 2. Begge halve signaturer kan nu samles: 3.2) Vis at man kan beregne signaturen m d mod N ud fra de to bidrag m d 1 mod N og m d 2 mod N, nemlig sådan her: m d mod N = (m d 1 mod N)(m d 2 mod N) mod N (Hint: (a mod N)(b mod N) mod N = (ab) mod N) 5

7 Opgave 4: Beregning af store potenser Når man skal regne på de meget store tal der i virkeligheden bruges til RSA, er det vigtigt at bruge de mest effektive metoder. Selvom computere er hurtige, går det alligevel alt for langsomt hvis vi ikke tænker os om når vi programmerer dem. Et eksempel: Forestil Jer at I skal beregne mod 33 med blyant og papir eller med en lommeregner, der kun kan de grundlæggende regningsarter. Hvis man bare går i gang uden at tænke, ville man måske gøre som antydet her: mod 33 = mod 33 altså bare gange 23 med sig selv 17 gange. Det virker som en temmelig stor opgave, men er heldigvis helt unødvendigt. 4.1) Argumenter for at mod 33 = (23 16 mod 33) 23 mod 33; mod 33 = (23 8 mod 33) (23 8 mod 33) mod 33; 23 8 mod 33 = (23 4 mod 33) (23 4 mod 33) mod 33; (fortsæt selv her) Brug dette til at forklare hvordan mod 33 kan beregnes med kun 5 multiplikationer og divisioner. Opgaven her er et eksempel på en generel teknik der hedder square and multiply, som bruges i alle computerprogrammer der anvender RSA. Den er en helt nødvendig forudsætning for at RSA kan bruges til noget i praksis. For de skarpe knive i skuffen kommer her en opgave der går tættere på denne metode. Fact: ethvert positivt tal kan skrives som en sum af 2-potenser (1, 2, 4, 8, etc.): 1 = 1; 2 = 2; 3 = 1 + 2; 4 = 4; 5 = 1 + 4; 6 = 4 + 2; 7 = ;... (7) Dem der kender til binære tal ved hvorfor, men det behøver man ikke at vide noget om i denne opgave. 4.2) Brug ovenstående fact og ideen i Opgave 4.1 til at designe en metode der beregner a e mod N for vilkårlige positive tal a, e, N. Hvor mange multiplikationer og divisioner skal man bruge med Jeres metode, hvis e = 1026? Bemærk at den naive metode bruger 1025 multiplikationer. Opgave 5: Hemmelighedsdeling og sikre flere-partsberegninger Disse opgaver viser, hvordan man regner på delte hemmeligheder. 5.1) Lav et eksempel, der viser, at hvis der er tre hemmelige tal 5, 3 og 8 så kan udregnes sikkert. Det vil sige, at hver spiller har en share af 5, en af 3 og en af 8. 6

8 (Lav en linie for hvert tal, lav shares, og vis at disse kan man regne på) 5.2) Lav et eksempel, der viser, at hvis der er et hemmeligt tal 11 så kan det kendte tal 5 ganges med hemmeligheden så 5 11 kan udregnes. Den snu opgaveløser har måske set at hvis man kender 5 og resultatet 55, ja så kan 11 regnes ud da 55/5 = 11, men dette kunne være en mellemregning hvor der senere blev lagt et hemmeligt tal f.eks 77 til så kan udregnes. (Hint til opgaven: Lav en linie for hemmeligheden, og vis at det kan lade sig gøre at gange det kendte tal på) 5.3) Lav et eksempel der viser, at det er sværere at gange 2 hemmelige tal sammen. (Problemmet er det følgende: hvis man ganger to 1. grads polynomier (linier) sammen er resultatet et 2. grads polunomie (en parabel), der findes dog løsninger på dette, disse kræver, at parterne skal kommunikere sammen for at få graden ned igen.) 7

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet

RSA Kryptosystemet. Kryptologi ved Datalogisk Institut, Aarhus Universitet RSA Kryptosystemet Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Kryptering med RSA Her følger først en kort opridsning af RSA kryptosystemet, som vi senere skal bruge til at lave digitale signaturer.

Læs mere

Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk

Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk Af Marc Skov Madsen PhD-studerende Aarhus Universitet email: marc@imf.au.dk 1 Besøgstjenesten Jeg vil gerne bruge lidt spalteplads til at reklamere for besøgstjenesten ved Institut for Matematiske Fag

Læs mere

Camp om Kryptering. Datasikkerhed, RSA kryptering og faktorisering. Rasmus Lauritsen. August 27,

Camp om Kryptering. Datasikkerhed, RSA kryptering og faktorisering. Rasmus Lauritsen. August 27, Camp om Kryptering Datasikkerhed, RSA kryptering og faktorisering Rasmus Lauritsen August 27, 2013 http://users-cs.au.dk/rwl/2013/sciencecamp Indhold Datasikkerhed RSA Kryptering Faktorisering Anvendelse

Læs mere

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk)

Kryptologi og RSA. Jonas Lindstrøm Jensen (jonas@imf.au.dk) Kryptologi og RSA Jonas Lindstrøm Jensen (jonas@imf.au.dk) 1 Introduktion Der har formodentlig eksisteret kryptologi lige så længe, som vi har haft et sprog. Ønsket om at kunne sende beskeder, som uvedkommende

Læs mere

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet

Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet Sikre Beregninger Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Introduktion I denne note skal vi kigge på hvordan man kan regne på data med maksimal sikkerhed, dvs. uden at kigge på de tal

Læs mere

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF

Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Matematikken bag kryptering og signering NemID RSA Foredrag i UNF Disposition 1 PKI - Public Key Infrastructure Symmetrisk kryptografi Asymmetrisk kryptografi 2 Regning med rester Indbyrdes primiske tal

Læs mere

Konfidentialitet og kryptografi 31. januar, Jakob I. Pagter

Konfidentialitet og kryptografi 31. januar, Jakob I. Pagter Konfidentialitet og kryptografi 31. januar, 2009 Jakob I. Pagter Oversigt Kryptografi autenticitet vs. fortrolighed ubetinget vs. beregningsmæssig sikkerhed Secret-key fortrolighed Public-key fortrolighed

Læs mere

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi)

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi) 1. Klassiske krypteringsmetoder 1.1 Terminologi klartekst kryptotekst kryptering dekryptering 1.2 Monoalfabetiske kryptosystemer 1.3 Additive

Læs mere

Kryptologi 101 (og lidt om PGP)

Kryptologi 101 (og lidt om PGP) Kryptologi 101 (og lidt om PGP) @jchillerup #cryptopartycph, 25. januar 2015 1 / 27 Hvad er kryptologi? define: kryptologi En gren af matematikken, der blandt andet handler om at kommunikere sikkert over

Læs mere

Perspektiverende Datalogi 2014 Uge 39 Kryptologi

Perspektiverende Datalogi 2014 Uge 39 Kryptologi Perspektiverende Datalogi 2014 Uge 39 Kryptologi Dette dokument beskriver en række opgaver. Diskutter opgaverne i små grupper, under vejledning af jeres instruktor. Tag opgaverne i den rækkefølge de optræder.

Læs mere

Køreplan Matematik 1 - FORÅR 2005

Køreplan Matematik 1 - FORÅR 2005 Lineær algebra modulo n og kryptologi Køreplan 01005 Matematik 1 - FORÅR 2005 1 Introduktion Kryptologi er en ældgammel disciplin, som går flere tusinde år tilbage i tiden. Idag omfatter disciplinen mange

Læs mere

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard

RSA-kryptosystemet. RSA-kryptosystemet Erik Vestergaard RSA-kryptosystemet RSA-kryptosystemet Erik Vestergaard Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 007. Billeder: Forside: istock.com/demo10 Erik Vestergaard www.matematikfysik.dk 3 1. Indledning

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

Kryptografi Anvendt Matematik

Kryptografi Anvendt Matematik Kryptografi Anvendt Matematik af Marc Skov Madsen PhD-studerende Matematisk Institut, Aarhus Universitet email: marc@imf.au.dk Kryptografi p.1/23 Kryptografi - Kryptografi er læren om, hvordan en tekst

Læs mere

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem Johan P. Hansen 18. april 2013 Indhold 1 Indbyrdes primiske hele tal 1 2 Regning med rester 3 3 Kryptering

Læs mere

Projekt 7.9 Euklids algoritme, primtal og primiske tal

Projekt 7.9 Euklids algoritme, primtal og primiske tal Projekter: Kapitel 7 Projekt 79 Euklids algoritme, primtal og primiske tal Projekt 79 Euklids algoritme, primtal og primiske tal Projektet giver et kig ind i metodee i modee talteori Det kan udbygges med

Læs mere

Opgave 1 Regning med rest

Opgave 1 Regning med rest Den digitale signatur - anvendt talteori og kryptologi Opgave 1 Regning med rest Den positive rest, man får, når et helt tal a divideres med et naturligt tal n, betegnes rest(a,n ) Hvis r = rest(a,n) kan

Læs mere

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, matjph@imf.au.dk Matematisk Institut, Aarhus

Læs mere

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur 6. december Talteoretiske algoritmer, RSA kryptosystemet, Primtalstest Motivation Definitioner Euclids algoritme Udvidet Euclid RSA kryptosystemet Randominserede algoritmer Rabin-Miller primtalstest Svært

Læs mere

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen

Introduktion til Kryptologi. Mikkel Kamstrup Erlandsen Introduktion til Kryptologi Mikkel Kamstrup Erlandsen Indhold 1 Introduktion 2 1.1 Om Kryptologi.......................... 2 1.2 Grundlæggende koncepter.................... 2 1.3 Bogstaver som tal........................

Læs mere

Affine - et krypteringssystem

Affine - et krypteringssystem Affine - et krypteringssystem Matematik, når det er bedst Det Affine Krypteringssystem (Affine Cipher) Det Affine Krypteringssystem er en symmetrisk monoalfabetisk substitutionskode, der er baseret på

Læs mere

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003

Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 Primtalsfaktorisering - nogle nye resultater og anvendelser Regionalmøde Haderslev, 19. november 2003 http://home.imf.au.dk/matjph/haderslev.pdf Johan P. Hansen, matjph@imf.au.dk Matematisk Institut, Aarhus

Læs mere

Matematikken bag kryptering og signering RSA

Matematikken bag kryptering og signering RSA Matematikken bag kryptering og signering RSA Oversigt 1 Indbyrdes primiske tal 2 Regning med rester 3 Kryptering og signering ved hjælp af et offentligt nøgle kryptosystem RSA Indbyrdes primiske hele tal

Læs mere

Assembly Voting ApS. Kompagnistræde 6, København K CVR:

Assembly Voting ApS. Kompagnistræde 6, København K CVR: Assembly Voting ApS Kompagnistræde 6, 2. 1208 København K CVR: 25600665 Afstemningssystem, Systembeskrivelse Assembly Votings systemer og hostingmiljøer er designet til at imødekomme såvel lovkrav som

Læs mere

Kryptering kan vinde over kvante-computere

Kryptering kan vinde over kvante-computere Regional kursus i matematik i Aabenraa Institut for Matematik Aarhus Universitet matjph@math.au.dk 15. februar 2016 Oversigt 1 Offentlig-privat nøgle kryptering 2 3 4 Offentlig-privat nøgle kryptering

Læs mere

Hvad er KRYPTERING? Metoder Der findes to forskellige krypteringsmetoder: Symmetrisk og asymmetrisk (offentlig-nøgle) kryptering.

Hvad er KRYPTERING? Metoder Der findes to forskellige krypteringsmetoder: Symmetrisk og asymmetrisk (offentlig-nøgle) kryptering. Hvad er KRYPTERING? Kryptering er en matematisk teknik. Hvis et dokument er blevet krypteret, vil dokumentet fremstå som en uforståelig blanding af bogstaver og tegn og uvedkommende kan således ikke læses

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Kursusgang 3: Autencificering & asymmetrisk kryptering. Krav til autentificering. Kryptering som værktøj ved autentificering.

Kursusgang 3: Autencificering & asymmetrisk kryptering. Krav til autentificering. Kryptering som værktøj ved autentificering. Krav til autentificering Vi kan acceptere, at modtager (og måske afsender) skal bruge hemmelig nøgle Krav til metode: må ikke kunne brydes på anden måde end ved udtømmende søgning længde af nøgler/hemmeligheder/hashkoder

Læs mere

Hvordan kryptering af chat, mail og i cloud services og social networks virker

Hvordan kryptering af chat, mail og i cloud services og social networks virker Hvordan kryptering af chat, mail og i cloud services og social networks virker Alexandra Instituttet Morten V. Christiansen Kryptering Skjuler data for alle, som ikke kender en bestemt hemmelighed (en

Læs mere

Fredag 12. januar David Pisinger

Fredag 12. januar David Pisinger Videregående Algoritmik, DIKU 2006/07 Fredag 2. januar David Pisinger Kryptering Spartanere (500 f.kr.) strimmelrulle viklet omkring cylinder Julius Cæsar: substituering af bogstaver [frekvensanalyse]

Læs mere

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

Talteoriopgaver Træningsophold ved Sorø Akademi 2007 Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2

Læs mere

Integer Factorization

Integer Factorization Integer Factorization Per Leslie Jensen DIKU 2/12-2005 kl. 10:15 Overblik 1 Faktorisering for dummies Primtal og aritmetikkens fundamentalsætning Lille øvelse 2 Hvorfor er det interessant? RSA 3 Metoder

Læs mere

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Følger og den kinesiske restklassesætning. Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man

Læs mere

6. RSA, og andre public key systemer.

6. RSA, og andre public key systemer. RSA 6.1 6. RSA, og andre public key systemer. (6.1). A skal sende en meddelelse til B. Denne situation forekommer naturligvis utallige gange i vores dagligdag: vi kommunikerer, vi signalerer, vi meddeler

Læs mere

Polynomiumsbrøker og asymptoter

Polynomiumsbrøker og asymptoter Polynomiumsbrøker og asymptoter Frank Villa 9. marts 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Roskilde Universitetscenter, Datalogisk Afdeling Kryptering. Niels Christian Juul. N&P 11: 2001 April 18th

Roskilde Universitetscenter, Datalogisk Afdeling   Kryptering. Niels Christian Juul. N&P 11: 2001 April 18th Roskilde Universitetscenter, Datalogisk Afdeling E-mail: ncjuul@acm.org Kryptering Niels Christian Juul N&P 11: 2001 April 18th Om kryptering, DES, RSA, PGP og SSL Copyright 1998-2001, Niels Christian

Læs mere

Noter til Perspektiver i Matematikken

Noter til Perspektiver i Matematikken Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb.

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb. lemma: Hvis a, b og c er heltal så gcd(a, b) = 1 og a bc da vil a c. lemma: Hvis p er et primtal og p a 1 a 2 a n hvor hvert

Læs mere

Introduktion til Kryptologi

Introduktion til Kryptologi Introduktion til Kryptologi September 22, 2014 Kryptologi Datasikkerhed Sikker kommunikation over usikre kanaler Kryptografi: Bygge systemer Kryptoanalyse: Bryde systemer Avancerede Protokoller Data er

Læs mere

I løbet af 2017 vil C-drevet på alle UCL s bærbare computere automatisk blive krypteret med BitLocker.

I løbet af 2017 vil C-drevet på alle UCL s bærbare computere automatisk blive krypteret med BitLocker. BitLocker BitLocker kan bruges til kryptering af drev for at beskytte alle filer, der er gemt på drevet. Til kryptering af interne harddiske, f.eks. C-drevet, bruges BitLocker, mens man bruger BitLocker

Læs mere

Fortroligt dokument. Matematisk projekt

Fortroligt dokument. Matematisk projekt Fortroligt dokument Matematisk projekt Briefing til Agent 00-DiG Velkommen til Kryptoafdeling 1337, dette er din første opgave. Det lykkedes agenter fra Afdelingen for Virtuel Efterretning (AVE) at opsnappe

Læs mere

Fejlkorrigerende koder, secret sharing (og kryptografi)

Fejlkorrigerende koder, secret sharing (og kryptografi) Fejlkorrigerende koder, secret sharing (og kryptografi) Olav Geil Afdeling for Matematiske Fag Aalborg Universitet Møde for Matematiklærere i Viborg og Ringkøbing amter 7. november, 2006 Oversigt Fejlkorrigerende

Læs mere

Koder og kryptering. Foredrag UNF 4. december 2009 Erik Zenner (Adjunkt, DTU)

Koder og kryptering. Foredrag UNF 4. december 2009 Erik Zenner (Adjunkt, DTU) Koder og kryptering Foredrag UNF 4. december 2009 Erik Zenner (Adjunkt, DTU) I. Indledende bemærkninger Hvad tænker I på, når I hører kryptologi? Hvad tænker jeg på, når jeg siger kryptologi? Den matematiske

Læs mere

Matematiske metoder - Opgavesæt

Matematiske metoder - Opgavesæt Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Februar Vejledning til Danske Vandværkers Sikker mail-løsning

Februar Vejledning til Danske Vandværkers Sikker mail-løsning Februar 2019 Vejledning til Danske Vandværkers Sikker mail-løsning 0 Indhold Formål med denne vejledning 2 Generelt om Sikker mail-løsningen og hvordan den fungerer 2 Tilgå Sikker mail-løsningen via webmail

Læs mere

Secret sharing - om at dele en hemmelighed Matematiklærerdag 2017

Secret sharing - om at dele en hemmelighed Matematiklærerdag 2017 Matematiklærerdag 2017 Institut for Matematik, Aarhus universitet 24. marts 2017 Resumé Secret sharing henviser til metoder til fordeling af en hemmelighed blandt en gruppe af deltagere, som hver især

Læs mere

Moderne kryptografi. Olav Geil Institut for Matematiske Fag Aalborg Universitet. Elektronik og IT-Gruppen 24. april 2008

Moderne kryptografi. Olav Geil Institut for Matematiske Fag Aalborg Universitet. Elektronik og IT-Gruppen 24. april 2008 Moderne kryptografi Olav Geil Institut for Matematiske Fag Aalborg Universitet Elektronik og IT-Gruppen 24. april 2008 Matematik og ingeniørvidenskab Uden ingeniørvidenskab var komplekse tal blot en kuriøsitet

Læs mere

I løbet af 2017 vil C-drevet på alle UCL s bærbare computere automatisk blive krypteret med BitLocker.

I løbet af 2017 vil C-drevet på alle UCL s bærbare computere automatisk blive krypteret med BitLocker. BitLocker BitLocker kan bruges til kryptering af drev for at beskytte alle filer, der er gemt på drevet. Til kryptering af interne harddiske, f.eks. C-drevet, bruges BitLocker, mens man bruger BitLocker

Læs mere

Projekt 0.6 RSA kryptering

Projekt 0.6 RSA kryptering Projekt 0.6 RSA kryptering 1. Introduktion. Nøgler til kryptering Alle former for kryptografi prøver at løse følgende problem: En afsender, A ønsker at sende en mdelelse til en modtager, M, såles at den

Læs mere

Kommunikationssikkerhed til brugere bibliotek.dk projekt 2006-23

Kommunikationssikkerhed til brugere bibliotek.dk projekt 2006-23 Kommunikationssikkerhed til brugere bibliotek.dk projekt 2006-23 Formål Formålet med dette notat er at beskrive forskellige løsninger for kommunikationssikkerhed til brugerne af bibliotek.dk, med henblik

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

RSA og den heri anvendte matematiks historie - et undervisningsforløb til gymnasiet

RSA og den heri anvendte matematiks historie - et undervisningsforløb til gymnasiet - I, OM OG MED MATEMATIK OG FYSIK RSA og den heri anvendte matematiks historie - et undervisningsforløb til gymnasiet Uffe Thomas Jankvist januar 2008 nr. 460-2008 blank Roskilde University, Department

Læs mere

Den digitale signatur

Den digitale signatur 3. Å RG A N G NR. 3 / 2004 Den digitale signatur - anvendt talteori og kryptologi Fra at være noget, der kun angik den militære ledelse og diplomatiet, har kryptologi med brugen af internettet fået direkte

Læs mere

RSA-KRYPTERING. Studieretningsprojekt. Blerim Cazimi. Frederiksberg Tekniske Gymnasium. Matematik A. Vejleder: Jonas Kromann Olden

RSA-KRYPTERING. Studieretningsprojekt. Blerim Cazimi. Frederiksberg Tekniske Gymnasium. Matematik A. Vejleder: Jonas Kromann Olden 14. DEC 2014 RSA-KRYPTERING Studieretningsprojekt Blerim Cazimi Frederiksberg Tekniske Gymnasium Matematik A Vejleder: Jonas Kromann Olden Informationsteknologi B Vejleder: Kenneth Hebel Indhold Indledning...

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen. Talteori. Georg Mohr-Konkurrencen

Tip til 1. runde af Georg Mohr-Konkurrencen. Talteori. Georg Mohr-Konkurrencen Tip til 1. runde af Georg Mohr-Konkurrencen Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal går op i et andet helt tal. Derfor spiller primtallene en helt central rolle i talteori,

Læs mere

Spilstrategier. 1 Vindermængde og tabermængde

Spilstrategier. 1 Vindermængde og tabermængde Spilstrategier De spiltyper vi skal se på her, er primært spil af følgende type: Spil der spilles af to spillere A og B som skiftes til at trække, A starter, og hvis man ikke kan trække har man tabt. Der

Læs mere

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Definition: Et primtal er et naturligt tal større end 1, som kun 1 og tallet selv går op i. Eksempel 1: Tallet 1 ikke et primtal fordi det ikke

Læs mere

Digital Signatur Infrastrukturen til digital signatur

Digital Signatur Infrastrukturen til digital signatur Digital Signatur Infrastrukturen til digital signatur IT- og Telestyrelsen December 2002 Resumé: I fremtiden vil borgere og myndigheder ofte have brug for at kunne kommunikere nemt og sikkert med hinanden

Læs mere

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9? Tip til 1. runde af Talteori Talteori handler om de hele tal, og særligt om hvornår et helt tal er deleligt med et andet. Derfor spiller primtallene en helt central rolle i talteori, hvilket vi skal se

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36 Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er

Læs mere

Noter om primtal. Erik Olsen

Noter om primtal. Erik Olsen Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et

Læs mere

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528)

Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Skriftlig Eksamen Kombinatorik, sandsynlighed og randomiserede algoritmer (DM528) Institut for Matematik & Datalogi Syddansk Universitet Mandag den 3 Januar 2011, kl. 9 13 Alle sædvanlige hjælpemidler

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

Vejledning. Indhold. 1. BitLocker. 2. Vigtig information

Vejledning. Indhold. 1. BitLocker. 2. Vigtig information Vejledning Afdeling UCL Erhvervsakademi og Professionshøjskole IT Oprettet 07.06.2018 Redigeret 12.09.2019 Udarbejdet af Lone Petersen Dokumentnavn (DK) Bitlocker kryptering af C-drev og USB-drev UCL Indhold

Læs mere

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6 Indhold 1 Polynomier 2 Polynomier 2 Polynomiumsdivision 4 3 Algebraens fundamentalsætning og rødder 6 4 Koefficienter 8 5 Polynomier med heltallige koefficienter 9 6 Mere om polynomier med heltallige koefficienter

Læs mere

Vejledning. Indhold. 1. Kryptering. 2. Vigtig information

Vejledning. Indhold. 1. Kryptering. 2. Vigtig information Vejledning Afdeling UCL Erhvervsakademi og Professionshøjskole IT Oprettet 12.09.2019 Redigeret 25.10.2019 Udarbejdet af Lone Petersen Dokumentnavn (DK) Bitlocker og FileVault kryptering studerende UCL

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe. Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger

Læs mere

Algebra - Teori og problemløsning

Algebra - Teori og problemløsning Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.

Læs mere

Hemmelige koder fra antikken til vore dage

Hemmelige koder fra antikken til vore dage Hemmelige koder fra antikken til vore dage Nils Andersen DM s seniorklub Øst 21. september 2015 En hemmelig meddelelse Sparta, ca. 500 år f.v.t. Skytale: σκῠτ ᾰλίς (gr. lille stok) angrib fra skovbrynet

Læs mere

Nøglehåndtering. Sikkerhed04, Aften

Nøglehåndtering. Sikkerhed04, Aften Basalt problem Al kryptografisk sikkerhed er baseret på nøgler som ikke er kryptografisk beskyttet I stedet må disse nøgler beskyttes fysisk 2 Løsninger Passwords noget du ved Hardware noget du har Biometri

Læs mere

Pointen med Differentiation

Pointen med Differentiation Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Andengradsligninger. Frank Nasser. 12. april 2011

Andengradsligninger. Frank Nasser. 12. april 2011 Andengradsligninger Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette

Læs mere

Større Skriftlig Opgave

Større Skriftlig Opgave Uddannelse: Højere Handelseksamen Skole: Fag og niveau: Informationsteknologi, niveau A Område: Kryptering og Certifikater Vejleder: Werner Burgwald Afleveringsdato: Fredag den 11. februar. Opgavetitel:

Læs mere

Fejlkorligerende køder Fejlkorrigerende koder

Fejlkorligerende køder Fejlkorrigerende koder Fejlkorligerende køder Fejlkorrigerende koder Olav Geil Skal man sende en fødselsdagsgave til fætter Børge, så pakker man den godt ind i håb om, at kun indpakningen er beskadiget ved modtagelsen. Noget

Læs mere

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007 Funktionalligninger Anders Schack-Nielsen 5. februar 007 Disse noter er en introduktion til funktionalligninger. En funktionalligning er en ligning (eller et ligningssystem) hvor den ubekendte er en funktion.

Læs mere

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Anvendelse af matematik til konkrete beregninger

Anvendelse af matematik til konkrete beregninger Anvendelse af matematik til konkrete beregninger ved J.B. Sand, Datalogisk Institut, KU Praktisk/teoretisk PROBLEM BEREGNINGSPROBLEM og INDDATA LØSNINGSMETODE EVT. LØSNING REGNEMASKINE Når man vil regne

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 23. februar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Ringe og Primfaktorisering

Ringe og Primfaktorisering Ringe og Primfaktorisering Michael Knudsen 16. marts 2005 1 Ringe Lad Z betegne mængden af de hele tal, Z = {..., 2, 1,0,1,2,...}. På Z har to regneoperationer, + (plus) og (gange), der til to hele tal

Læs mere

Andengradsligninger. Frank Nasser. 11. juli 2011

Andengradsligninger. Frank Nasser. 11. juli 2011 Andengradsligninger Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Løsning af simple Ligninger

Løsning af simple Ligninger Løsning af simple Ligninger Frank Nasser 19. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

P vs. NP. Niels Grønbæk Matematisk Institut Københavns Universitet 3. feb. 2012

P vs. NP. Niels Grønbæk Matematisk Institut Københavns Universitet 3. feb. 2012 P vs. NP Niels Grønbæk Matematisk Institut Københavns Universitet 3. feb. 2012 Den handelsrejsendes problem Kan det lade sig gøre at besøge n byer forbundet ved et vejnet, G, inden for budget, B? Hvad

Læs mere

Euklids algoritme og kædebrøker

Euklids algoritme og kædebrøker Euklids algoritme og kædebrøker Michael Knudsen I denne note vil vi med Z, Q og R betegne mængden af henholdsvis de hele, de rationale og de reelle tal. Altså er { m } Z = {..., 2,, 0,, 2,...} og Q = n

Læs mere

Excel-2: Videre med formler

Excel-2: Videre med formler Excel-2: Videre med formler Tips: Du kan bruge Fortryd-knappen ligesom i Word! Du kan markere flere celler, som ikke ligger ved siden af hinanden ved at holde CONTROL-knappen nede Du kan slette indholdet

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

RSA og den heri anvendte matematiks historie et undervisningsforløb til gymnasiet Jankvist, Uffe Thomas

RSA og den heri anvendte matematiks historie et undervisningsforløb til gymnasiet Jankvist, Uffe Thomas RSA og den heri anvendte matematiks historie et undervisningsforløb til gymnasiet Jankvist, Uffe Thomas Publication date: 2008 Document Version Også kaldet Forlagets PDF Citation for published version

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

Sikker mail Kryptering af s Brugervejledning

Sikker mail Kryptering af  s Brugervejledning Sikker mail Kryptering af e-mails Brugervejledning side 1/9 Indholdsfortegnelse 1 Introduktion... 3 2 Anvendelse (Quick start)... 3 2.1 Sikker e-mail... 3 3 Brugergrænsefladen (detaljeret)... 3 3.1 Send

Læs mere

De rigtige reelle tal

De rigtige reelle tal De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point:

De 4 regnearter. (aritmetik) Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 42 Ekstra: 5 Point: Navn: Klasse: Matematik Opgave Kompendium De 4 regnearter (aritmetik) Aritmetik: kommer af græsk: arithmetike = regnekunst arithmos = tal Aritmetik er læren om tal og operationer på tal som de 4 regnearter.

Læs mere

Sådan opretter du en backup

Sådan opretter du en backup Excovery Guide Varighed: ca. 15 min Denne guide gennemgår hvordan du opretter en backup med Excovery. Guiden vil trinvist lede dig igennem processen, og undervejs introducere dig for de grundlæggende indstillingsmulighed.

Læs mere

Problemløsning i retvinklede trekanter

Problemløsning i retvinklede trekanter Problemløsning i retvinklede trekanter Frank Villa 14. februar 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug

Læs mere