Kapitel 4: Nyttefunktioner. Hvad er nytte? - det gamle syn:

Størrelse: px
Starte visningen fra side:

Download "Kapitel 4: Nyttefunktioner. Hvad er nytte? - det gamle syn:"

Transkript

1 Kapitel 4: Nyttefunktioner Hvad er nytte? - det gamle syn: 1. Nytte er en indikator for et individs overordnede velfærd. 2. Nytten måles for eksempel på en skala fra 0 til Skalaen er kardinal: 4. Utilitarisme: Maximere summen af individelle nytter. 5. Læs mere om utilitarisme her: 1

2 Jeremy Bentham, Problemer med det "gamle" syn på nytte: 1. Hvordan måler vi nytten? 2. Kan vi overhoved sammenligne nytten mellem individer? 3. Hvordan fortolker vi kardinal nytte? 4. Kan vi nøjes med et mindre vanskeligt nyttebegreb? 2

3 Hvad er nytte? - det nye syn: 1. Udgangspunktet er en præferencerelation 2. Nytte er en funktion som repræsenterer præferencer. 3. Nyttefunktionen tildeler et tal til hvert alternativ så at det foretrukne varebundt får højest nytteværdi og vice versa: 4. u repræsenterer hvis: u(x 1 ; x 2 ) > u(y 1 ; y 2 ), (x 1 ; x 2 ) (y 1 ; y 2 ): 5. Ordinal nytte: Kun rangordning af alternativer har betydning. 6. Operationelt nyttebegreb: Kender vi præferencerelation kan vi (som regel) konstruere en nyttefunktion. 3

4 1. Nej! Finder der altid en nyttefunktion? 2. Eksempel: Tre alternativer x; y og z. (a) x y (b) y z (c) z x 3. (VIS AT DER IKKE FINDES EN NYTTEFUNK- TION). 4

5 Hvornår ndes en nyttefunktion? 1. Sætning: Hvis der er et endeligt antal alternativer, da er følgende ækvivalent: (a) er komplet og transitiv. (b) kan repræsenteres ved en nyttefunktion. 2. (Vi udelader bevis). 3. POINTE: Så længe at vi antager komplethed og transitivitet, da kommer det ud på et om vi starter med præferencerelation eller nyttefunktion u. 5

6 4. Ofte betragter vi uendeligt mange alternativer (alle mulige tænkelige størrelser varebundter i R 2 + ). 5. Her ndes eksempler på komplette og transitive præferencer som ikke kan repræsenteres ved en nyttefunktion. 6. Eksempel: Leksikograske præferencer L To goder. (x 1 ; x 2 ) L (y 1 ; y 2 ) hvis [x 1 > y 1 eller x 1 = y 1 og x 2 y 2 ]. 7. Komplet? 8. Transitiv? 9. MEN, kan ikke repræsenteres ved en nyttefunktion. 10.PROBLEMET: Den leksikograske præferencerelation L ikke kontinuert i varerummet R I praksis kan vi roligt antage at præferencer er kontinuerte. 6

7 Er nyttefunktion entydig? 1. SPØRGSMÅL: Hvis der ndes en nyttefunktion u der repræsenter præferencerelation, er u da entydigt bestemt ud fra? 2. SVAR: 7

8 Konstruktion af nyttefunktion 1. Fra indifferenskurver: Se gur 4.2! 8

9 2. Eller direkte ud fra fortolkning af præferencer: (a) Perfekte substitutter 1:1 (b) Perfekte substitutter generelt (c) Perfekte komplementer 1:1. (d) Perfekte komplementer generelt. 9

10 Konstruktion af indifferenskurver fra nyttefunktion 1. Eksempel: u(x 1 ; x 2 ) = x 1 x x 1 x 2 = k, x 2 = k x 2 : 3. Plot kurve for k = 1; 2; 3; :::etc. 10

11 To vigtige eksempler på nyttefunktioner 1. Kvasi-lineær nytte: u(x 1 ; x 2 ) = v(x 1 ) + x 2 : (a) Nytte lineær i x 2. v(x 1 ) kan være p x 1, log(x 1 ),... (b) Indifferenskurver vertikalt parallelle. 2. Cobb-Douglas nytte: u(x 1 ; x 2 ) = x c 1x d 2: (a) Kan normalisere koefcienter til at summe til 1: (b) (u(x 1 ; x 2 )) 1 c+d = (x c 1 x d 2) 1 c c+d = x (c) a c c+d. bu(x 1; x 2 ) = x a 1x2 1 a : c+d 1 x d c+d 2 = bu(x 1 ; x 2 ): (d) Kan gøres additiv ved en logaritmisk transformation : (e) log u(x 1 ; x 2 ) = log x a 1x2 1 a = a log x 1 +(1 a) log x 2. 11

12 Marginalnytte 1. Hvis u(x 1 ) er funktion af én variabel, da er 1 ) = u 0 (x 1 ): 2. Hvis u(x 1 ; x 2 ) er funktion af to variable, da kan vi også udregne marginalnytte af x 1 for fastholdt x 2 - den partielle 1 ; x 2 ) = u 0 x 1 (x 1 ; x 2 ): 12

13 Eksempler 1. Eksempel 1: u(x 1 ; x 2 ) = ax 1 + bx 1 ; x 2 ) = a: 2. Eksempel 2: u(x 1 ; x 2 ) = x a 1x2 1 1 ; x 2 ) = ax a 1 1 x2 1 a : 13

14 Sammenhæng mellem MRS og partielle aedede 1. Husk: MRS i et punkt er hælding på indifferenskurve. 2. I punktet (x 1 ; x 2 ) lad (dx 1 ; dx 2 ) være (lille) ændring i x 1 hhv x 2 så at u(x 1 ; x 2 ) = u(x + dx 1 ; x 2 + dx 2 ): Altså: du 1; x 2 ) dx 1 1; x 2 ) dx 2 = 2 Hvilket giver: 3. dx 2 dx 1 1 ;x 2 1 ;x

15 Transformationer, partielle aedede, MRS 1. Hvis u transformeres, da transformeres partiel aedet også! 2. Men MRS ændres ikke: 3. u(x 1 ; x 2 ). MRS 1 ;x 2 1 ;x 2 2 : 4. v(x 1 ; x 2 ) = f(u(x 1 ; x 2 )). 5. @x

16 Eksempel: Cobb-Douglas 1. u(x 1 ; x 2 ) = x c 1x d 2 2. MRS 1 ;x 2 1 ;x 2 ) c 1 1 x d 2 = cx x c dxd = c x 2 d x 1 : 3. v(x 1 ; x 2 ) = log(u(x 1 ; x 2 )) = c log x 1 + d log x 2 4. MRS 1 ;x 2 1 ;x 2 ) x 1 d 2 = c 1 x 2 = c d x x 1 : 2 16

17 Anvendelse: Bil eller bus til arbejde? 1. Lad x 1 være rejsetid i bil, y 1 rejsetid i bus. 2. Lad x 2 være omkostning ved at køre bil, y 2 være omkostning ved at køre bus Antag lineær nytte: u(x 1 ; :::; x n ) = 1 x 1 + ::: + n x n. 5. Estimér i 'ere ud fra observerede valg. 6. Domenich-McFadden (1975): Nyttefunktion gav korrekt forudsigelse af valg i 93% af tilfælde. 7. Med estimeret nyttefunktion kan vi: (a) Udregne MRS mellem to attributter. F.eks.: Hvad er værdi målt i $ for kortere rejsetid? (b) Lave forudsigelser. F.eks. hvor mange skifter til bus hvis rejsetiden forkortes? (c) Udregne velfærdsgevinster: Hvad er værdien (målt i $) for en rejsetidsforkortelse for dem der allerede tager bussen? 17

Kapitel 4: Nyttefunktioner

Kapitel 4: Nyttefunktioner Kapitel 4: Nyttefunktioner Hvad er nytte? - det gamle syn: 1. Nytte betragtet som en indikator for et individs overordnede velfærd. 2. Nytten er kardinal: Størrelsen på nyttedifferencer har betydning.

Læs mere

1 Kapitel 5: Forbrugervalg

1 Kapitel 5: Forbrugervalg 1 Kapitel 5: Forbrugervalg Vi har set på: 1. Budgetbegrænsninger. 2. Præferencer og nyttefunktioner. Nu stykker vi det hele sammen og studerer forbrugerens valg. 1 2 Optimalt forbrug - gra sk fremstilling

Læs mere

Kapitel 3: Præferencer. Hvordan skal vi modellere

Kapitel 3: Præferencer. Hvordan skal vi modellere Kapitel 3: Præferencer Hvordan skal vi modellere præferencer? 1. Paradigme (husk fra forrige kapitel): Forbrugeren vælger det bedste varebundt som han/hun har råd til. 2. Vi har set på hvordan man kan

Læs mere

Kapitel 3 Forbrugeradfærd

Kapitel 3 Forbrugeradfærd Emner Kapitel 3 orbrugeradfærd Præferencer udgetbegrænsning orbrugsvalg hapter 3: onsumer ehavior Slide Introduktion Virksomheder har brug for at kende forbrugeradfærd, når de prisfastsætter et produkt.

Læs mere

Kapitel 3: Præferencer. Hvordan skal vi modellere præferencer?

Kapitel 3: Præferencer. Hvordan skal vi modellere præferencer? Kapitel 3: Præferencer Hvordan skal vi modellere præferencer? 1. Paradigme (husk fra forrige kapitel): Forbrugeren vælger det bedste varebundt som han/hun har råd til. 2. Vi har set på hvordan man kan

Læs mere

Forbrugerteori: Optimale valg og efterspørgsel

Forbrugerteori: Optimale valg og efterspørgsel Forbrugerteori: Optimale valg og efterspørgsel Jesper Breinbjerg Department of Business and Economics University of Southern Denmark Akademiet for Talentfulde Unge, 20. marts 2014 Jesper Breinbjerg Optimale

Læs mere

1 Kapitel 5: Forbrugervalg

1 Kapitel 5: Forbrugervalg 1 Kapitel 5: Forbrugervalg Vi har set på: 1. budgetbegrænsninger 2. præferencer og nyttefunktioner. Nu stykker vi det hele sammen og studerer forbrugerens optimale valg. 2 Optimalt forbrug - grafisk fremstilling

Læs mere

1 Virksomheders teknologi (kapitel 18)

1 Virksomheders teknologi (kapitel 18) 1 Virksomheders teknologi (kapitel 18) 1. "Produktionsteori" har til formål at beskrive de teknologiske begrænsninger en virksomhed er underlagt. 2. Dette gøres ved "produktionsfunktioner". 3. Visse ligheder

Læs mere

1 Bytteøkonomier (kapitel 30)

1 Bytteøkonomier (kapitel 30) 1 Bytteøkonomier (kapitel 30) 1. Setup: Vi har en række forbrugere med hver deres initialbeholdning af en række goder. (a) Ren bytteøkonomi - ingen virksomheder - ingen produktion! 2. Typiske spørgsmål:

Læs mere

1 Virksomheders teknologi (kapitel 18)

1 Virksomheders teknologi (kapitel 18) 1 Virksomheders teknologi (kapitel 18) 1. Vi ønsker at beskrive de teknologiske begrænsninger som en virksomhed har. 2. Vi har set på nyttefunktioner indenfor forbrugerteorien. 3. Nu ser vi på "produktionsfunktioner".

Læs mere

1 Bytteøkonomier (kapitel 31)

1 Bytteøkonomier (kapitel 31) 1 Bytteøkonomier (kapitel 31) 1. Setup: Vi har en række forbrugere med hver deres initialbeholdning af en række goder. (a) Ren bytteøkonomi - ingen virksomheder - ingen produktion! (b) Vi har en "generel

Læs mere

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning Sandsynlighedstætheder og kontinuerte fordelinger på R Varians og middelværdi Normalfordelingen Susanne Ditlevsen Uge 48, tirsdag Tætheder og fordelingsfunktioner

Læs mere

Kvantitative Metoder 1 - Efterår Dagens program

Kvantitative Metoder 1 - Efterår Dagens program Dagens program Estimation: Kapitel 9.7-9.10 Estimationsmetoder kap 9.10 Momentestimation Maximum likelihood estimation Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1

Læs mere

Mikroøkonomi Projektopgave: Valg Under Usikkerhed

Mikroøkonomi Projektopgave: Valg Under Usikkerhed Mikroøkonomi Projektopgave: Valg Under Usikkerhed Peter Norman Sørensen, Økonomisk Institut Forår 2003 1. Formalia [10 minutter] Denne obligatoriske projektopgave er en guide til selvstudium af kapitel

Læs mere

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0. Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet Repetition:

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Kapitel 7 Introduktion til statistik Organisering af data Diskrete variabler Kontinuerte variabler Beskrivende statistik Fraktiler Gennemsnit Empirisk varians og spredning Empirisk korrelationkoe

Læs mere

Statistik og Sandsynlighedsregning 2

Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Uafhængighed og reelle transformationer Helle Sørensen Uge 8, mandag SaSt2 (Uge 8, mandag) Uafh. og relle transf. 1 / 16 Program I dag: Uafhængighed af kontinuerte

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner

Læs mere

Oversigt [S] 2.7, 2.9, 11.4

Oversigt [S] 2.7, 2.9, 11.4 Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable

Læs mere

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable Landmålingens fejlteori Lektion 2 Transformation af stokastiske variable - [email protected] http://people.math.aau.dk/ kkb/undervisning/lf12 Institut for Matematiske Fag Aalborg Universitet 1/31 Repetition:

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over

Læs mere

Forbrugeroverskud, ækvivalerende og kompenserende variationer

Forbrugeroverskud, ækvivalerende og kompenserende variationer Forbrugeroverskud, ækvivalerende og kompenserende variationer Introduktion Undervisningsnote til Mikro A, af Ole Kveiborg og Michael Teit Nielsen Vi har kigget en hel del på, hvordan forbrugeren reagerer

Læs mere

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål Program Statistik og Sandsynlighedsregning 2 Middelværdi og varians Helle Sørensen Uge 6, onsdag I formiddag: Tætheder og fordelingsfunktioner kort resume fra i mandags og et par eksempler mere om sammenhængen

Læs mere

Opgave 1: Mikro (20 point)

Opgave 1: Mikro (20 point) Københavns Universitet Det Naturvidenskablige Fakultet Økonomi 1, Matematik-Økonomi Studiet 4 timers prøve med hjælpemidler, 29. januar 2003. Alle opgaver skal besvares. Ved bedømmelsen vægtes alle spørgsmål

Læs mere

Bedste rette linje ved mindste kvadraters metode

Bedste rette linje ved mindste kvadraters metode 1/9 Bedste rette linje ved mindste kvadraters metode - fra www.borgeleo.dk Figur 1: Tre datapunkter og den bedste rette linje bestemt af A, B og C Målepunkter og bedste rette linje I ovenstående koordinatsystem

Læs mere

Mich Tvede 29. januar 2003. Økonomisk Institut Københavns Universitet

Mich Tvede 29. januar 2003. Økonomisk Institut Københavns Universitet Mich Tvede 29. januar 2003. Økonomisk Institut Københavns Universitet Lars Peter Østerdal 2. November 2004. 1 Forbrugere Opgave 1.1 1. Illustrer følgende budgetrestriktioner grafisk: a) p 1 =1,p 2 =1ogm

Læs mere

Substitutions- og indkomsteffekt ved prisændringer

Substitutions- og indkomsteffekt ved prisændringer Substitutions- og indkomsteffekt ved prisændringer Erik Bennike 14. november 2009 Denne note giver en beskrivelse af de relevante begreber omkring substitutions- og indkomsteffekter i mikroøkonomi. 1 Introduktion

Læs mere

OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere

OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere Epidemiologi og biostatistik. Uge 5, torsdag 5. september 003 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver

Læs mere

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable Normal fordelingen Normal fordelingen Egenskaber ved normalfordelingen Standard normal fordelingen Find sandsynligheder ud fra tabel Transformation af normal fordelte variable Invers transformation Repetition

Læs mere

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable Landmålingens fejlteori - lidt om kurset Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet Kursusholder

Læs mere

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0.

UGESEDDEL 9 LØSNINGER. Sydsæter Theorem 1. Sætning om implicitte funktioner for ligningen f(x, y) = 0. UGESEDDEL 9 LØSNINGER Sydsæter 531 Theorem 1 Sætning om implicitte funktioner for ligningen f(x, y) = 0 Lad f(x, y) være C 1 i mængden A R n og lad (x 0, y 0 ) være et indre punkt i A hvor f(x 0, y 0 )

Læs mere

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015

Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015 Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en

Læs mere

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2

Økonometri 1. Den simple regressionsmodel 11. september Økonometri 1: F2 Økonometri 1 Den simple regressionsmodel 11. september 2006 Dagens program Den simple regressionsmodel SLR : Én forklarende variabel (Wooldridge kap. 2.1-2.4) Motivation for gennemgangen af SLR Definition

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Mich Tvede 29. december 2007 Økonomisk Institut Københavns Universitet. En virksomhed har følgende produktionsmulighedsområde:

Mich Tvede 29. december 2007 Økonomisk Institut Københavns Universitet. En virksomhed har følgende produktionsmulighedsområde: Mich Tvede 29. december 2007 Økonomisk Institut Københavns Universitet 1 Produktion Opgave 1.1 En virksomhed har følgende produktionsmulighedsområde: Y = {(x, y) x, y 0ogy ax}, hvor x er input/produktionsfaktoren,

Læs mere

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen

MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner f : R R En funktion f : R R er differentiabel

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi

Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi Vejledende opgavebesvarelse Økonomisk kandidateksamen 2005I 1. årsprøve, Mikroøkonomi Claus Thustrup Kreiner OPGAVE 1 1.1 Forkert. En isokvant angiver de kombinationer af inputs, som resulterer i en given

Læs mere

Anvendt Lineær Algebra

Anvendt Lineær Algebra Anvendt Lineær Algebra Kursusgang 3 Anita Abildgaard Sillasen Institut for Matematiske Fag AAS (I17) Anvendt Lineær Algebra 1 / 38 Vi betragter et lineært ligningssystem (af m ligninger med n ubekendte)

Læs mere

Matematisk modellering og numeriske metoder

Matematisk modellering og numeriske metoder Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version

University of Copenhagen. Notat om statistisk inferens Larsen, Martin Vinæs. Publication date: Document Version Peer-review version university of copenhagen University of Copenhagen Notat om statistisk inferens Larsen, Martin Vinæs Publication date: 2014 Document Version Peer-review version Citation for published version (APA): Larsen,

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/41 Landmålingens fejlteori - lidt om kurset

Læs mere

Institut for virksomhedsledelse og økonomi, Syddansk Universitet. Workshop. Opgave 1. = = 3x 2

Institut for virksomhedsledelse og økonomi, Syddansk Universitet. Workshop. Opgave 1. = = 3x 2 Institut for virksomhedsledelse og økonomi, Syddansk Universitet Workshop Opgave 1 Antag at en forbrugers nyttefunktion er givet ved u(, x ) x 3 1 x. Forbrugeren har derudover følgende budgetbetingelse:

Læs mere

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med

Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform

Læs mere

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske

Læs mere

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET.

NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. NATURVIDENSKABELIG KANDIDATEKSAMEN VED KØBENHAVNS UNIVERSITET. Eksamen i Statistik 1TS Teoretisk statistik Den skriftlige prøve Sommer 2005 3 timer - alle hjælpemidler tilladt Det er tilladt at skrive

Læs mere

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Statistik Lektion 3 Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen Repetition En stokastisk variabel er en funktion defineret på S (udfaldsrummet, der antager

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Oversigt [S] 2.7, 2.9, 11.4

Oversigt [S] 2.7, 2.9, 11.4 Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Kvadratisk regression

Kvadratisk regression Kvadratisk regression Helle Sørensen Institut for Matematiske Fag Københavns Universitet Juli 2011 I kapitlet om lineær regression blev det vist hvordan man kan modellere en lineær sammenhæng mellem to

Læs mere

IKKE-LINEÆR OPTIMERING

IKKE-LINEÆR OPTIMERING IKKE-LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Konvekse funktioner 1 2 Optimering uden bibetingelser 1 3 Optimering under bibetingelser givet ved ligheder 2 4 Optimering under bibetingelser givet

Læs mere

1 Oligopoler (kapitel 27)

1 Oligopoler (kapitel 27) 1 Oligopoler (kapitel 27) 1. Vi har set på to vigtige markedsformer: (a) Fuldkommen konkurrence. Alle virksomheder pristagere - en rimelig antagelse i situation med mange "små" aktører. (b) Monopol. Kun

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl

Landmålingens fejlteori - Lektion4 - Vægte og Fordeling af slutfejl Landmålingens fejlteori Lektion 4 Vægtet gennemsnit Fordeling af slutfejl - [email protected] Institut for Matematiske Fag Aalborg Universitet 1/36 Estimation af varians/spredning Antag X 1,...,X n stokastiske

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen

MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible

Læs mere

matematik-økonomi-studerende

matematik-økonomi-studerende matematik-økonomi-studerende Første studieår Introduktion til matematiske metoder i økonomi Skriftlig prøveeksamen december 2012 med korte svar Dato: selvvalgt Tidspunkt: varighed 4 timer Tilladte hjælpemidler:

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

Økonometri: Lektion 2 Multipel Lineær Regression 1/27

Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Økonometri: Lektion 2 Multipel Lineær Regression 1/27 Multipel Lineær Regression Sidst så vi på simpel lineær regression, hvor y er forklaret af én variabel. Der er intet, der forhindre os i at have mere

Læs mere

1 Markedsefterspørgsel (kapitel 15) 1. Markedseftersspørgselskurven: Sammenhængen mellem markedspris og samlet efterspørgsel på et marked.

1 Markedsefterspørgsel (kapitel 15) 1. Markedseftersspørgselskurven: Sammenhængen mellem markedspris og samlet efterspørgsel på et marked. 1 Markedsefterspørgsel (kapitel 15) 1. Markedseftersspørgselskurven: Sammenhængen mellem markedspris og samlet efterspørgsel på et marked. 2 Fra forbrugerefterspørgsel til markedsefterspørgsel 1. For enhver

Læs mere

Teoretisk Statistik, 16. februar Generel teori,repetition

Teoretisk Statistik, 16. februar Generel teori,repetition 1 Uge 8 Teoretisk Statistik, 16. februar 2004 1. Generel teori, repetition 2. Diskret udfaldsrum punktssh. 3. Fordelingsfunktionen 4. Tæthed 5. Transformationer 6. Diskrete vs. Kontinuerte stokastiske

Læs mere

Beskrivende statistik

Beskrivende statistik Beskrivende statistik Stikprøve af størrelse n for variablen x: x 1, x 2,, x n Beskriv fordelingen af data med nogle få talstørrelser. Centralt mål: en værdi som data er centreret om. Variationsmål: mål

Læs mere

Lineær og logistisk regression

Lineær og logistisk regression Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression

Læs mere

6. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag)

6. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag) Institut for Folkesundhed Afdeling for Biostatistik Afdeling for Epidemiologi. SEMESTER Epidemiologi og Biostatistik Opgaver til Uge 1 (fredag) Opgave 1 Udgangspunktet for de følgende spørgsmål er artiklen:

Læs mere

Vektorer og lineær regression

Vektorer og lineær regression Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Statistik Lektion 1 Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning Introduktion Kasper K. Berthelsen, Inst f. Matematiske Fag Omfang: 8 Kursusgang I fremtiden

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0

Middelværdi og varians. Kovarians. korrelation = 0.02 korrelation = 0.7 korrelation = 1.0 Middelværdi og varians Middelværdien af en diskret skalarfunktion f(x), for x = 0, N er: µ = N f(x) N x=0 For vektorfuktioner er middelværdivektoren tilsvarende: µ = N f(x) N x=0 Middelværdien er en af

Læs mere

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen

Statistik Lektion 2. Betinget sandsynlighed Bayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV Binomialfordelingen Statistik Lektion etinget sandsynlighed ayes regel Diskrete stokastiske variable Middelværdi og varians for diskret SV inomialfordelingen Repetition Udfaldsrum S Hændelse S Simpel hændelse O i 1, 3 4,

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Matricer og lineære ligningssystemer

Matricer og lineære ligningssystemer Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix

Læs mere

Eksamen i Diskret Matematik

Eksamen i Diskret Matematik Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:

Læs mere

Teoretisk Statistik, 13 april, 2005

Teoretisk Statistik, 13 april, 2005 Poissonprocessen Teoretisk Statistik, 13 april, 2005 Setup og antagelser Fordelingen af X(t) og et eksempel Ventetider i poissonprocessen Fordeling af ventetiden T 1 til første ankomst Fortolkning af λ

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere