Kapitel 4: Nyttefunktioner. Hvad er nytte? - det gamle syn:
|
|
|
- Nicklas Kristiansen
- 9 år siden
- Visninger:
Transkript
1 Kapitel 4: Nyttefunktioner Hvad er nytte? - det gamle syn: 1. Nytte er en indikator for et individs overordnede velfærd. 2. Nytten måles for eksempel på en skala fra 0 til Skalaen er kardinal: 4. Utilitarisme: Maximere summen af individelle nytter. 5. Læs mere om utilitarisme her: 1
2 Jeremy Bentham, Problemer med det "gamle" syn på nytte: 1. Hvordan måler vi nytten? 2. Kan vi overhoved sammenligne nytten mellem individer? 3. Hvordan fortolker vi kardinal nytte? 4. Kan vi nøjes med et mindre vanskeligt nyttebegreb? 2
3 Hvad er nytte? - det nye syn: 1. Udgangspunktet er en præferencerelation 2. Nytte er en funktion som repræsenterer præferencer. 3. Nyttefunktionen tildeler et tal til hvert alternativ så at det foretrukne varebundt får højest nytteværdi og vice versa: 4. u repræsenterer hvis: u(x 1 ; x 2 ) > u(y 1 ; y 2 ), (x 1 ; x 2 ) (y 1 ; y 2 ): 5. Ordinal nytte: Kun rangordning af alternativer har betydning. 6. Operationelt nyttebegreb: Kender vi præferencerelation kan vi (som regel) konstruere en nyttefunktion. 3
4 1. Nej! Finder der altid en nyttefunktion? 2. Eksempel: Tre alternativer x; y og z. (a) x y (b) y z (c) z x 3. (VIS AT DER IKKE FINDES EN NYTTEFUNK- TION). 4
5 Hvornår ndes en nyttefunktion? 1. Sætning: Hvis der er et endeligt antal alternativer, da er følgende ækvivalent: (a) er komplet og transitiv. (b) kan repræsenteres ved en nyttefunktion. 2. (Vi udelader bevis). 3. POINTE: Så længe at vi antager komplethed og transitivitet, da kommer det ud på et om vi starter med præferencerelation eller nyttefunktion u. 5
6 4. Ofte betragter vi uendeligt mange alternativer (alle mulige tænkelige størrelser varebundter i R 2 + ). 5. Her ndes eksempler på komplette og transitive præferencer som ikke kan repræsenteres ved en nyttefunktion. 6. Eksempel: Leksikograske præferencer L To goder. (x 1 ; x 2 ) L (y 1 ; y 2 ) hvis [x 1 > y 1 eller x 1 = y 1 og x 2 y 2 ]. 7. Komplet? 8. Transitiv? 9. MEN, kan ikke repræsenteres ved en nyttefunktion. 10.PROBLEMET: Den leksikograske præferencerelation L ikke kontinuert i varerummet R I praksis kan vi roligt antage at præferencer er kontinuerte. 6
7 Er nyttefunktion entydig? 1. SPØRGSMÅL: Hvis der ndes en nyttefunktion u der repræsenter præferencerelation, er u da entydigt bestemt ud fra? 2. SVAR: 7
8 Konstruktion af nyttefunktion 1. Fra indifferenskurver: Se gur 4.2! 8
9 2. Eller direkte ud fra fortolkning af præferencer: (a) Perfekte substitutter 1:1 (b) Perfekte substitutter generelt (c) Perfekte komplementer 1:1. (d) Perfekte komplementer generelt. 9
10 Konstruktion af indifferenskurver fra nyttefunktion 1. Eksempel: u(x 1 ; x 2 ) = x 1 x x 1 x 2 = k, x 2 = k x 2 : 3. Plot kurve for k = 1; 2; 3; :::etc. 10
11 To vigtige eksempler på nyttefunktioner 1. Kvasi-lineær nytte: u(x 1 ; x 2 ) = v(x 1 ) + x 2 : (a) Nytte lineær i x 2. v(x 1 ) kan være p x 1, log(x 1 ),... (b) Indifferenskurver vertikalt parallelle. 2. Cobb-Douglas nytte: u(x 1 ; x 2 ) = x c 1x d 2: (a) Kan normalisere koefcienter til at summe til 1: (b) (u(x 1 ; x 2 )) 1 c+d = (x c 1 x d 2) 1 c c+d = x (c) a c c+d. bu(x 1; x 2 ) = x a 1x2 1 a : c+d 1 x d c+d 2 = bu(x 1 ; x 2 ): (d) Kan gøres additiv ved en logaritmisk transformation : (e) log u(x 1 ; x 2 ) = log x a 1x2 1 a = a log x 1 +(1 a) log x 2. 11
12 Marginalnytte 1. Hvis u(x 1 ) er funktion af én variabel, da er 1 ) = u 0 (x 1 ): 2. Hvis u(x 1 ; x 2 ) er funktion af to variable, da kan vi også udregne marginalnytte af x 1 for fastholdt x 2 - den partielle 1 ; x 2 ) = u 0 x 1 (x 1 ; x 2 ): 12
13 Eksempler 1. Eksempel 1: u(x 1 ; x 2 ) = ax 1 + bx 1 ; x 2 ) = a: 2. Eksempel 2: u(x 1 ; x 2 ) = x a 1x2 1 1 ; x 2 ) = ax a 1 1 x2 1 a : 13
14 Sammenhæng mellem MRS og partielle aedede 1. Husk: MRS i et punkt er hælding på indifferenskurve. 2. I punktet (x 1 ; x 2 ) lad (dx 1 ; dx 2 ) være (lille) ændring i x 1 hhv x 2 så at u(x 1 ; x 2 ) = u(x + dx 1 ; x 2 + dx 2 ): Altså: du 1; x 2 ) dx 1 1; x 2 ) dx 2 = 2 Hvilket giver: 3. dx 2 dx 1 1 ;x 2 1 ;x
15 Transformationer, partielle aedede, MRS 1. Hvis u transformeres, da transformeres partiel aedet også! 2. Men MRS ændres ikke: 3. u(x 1 ; x 2 ). MRS 1 ;x 2 1 ;x 2 2 : 4. v(x 1 ; x 2 ) = f(u(x 1 ; x 2 )). 5. @x
16 Eksempel: Cobb-Douglas 1. u(x 1 ; x 2 ) = x c 1x d 2 2. MRS 1 ;x 2 1 ;x 2 ) c 1 1 x d 2 = cx x c dxd = c x 2 d x 1 : 3. v(x 1 ; x 2 ) = log(u(x 1 ; x 2 )) = c log x 1 + d log x 2 4. MRS 1 ;x 2 1 ;x 2 ) x 1 d 2 = c 1 x 2 = c d x x 1 : 2 16
17 Anvendelse: Bil eller bus til arbejde? 1. Lad x 1 være rejsetid i bil, y 1 rejsetid i bus. 2. Lad x 2 være omkostning ved at køre bil, y 2 være omkostning ved at køre bus Antag lineær nytte: u(x 1 ; :::; x n ) = 1 x 1 + ::: + n x n. 5. Estimér i 'ere ud fra observerede valg. 6. Domenich-McFadden (1975): Nyttefunktion gav korrekt forudsigelse af valg i 93% af tilfælde. 7. Med estimeret nyttefunktion kan vi: (a) Udregne MRS mellem to attributter. F.eks.: Hvad er værdi målt i $ for kortere rejsetid? (b) Lave forudsigelser. F.eks. hvor mange skifter til bus hvis rejsetiden forkortes? (c) Udregne velfærdsgevinster: Hvad er værdien (målt i $) for en rejsetidsforkortelse for dem der allerede tager bussen? 17
Kapitel 4: Nyttefunktioner
Kapitel 4: Nyttefunktioner Hvad er nytte? - det gamle syn: 1. Nytte betragtet som en indikator for et individs overordnede velfærd. 2. Nytten er kardinal: Størrelsen på nyttedifferencer har betydning.
1 Kapitel 5: Forbrugervalg
1 Kapitel 5: Forbrugervalg Vi har set på: 1. Budgetbegrænsninger. 2. Præferencer og nyttefunktioner. Nu stykker vi det hele sammen og studerer forbrugerens valg. 1 2 Optimalt forbrug - gra sk fremstilling
Kapitel 3: Præferencer. Hvordan skal vi modellere
Kapitel 3: Præferencer Hvordan skal vi modellere præferencer? 1. Paradigme (husk fra forrige kapitel): Forbrugeren vælger det bedste varebundt som han/hun har råd til. 2. Vi har set på hvordan man kan
Kapitel 3 Forbrugeradfærd
Emner Kapitel 3 orbrugeradfærd Præferencer udgetbegrænsning orbrugsvalg hapter 3: onsumer ehavior Slide Introduktion Virksomheder har brug for at kende forbrugeradfærd, når de prisfastsætter et produkt.
Kapitel 3: Præferencer. Hvordan skal vi modellere præferencer?
Kapitel 3: Præferencer Hvordan skal vi modellere præferencer? 1. Paradigme (husk fra forrige kapitel): Forbrugeren vælger det bedste varebundt som han/hun har råd til. 2. Vi har set på hvordan man kan
Forbrugerteori: Optimale valg og efterspørgsel
Forbrugerteori: Optimale valg og efterspørgsel Jesper Breinbjerg Department of Business and Economics University of Southern Denmark Akademiet for Talentfulde Unge, 20. marts 2014 Jesper Breinbjerg Optimale
1 Kapitel 5: Forbrugervalg
1 Kapitel 5: Forbrugervalg Vi har set på: 1. budgetbegrænsninger 2. præferencer og nyttefunktioner. Nu stykker vi det hele sammen og studerer forbrugerens optimale valg. 2 Optimalt forbrug - grafisk fremstilling
1 Virksomheders teknologi (kapitel 18)
1 Virksomheders teknologi (kapitel 18) 1. "Produktionsteori" har til formål at beskrive de teknologiske begrænsninger en virksomhed er underlagt. 2. Dette gøres ved "produktionsfunktioner". 3. Visse ligheder
1 Bytteøkonomier (kapitel 30)
1 Bytteøkonomier (kapitel 30) 1. Setup: Vi har en række forbrugere med hver deres initialbeholdning af en række goder. (a) Ren bytteøkonomi - ingen virksomheder - ingen produktion! 2. Typiske spørgsmål:
1 Virksomheders teknologi (kapitel 18)
1 Virksomheders teknologi (kapitel 18) 1. Vi ønsker at beskrive de teknologiske begrænsninger som en virksomhed har. 2. Vi har set på nyttefunktioner indenfor forbrugerteorien. 3. Nu ser vi på "produktionsfunktioner".
1 Bytteøkonomier (kapitel 31)
1 Bytteøkonomier (kapitel 31) 1. Setup: Vi har en række forbrugere med hver deres initialbeholdning af en række goder. (a) Ren bytteøkonomi - ingen virksomheder - ingen produktion! (b) Vi har en "generel
Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner
Kvantitative Metoder 1 - Efterår Dagens program
Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1
Mikroøkonomi Projektopgave: Valg Under Usikkerhed
Mikroøkonomi Projektopgave: Valg Under Usikkerhed Peter Norman Sørensen, Økonomisk Institut Forår 2003 1. Formalia [10 minutter] Denne obligatoriske projektopgave er en guide til selvstudium af kapitel
Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative
Kvantitative Metoder 1 - Forår 2007. Dagens program
Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe
Statistik og Sandsynlighedsregning 2
Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte
MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen
MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner
Oversigt [S] 2.7, 2.9, 11.4
Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable
Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable
Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over
Forbrugeroverskud, ækvivalerende og kompenserende variationer
Forbrugeroverskud, ækvivalerende og kompenserende variationer Introduktion Undervisningsnote til Mikro A, af Ole Kveiborg og Michael Teit Nielsen Vi har kigget en hel del på, hvordan forbrugeren reagerer
Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål
Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen
Opgave 1: Mikro (20 point)
Københavns Universitet Det Naturvidenskablige Fakultet Økonomi 1, Matematik-Økonomi Studiet 4 timers prøve med hjælpemidler, 29. januar 2003. Alle opgaver skal besvares. Ved bedømmelsen vægtes alle spørgsmål
Bedste rette linje ved mindste kvadraters metode
1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem
Mich Tvede 29. januar 2003. Økonomisk Institut Københavns Universitet
Mich Tvede 29. januar 2003. Økonomisk Institut Københavns Universitet Lars Peter Østerdal 2. November 2004. 1 Forbrugere Opgave 1.1 1. Illustrer følgende budgetrestriktioner grafisk: a) p 1 =1,p 2 =1ogm
Substitutions- og indkomsteffekt ved prisændringer
Substitutions- og indkomsteffekt ved prisændringer Erik Bennike 14. november 2009 Denne note giver en beskrivelse af de relevante begreber omkring substitutions- og indkomsteffekter i mikroøkonomi. 1 Introduktion
OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere
Epidemiologi og biostatistik. Uge 5, torsdag 5. september 003 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver
Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable
Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition
1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable
Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder
UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0.
UGESEDDEL 9 LØSNINGER Sydsæter 531 Theorem 1 Sætning om implicitte funktioner for ligningen f(x, y) = 0 Lad f(x, y) være C 1 i mængden A R n og lad (x 0, y 0 ) være et indre punkt i A hvor f(x 0, y 0 )
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en
Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2
Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition
Statistik II 1. Lektion. Analyse af kontingenstabeller
Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression
Mich Tvede 29. december 2007 Økonomisk Institut Københavns Universitet. En virksomhed har følgende produktionsmulighedsområde:
Mich Tvede 29. december 2007 Økonomisk Institut Københavns Universitet 1 Produktion Opgave 1.1 En virksomhed har følgende produktionsmulighedsområde: Y = {(x, y) x, y 0ogy ax}, hvor x er input/produktionsfaktoren,
MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen
MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner f : R R En funktion f : R R er differentiabel
matx.dk Enkle modeller
matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Vejledende besvarelse på august 2009-sættet 2. december 2009
Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,
Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi
Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi Claus Thustrup Kreiner OPGAVE 1 1.1 Forkert. En isokvant angiver de kombinationer af inputs, som resulterer i en given
Anvendt Lineær Algebra
Anvendt Lineær Algebra Kursusgang 3 Anita Abildgaard Sillasen Institut for Matematiske Fag AAS (I17) Anvendt Lineær Algebra 1 / 38 Vi betragter et lineært ligningssystem (af m ligninger med n ubekendte)
Matematisk modellering og numeriske metoder
Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).
Matematik B-niveau 31. maj 2016 Delprøve 1
Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =
University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version
university of copenhagen University of Copenhagen Notat om statistisk inferens Larsen, Martin Vinæs Publication date: 2014 Document Version Peer-review version Citation for published version (APA): Larsen,
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable
Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset
Institut for virksomhedsledelse og økonomi, Syddansk Universitet. Workshop. Opgave 1. = = 3x 2
Institut for virksomhedsledelse og økonomi, Syddansk Universitet Workshop Opgave 1 Antag at en forbrugers nyttefunktion er givet ved u(, x ) x 3 1 x. Forbrugeren har derudover følgende budgetbetingelse:
Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med
Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform
OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model
Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.
NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive
Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen
Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager
Vektorfelter langs kurver
enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote
Oversigt [S] 2.7, 2.9, 11.4
Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable
t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25
Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion
Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser
Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier
Kvadratisk regression
Kvadratisk regression Helle Sørensen Institut for Matematiske Fag Københavns Universitet Juli 2011 I kapitlet om lineær regression blev det vist hvordan man kan modellere en lineær sammenhæng mellem to
IKKE-LINEÆR OPTIMERING
IKKE-LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Konvekse funktioner 1 2 Optimering uden bibetingelser 1 3 Optimering under bibetingelser givet ved ligheder 2 4 Optimering under bibetingelser givet
1 Oligopoler (kapitel 27)
1 Oligopoler (kapitel 27) 1. Vi har set på to vigtige markedsformer: (a) Fuldkommen konkurrence. Alle virksomheder pristagere - en rimelig antagelse i situation med mange "små" aktører. (b) Monopol. Kun
Mat H /05 Note 2 10/11-04 Gerd Grubb
Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med
Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl
Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske
Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)
Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer
MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen
MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible
matematik-økonomi-studerende
matematik-økonomi-studerende Første studieår Introduktion til matematiske metoder i økonomi Skriftlig prøveeksamen december 2012 med korte svar Dato: selvvalgt Tidspunkt: varighed 4 timer Tilladte hjælpemidler:
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Økonometri: Lektion 2 Multipel Lineær Regression 1/27
Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere
1 Markedsefterspørgsel (kapitel 15) 1. Markedseftersspørgselskurven: Sammenhængen mellem markedspris og samlet efterspørgsel på et marked.
1 Markedsefterspørgsel (kapitel 15) 1. Markedseftersspørgselskurven: Sammenhængen mellem markedspris og samlet efterspørgsel på et marked. 2 Fra forbrugerefterspørgsel til markedsefterspørgsel 1. For enhver
Teoretisk Statistik, 16. februar Generel teori,repetition
1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske
Beskrivende statistik
Beskrivende statistik Stikprøve af størrelse n for variablen x: x 1, x 2,, x n Beskriv fordelingen af data med nogle få talstørrelser. Centralt mål: en værdi som data er centreret om. Variationsmål: mål
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
6. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag)
Institut for Folkesundhed Afdeling for Biostatistik Afdeling for Epidemiologi. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag) Opgave 1 Udgangspunktet for de følgende spørgsmål er artiklen:
Vektorer og lineær regression
Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning
Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden
Vektorer og lineær regression. Peter Harremoës Niels Brock
Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.
Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0
Middelværdi og varians Middelværdien af en diskret skalarfunktion f(x), for x = 0, N er: µ = N f(x) N x=0 For vektorfuktioner er middelværdivektoren tilsvarende: µ = N f(x) N x=0 Middelværdien er en af
Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen
Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Matricer og lineære ligningssystemer
Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix
Eksamen i Diskret Matematik
Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:
Teoretisk Statistik, 13 april, 2005
Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
