TALTEORI Følger og den kinesiske restklassesætning.

Relaterede dokumenter
TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Ligninger og det der ligner.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, august 2013, Kirsten Rosenkilde.

TALTEORI Wilsons sætning og Euler-Fermats sætning.

Talteoriopgaver Træningsophold ved Sorø Akademi 2007

TALTEORI Følger og den kinesiske restklassesætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

TALTEORI Primfaktoropløsning og divisorer.

Matematisk induktion

Tip til 1. runde af Georg Mohr-Konkurrencen - Talteori, Kirsten Rosenkilde. Opgave 1. Hvor mange af følgende fem tal er delelige med 9?

Algebra - Teori og problemløsning

Polynomier. Indhold. Georg Mohr-Konkurrencen. 1 Polynomier 2. 2 Polynomiumsdivision 4. 3 Algebraens fundamentalsætning og rødder 6

Tip til 1. runde af Georg Mohr-Konkurrencen. Talteori. Georg Mohr-Konkurrencen

Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.

Forslag til løsning af Opgaver til afsnittet om de naturlige tal (side 80)

sætning: Hvis a og b er heltal da findes heltal s og t så gcd(a, b) = sa + tb.

t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36

Noter om kombinatorik, Kirsten Rosenkilde, Marts Kombinatorik

2. Gruppen af primiske restklasser.

Noter til Perspektiver i Matematikken

Noter om polynomier, Kirsten Rosenkilde, Marts Polynomier

Vinderseminar Diskret matematik. Kirsten Rosenkilde. 1. Diskret matematik.

6. december. Motivation. Internettet: Login til DIKU (med password) Handel med dankort Fortrolig besked Digital signatur

Matematiske metoder - Opgavesæt

Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.

Spilstrategier. Indhold. Georg Mohr-Konkurrencen. 1 Vindermængde og tabermængde 2. 2 Kopier modpartens træk 4

Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så

1 Sætninger om hovedidealområder (PID) og faktorielle

Primtal - hvor mange, hvordan og hvorfor?

Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2

Opgave 1. Hvilket af følgende tal er størst? Opgave 2. Hvilket af følgende tal er mindst? Opgave 3. Hvilket af følgende tal er størst?

P (n): rekursiv beregning af f n kræver f n beregninger af f 1. P (n) er sand for alle n 2.

Funktionalligninger - løsningsstrategier og opgaver

Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse

DM72 Diskret matematik med anvendelser

KRYPTOLOGI ( Litt. Peter Landrock & Knud Nissen : Kryptologi)

Reeksamen i Diskret Matematik

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Diskret matematik

Bevisteknikker (relevant både ved design og verifikation)

Noter om primtal. Erik Olsen

Matematiske metoder - Opgaver

Matematikken bag kryptering og signering RSA

Spilstrategier. 1 Vindermængde og tabermængde

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Matematikken bag kryptering og signering RSA

Transformationsgeometri: Inversion. Kirsten Rosenkilde, august Inversion

Reeksamen i Diskret Matematik

Eulers sætning Matematikken bag kryptering og signering v.hj.a. RSA Et offentlig nøgle krypteringssytem

83 - Karakterisation af intervaller

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Projekt 7.9 Euklids algoritme, primtal og primiske tal

Noter om opgaver i diskret matematik, Kirsten Rosenkilde, Maj Diskret matematik

brikkerne til regning & matematik tal og algebra F+E+D preben bernitt

Her skal du lære om 1. Talfølge og talrække 2. Afsnitssum 3. Konvergens 4. Konvergente rækker har små led 5. Regneregler

Noget om en symmetrisk random walks tilbagevenden til udgangspunktet

10. Nogle diofantiske ligninger.

Archimedes Princip. Frank Nasser. 12. april 2011

Meditation over Midterbinomialkoefficienten

Normale tal. Outline. Hvad er tilfældighed? Uafhængighed. Matematiklærerdag Simon Kristensen. Aarhus Universitet, 24/03/2017

Opgave 1 Regning med rest

Funktionalligninger. Anders Schack-Nielsen. 25. februar 2007

Fibonacci følgen og Det gyldne snit

DM549 Diskrete Metoder til Datalogi

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Eksempel på den aksiomatisk deduktive metode

OM BEVISER. Poul Printz

π er irrationel Frank Nasser 10. december 2011

Spilstrategier, Kirsten Rosenkilde, september Spilstrategier

brikkerne til regning & matematik tal og algebra preben bernitt

Matematisk modellering og numeriske metoder. Lektion 8

Tallet π er irrationalt Jens Siegstad

Undersøgende aktivitet om primtal. Af Petur Birgir Petersen

Kvadratiske matricer. enote Kvadratiske matricer

Polynomiumsbrøker og asymptoter

Løsningsforslag til Tal, algebra og funktioner klasse

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Baltic Way opgavesæt Sorø 2005 Løsninger

Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:

tal og algebra F+E+D brikkerne til regning & matematik preben bernitt

Eksamen i Diskret Matematik

Martin Geisler Mersenne primtal. Marin Mersenne

UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, Indledning

Grafteori, Kirsten Rosenkilde, september Grafteori

LINALG JULENØD 2013 SUNE PRECHT REEH

Periodiske kædebrøker eller talspektre en introduktion til programmet periodisktalspektrum

Eksamen i Diskret Matematik

1 Program for forelæsningen

OM KAPITLET ELEVFORUDSÆTNINGER LÆS OG SKRIV MATEMATIK. 6. Det vil derfor være relativt nyt for de fleste elever, at

Fejlkorligerende køder Fejlkorrigerende koder

Matricer og lineære ligningssystemer

Algebra2 Obligatorisk opgave

3.1 Baser og dimension

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen runde

Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).

DIOFANTISKE LIGNINGER FERMATS SIDSTE SÆTNING

Ringe og Primfaktorisering

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen runde

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Transkript:

Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne Terps og Peter Trosborgs noter om talteori Noterne vil primært introducere forskellige opgaveteknikker med fokus på følger, samt opgaver hvor man har brug for den kinesiske restklassesætning 1 Følger Mange opgaver til internationale konkurrencer handler om følger af heltal som man typisk skal vise har en bestemt egenskab, fx at de er periodiske fra et vist trin eller ikke indeholder kvadrattal Følgerne er ofte beskrevet rekursivt, og derfor skal man ofte se på rekursionsformlen og evt omskrive denne 11 Periodiske følger En følge (a n ) n N kaldes periodisk hvis der findes et positivt helt tal m så a n+m = a n for alle n N Periodens længde er det mindste positive hele tal m med denne egenskab Følgen (a n ) n N kaldes periodisk fra et vist trin hvis der findes positive hele tal m og k så a n+m = a n for alle n k 12 Eksempel I følgen 1, 9, 7, 7, 4, 7, 5, 3, 9, 4, 1, er hvert ciffer fra og med det femte summen af de fire foregående modulo 10 I dette eksempel skal vi undersøge hvilken af disse talkombinationer der kan indgå i følgen: a) 1,2,3,4, b) 3,2,6,9, c) 0,1,9,7 Da der kun findes et endeligt antal kombinationer med fire cifre, vil følgen være periodisk fra et vist trin Men da man ud fra fire cifre i følgen også entydigt kan bestemme det foregående, kan man fortsætte den uendeligt i begge retninger med en fast periode Derfor vil 1,9,7,7 optræde igen længere fremme i følgen, og cifferet lige inden vil være 0 Dermed optræder kombinationen 0, 1, 9, 7 i følgen I mange opgaver med følger kan man netop konkludere at følgen må være periodisk fra et vist trin da der kun er endeligt mange muligheder Herefter skal man så overveje om det først er fra et vist trin at den er periodisk, eller om den som i dette eksempel er periodisk fra starten Vi mangler stadigt at finde ud af om 1,2,3,4 og 3,2,6,9 indgår i følgen Da den er periodisk, kan man jo i princippet blive ved til man har fundet hele perioden, og så se om de indgår Dette er dog ikke altid en god strategi da længden af perioden kan være temmelig stor Det kan som regel betale sig at lede efter et andet system i følgen med en kortere periode Reducerer vi i dette eksempel følgens cifre modulo 2, får vi 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, Her ud fra kan vi se at følgen har 1, 1, 1, 1, 0 som periode når vi regner modulo 2, og dette udelukker a) og b) 13 Opgave Fibonacci-tallene er som bekendt defineret ved F 0 = 0, F 1 = 1 og F n = F n 1 + F n 2 for n 2 Vis at for ethvert helt tal k findes et positivt helt tal n så k går op i F n

Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 2 14 Opgave For et positivt helt tal n betegner a n det sidste ciffer i n (nn) Bevis at følgen (a n ) er periodisk, og bestem længden af perioden (Baltic Way 2006) 15 Eksempel Vi ser på følgen a 1 = a 2 = 1 og a n+2 = a n a n+1 + 1 for n > 2, og vil gerne vise at der ikke findes noget n, n > 2, så a n er et kvadrattal Følgen er selvfølgelig ikke periodisk, men regner vi modulo fx 4, er følgen periodisk fra et vist trin Her får vi 1, 1, 2, 3, 3, 2, 3, 3, 2, 3, 3,, dvs at følgen er periodisk fra n = 3 med perioden 2, 3, 3 Da 2 og 3 ikke er kvadratiske rester modulo 4, er a n ikke et kvadrattal for noget n > 2 16 Opgave En følge af positive hele tal (a n ) er givet ved a 0 = m og a n+1 = a 5 n + 487, n 0 Bestem de værdier af m for hvilke følgen indeholder flest muligt kvadrattal (NMC 2006) 17 Opgave En følge (x n ) er givet ved x 0 = a, x 1 = 2 og x n = 2x n 1 x n 2 x n 1 x n 2 + 1 for n > 1 Find alle hele tal a således at 2x 3n 1 er et kvadrattal for alle n 1 18 Eksempel Om en følge af naturlige tal a 0, a 1, a 2, oplyses at a 0 < a 1 og a n = 3a n 1 2a n 2 for n > 1 Vi ønsker at vise at a m a m+1 (mod 2 m ) for alle naturlige tal m Følgen er ikke periodisk, og da det tal vi skal regne modulo afhænger af indekset, kan vi heller ikke betragte følgen modulo et fast tal I stedet udnytter vi rekusionsformlen og omskriver på følgende måde Da a n = 3a n 1 2a n 2, er a m+1 a m = 2 1 (a m a m 1 ) = 2 2 (a m 1 a m 2 ) = = 2 m (a 1 a 0 ) Her af kan vi se at a m a m+1 (mod 2 m ) for alle naturlige tal m 19 Opgave Lad (F n ) være følgen af Fibonaccital Vis at F n og F n+1 er indbyrdes primiske 110 Opgave En følge af naturlige tal a 1, a 2, a 3, opfylder at hvis m, n N, m < n og m går op i n, da vil a m gå op i a n og a m < a n Bestem den mindst mulige værdi af a 2000 (Baltic Way 2000) 111 Opgave Lad a 1, a 2, være en følge af heltal med uendeligt mange positive og uendeligt mange negative tal Antag at der for ethvert naturligt tal n fås n forskellige rester når tallene a 1, a 2,, a n deles med n Vis at ethvert helt tal optræder netop en gang i talfølgen (IMO 2005)

Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 3 2 Den kinesiske restklassesætning I nogle opgaver har man brug for at undersøge om der findes løsninger x til kongruenssystemer af typen, x a 2 (mod n 2 ),, x a m (mod n m ) Dette handler den kinesiske restklasse sætning om 21 Den kinesiske restklassesætning Lad n være et naturligt tal, og n = n 1 n 2 n m, hvor (n i, n j ) = 1 når i j Da findes uendeligt mange heltallige løsninger til kongruenssystemet x a 2 (mod n 2 ) x a m (mod n m ) Samtlige løsninger udgør netop en restklasse modulo n BEVIS: Sætningen vises ved induktion Den er oplagt sand for m = 1 Betragt nu tilfældet m = 2 Vi ønsker at bestemme en løsning x til x a 2 (mod n 2 ) Da (n 1, n 2 ) = 1 findes en invers n 1 1 til n 1 modulo n 2 Betragt x = a 1 + (a 2 a 1 )n 1 1 n 1 Der gælder at x = a 1 + (a 2 a 1 )n 1 1 n 1 a 1 (mod n 1 ), og x = a 1 + (a 2 a 1 )n 1 1 n 1 a 1 (a 2 a 1 ) = a 2 (mod n 2 ) Dermed har vi konstrueret en løsning til kongruenssystemet Vi viser nu at samtlige løsninger netop udgør en restklasse modulo n Det er klart at hvis y x (mod n), da er y også en løsning Antag nu at x og y er løsninger Da vil både n 1 og n 2 gå op i x y, og da (n 1, n 2 ) = 1, vil også n gå op i x y Dermed udgør løsningerne netop en restklasse modulo n Vi skal nu til selve induktionsskridtet, men har faktisk lavet alt arbejdet i tilfældet m = 2 Antag nu at sætningen gælder for m Vi ønsker nu at vise at sætningen også gælder for m + 1 Lad n = n 1 n 2 n m+1, hvor (n i, n j ) = 1 når i j Betragt kongruenssystemet x a 2 (mod n 2 ) x a m+1 (mod n m+1 ) Ifølge induktionsantagelsen udgør samtlige løsninger til de m første kongruenser netop en restklasse modulo n = n 1 n 2 n m Lad a være en repræsentant for denne restklasse Løsningerne til kongruenssystemet x a (mod n ) x a m+1 (mod n m+1 )

Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 4 er identiske med løsningerne til det oprindelige kongruenssystem, og de udgør ifølge induktionsantagelsen én restklasse modulo n n m+1 = n, da (n, n m+1 ) = 1 Dermed er sætningen bevist 22 Eksempel Vi ønsker ved hjælp af den kinesiske restklassesætning at bestemme samtlige løsninger til x 3 (mod 7) x 2 (mod 17) Først bemærker vi at 5 er invers til 7 modulo 17 da 5 7 1 (mod 17) Dermed er x = 3 + (2 3)5 7 = 32 en løsning til kongruenssystemet, og vi ved at samtlige løsninger er x = 32 + k7 17, k Z 23 Opgave Bestem samtlige løsninger til kongruenssystemet 24 Eksempel x 3 (mod 6) x 6 (mod 19) I eksemplet før så vi hvordan man kan benytte den kinesiske restklassesætning til at bestemme samtlige løsninger til et kongruenssystem, men i nogle opgaver har man blot behov for at vide at der findes en løsning I dette eksempel vil vi vise at der findes 1000 (eller så mange det skal være) på hinanden følgende hele tal som alle er delelige med et kubiktal større end 1 Først vælger vi 1000 forskellige primtal p 1, p 2,, p 1000 Ifølge den kinesiske restklassesætning har følgende kongruenssystem en løsning x 1 (mod p 3 1) x 2 (mod p 3 2) x 1000 (mod p 3 1000) Hvis x er en løsning, da er x + 1, x + 2,, x + 1000 tusind på hinanden følgende hele tal som alle er delelige med et kubiktal 25 Opgave Vis at for alle naturlige tal n findes der n på hinanden følgende hele tal således at tal nummer i er delelig en i te potens af et helt tal 26 Opgave Vis at for alle naturlige tal n og m findes n på hinanden naturlige tal, således at hvert af disse er deleligt med mindst m forskellige primtal

Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 5 27 Opgave Vis at der eksisterer en følge af naturlige tal a 1, a 2, således at summen af vilkårlige n på hinanden følgende elementer er delelig med n 2 (Baltic Way 2006)