Empirisk Miniprojekt 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Empirisk Miniprojekt 2"

Transkript

1 Empirisk Miniprojekt 2 Michael Bejer-Andersen, Thomas Thulesen og Emil Holmegaard Gruppe November 2010 Indhold 1 Introduktion Bane og Robot Counter Steer Metode Kausal model Piloteksperimenter Design af forsøg Spurious effects Biasing Fremgangsmåde Eksperimenter Hypotesetest T-test Konklusion 6 5 Litteratur 6 6 Arbejdsdeling 6 A Resultat af Piloteksperimenter 7 B Resultat af Eksperimenter 8 C R script 9 1

2 1 Introduktion Dette miniprojekt omhandler brugen af empiriske metoder. I forbindelse med udviklingen af en robot som kan følge en sort streg, er anvendt empiriske metoder med henblik på at fastslå om en teknik ved navn Counter Steer forbedrer robottens hastighed. 1.1 Bane og Robot Der er bygget en robot i LEGO Mindstorms, se figur 1(a). Robotten benytter tre lyssensorer til at detektere streger. Robotten har to motorer der driver hvert sit hjul, og robotten er programmeret til at styre motorene på baggrund af input fra lyssensorerne. Dermed er det muligt for robotten at følge en streg. Den anvendte bane er opbygget af A3-papir med to typer påtrykte sorte linjer. Disse er tapet sammen til én stor bane, se figur 1(b). Robotten er programmeret i Not exactly C (NXC). (a) Robotten. (b) Banen. Tuschen markerer målstregen. Figur 1: Bane og robot. De tre lyssensorer sidder på række, og målet er at kun den midterste sensor aktiveres. Hvis de yderste sensorer aktiveres, vil robotten dreje for at opnå målet om at kun midterste sensor aktiveres, og dermed følge stregen. 1.2 Counter Steer Teknikken Counter Steer bruges til at rette robotten op når den skal følge en lige streg efter et sving. Denne funktionalitet nedsætter de zig-zag bevægelser som robotten ellers vil lave når den kommer skævt ind på en lige strækning. I et vist tidsrum vil robotten rette op, ved at dreje kontra selvom kun den midterste sensor aktiveres (hvor den normalt ville fortsætte ligeud og resultere i kraftige zig-zag bevægelser). Counter Steer svarer til hvad man vil gøre i en bil for at køre ligeud efter et sving. Det er dog usikkert om Counter Steer vil have den ønskede effekt på robotten, nemlig at gøre robotten hurtigere. 2

3 2 Metode For at få overblik over hvilke faktorer der spiller ind på robottens opførsel i forbindelse med at følge den konstruerede bane, opstilles en kausal model over systemet. I forlængelse af denne kausale model foretages udforskende piloteksperimenter for at få en fornemmelse for i hvilken grad de forskellige faktorer påvirker succesraten og lap-time. 2.1 Kausal model Den foreløbige udgave af den kausale model kan ses i figur 2. Figur 2: Foreløbig udgave af kausal model. Målet er at opnå en høj succesrate og samtidig en kort lap-time. Bokse markeret med * er faktorer som direkte kan styres med parametre i programmet. Dog kan afladning af batteriet have indflydelse på hastigheden, som det fremgår af figuren. Zig-zag effekten betegner fænomenet hvor robotten ikke er i stand til at følge linien korrekt, men i stedet drejer skiftevis mellem de to yderpositioner. Zig-zag effekten har indflydelse på den tid det tager at gennemføre en runde. Counter Steer er netop beregnet til at reducere dette fænomen ved at dreje kontra når robotten kommer skævt ind på en linje. Det er desuden muligt at fintune en og hastigheden i sving for at reducere Zig-zag effekten. 2.2 Piloteksperimenter Der er foretaget udforskende piloteksperimenter for at finde en sammenhæng mellem de forskellige faktorers indflydelse på lap-time og succesrate. Der blev foretaget en kvalitativ vurdering af robottens adfærd rundt på banen for forskellige parameterværdier. Denne vurdering fokuserer på omfanget af Zig-zag effekt, hvor præcist robotten følger stregen og hvor hurtig robotten er om at gennemføre en runde. I appendix A ses de observationer der er gjort i forbindelse med piloteksperimenterne. Piloteksperimenterne resulterede i optimering af flere parametre. Counter Steer parametrene viste indflydelse på gennemførselstiden. Det ønskes derfor undersøgt om der er statistisk belæg for at Counter Steer faktisk forbedrer gennemførselstiden. Der blev foretaget piloteksperimenter med lyssensorenes følsomhed og placering. Da programmet er lavet så robotten kan kalibreres, viste disse piloteksperimenter at lysforholdene ikke havde stor betydning. Lysforholdene har dog betydning hvis der på banen er store forskelle i 3

4 belysning, for eksempel fuldstændig mørke på en del, og direkte sollys på en anden del af banen. Dette vil kræve at der laves et nyt threshold på flere forskellige steder på banen. 2.3 Design af forsøg Det er ønsket at sammenligne gennemførselstiden med og uden Counter Steer. Ved design af forsøg er det nødvendigt at være opmærksom på alle de faktorer der kan have indflydelse på resultatet. Herunder er både faktorer som kan kontrolleres samt faktorer der ikke er kontrollerbare Spurious effects Spurious effects er fejl i forsøg som kan lede til forkerte fortolkninger af resultater [Cohen, 1995, sec. 3.2]. En type af spurious effects er ceiling og flooring effekter. Et eksempel på flooring kan være hvis forsøget udføres på en bane som er så nem at begrænsningen ligger i de fysiske egenskaber for robotten fremfor i programmet. - Det kunne for eksempel værre hvis robotten allerede gennemfører banen med den hurtigst mulige gennemførselstid. Her vil det aldrig være muligt at forbedre tiden, og en sammenligning vil derfor ikke give mening. Modsat vil ceiling opstå hvis banen er så svær at robotten aldrig gennemfører den. Det blev observeret i piloteksperimenterne at robotten ikke kører den optimale rute, og derfor er flooring ikke et problem. Hvis robotten kører af sporet og ikke er i stand til at gennemføre en runde, indgår dette i måling af succesraten, mens det fejlede forsøg ikke indgår i målingen af gennemføringstiden. Dette gøres for at undgå ceiling effekten, da gennemsnittet ellers ville blive kunstigt højt og ødelægge sammenligningsgrundlaget. Regression er et fænomen skyldes tilfældigheder som kan forårsage at resultatet fejlfortolkes. For eksempel hvis der tilføjes ekstra kode i forbindelse med Counter Steer funktionaliteten. I afviklingen af denne kode kunne der tilfældigt opstå en resourcekonflikt således der opstår et midlertidigt delay i systemet. Dette kan betyde at den nye Counter Steer tager længere tid om at gennemføre banen. Der vil her kunne opstå regression. Derfor lægges der vægt på at der ændres så lidt som muligt i programmet, såvel som den fysiske opbygning. Ordering kan opstå hvis rækkefølgen hvormed eksperimenter udføres, har betydning for resultatet. For eksempel vil det være et problem hvis batteriet bliver kraftigt afladet i løbet af eksperimentet. Ved at oplade robotten mellem hver forsøgsrække er det forsøgt at undgå dette. Ordering kan også opstå hvis temperaturen eller lysindfald ændres betydeligt imens forsøgene udføres. Desuden vurderes det at slid på bane og robot ikke har nogen indvirkning på resultatet Biasing Biasing kan opstå hvis der er forskellige betingelser for de forsøgsrækker man ønsker at udføre [Cohen, 1995, sec. 3.3]. Derfor er det nødvendigt at sørge for at forsøgene med og uden Counter Steer udføres under nøjagtigt samme forhold. Det betyder at robotten skal benytte samme omløbsretning på den samme bane. Desuden anvendes løbende start, for at undgå at robotten starter et mere fordelagtigt sted ved en af forsøgsrækkerne. 4

5 2.3.3 Fremgangsmåde Forsøgene foretages med følgende fremgangsmåde. Fremgangsmåden tager højde for de nævnte designovervejelser. Oplad batteri. Programmer robot til at køre uden Counter Steer og et passende threshold for lyssensorer. Placer robot på banen så den får en halv omgangs løbende start. Mål tiden for hver omgang. Og lad robotten køre 30 runder. Hvis robotten ryger af banen, noteres runden som en fejl, og forsøget fortsættes igen med løbende start. Stop robotten efter 30 runder. Oplad robotten. Robotten programmeres til at benytte Counter Steer og samme threshold som før. Forsøget gentages. 3 Eksperimenter I appendix B ses resultatet af de målinger der blev foretaget med og uden Counter Steer. Ved hjælp af programmet R, er histogrammerne vist i figur 3 fundet. (a) Uden Counter Steer (b) Med Counter Steer Figur 3: Histogrammer for de to måleserier. Det blev forventet at resultaterne blev normalfordelte. Figuren viser en fordeling som tilnærmelsesvis kan ses som en normalfordeling. Der er foretaget 31 målinger både med og uden Counter Steer. Målingerne uden Counter Steer indeholder én måling som fejlede. Dette er imidlertid ikke nok til at konkludere at Counter Steer metoden er mere robust end hvis der ikke anvendes Counter Steer. Der ses bort fra denne ene måling. Gennemsnittet benyttes til sammenligning af de to grupper, og centralgrænseteoremet [Løvås, 2004, sec. 5.8] siger at gennemsnittet kan forventes at være normalfordelt når antallet af målinger bliver 20. 5

6 3.1 Hypotesetest Der ønsket undersøgt følgende hypoteser: H 0 der er ingen forskel på om der anvendes Counter Steer eller ej (µ ucs = µ mcs ). H 1 robotten gennemfører en bane hurtigere eller langsommere hvis der anvendes Counter Steer (µ ucs µ mcs ) T-test T-test anvendes til hypotesetest. T-testen kan benyttes når antallet af samples er få (modsat Z-test) [Cohen, 1995, sec. 4.4]. T-test foretages ved hjælp af R, se script i appendix C. Resultatet af T-testen bliver: Welch Two Sample t-test data: withc$time and withoutc$time t = , df = , p-value = 4.439e-14 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y Her fås en p-værdi tæt på 0. Det betyder at sandsynligheden for at H 0 er korrekt er meget lille. Dermed kan det konkluderes at H 0 kan forkastes med stort signifikansniveau, og at Counter Steer derfor enten er hurtigere eller langsommere. Det ses at gennemsnittet er cirka 59 og 75 sekunder for henholdsvis med og uden Counter Steer. Det betyder at Counter Steer gør robotten hurtigere på den givne bane. Med 95% sandsynlighed er robotten mellem 13 og 19 sekunder hurtigere med Counter Steer. 4 Konklusion Eksperimenterne er forløbet som planlagt, og det er blevet vist at Counter Steer giver en signifikant forbedring af gennemførselstiden for en runde på den givne bane. Der er foretaget piloteksperimenter som har vist nogen sammenhænge mellem valg af parametre og performance for robotten. Dog kan disse parametre optimeres yderligere for at opnå en bedre performance. 5 Litteratur Poul R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge, ISBN Gunnar G. Løvås. Statistikk for universiteter og høgskoler. Universitetsforlaget, Oslo, 2nd edition, ISBN Arbejdsdeling Der har været lige arbejdsdeling mellem alle medlemmer af gruppen, da alle har bidraget til alle aktiviteter. 6

7 A Resultat af Piloteksperimenter Forsøg Hastighed i sving Hastighed ligeud Stor Lille Counter Steer Counter Steer tid (cycles) Vurdering God, men langsom og kører af banen i sving God Dårlig, kører af banen i sving Nogenlunde Klarer sving rigtig godt Lidt værre Klarer sving rigtig godt, kører sjældent af sporet Nogenlunde Nogenlunde, men langsom God Rigtig god, stadig zig-zag på lige strækninger Samme Rigtig god. Tabel 1: Observationer gjort ved piloteksperimenter. Forsøg Hastighed i sving Hastighed ligeud Stor Lille Counter Steer Counter Steer tid (cycles) : :48 Tabel 2: Piloteksperimenter med og uden Counter Steer. Der er målt over 3 runder. Kørselstid 7

8 B Resultat af Eksperimenter Forsøg Tid uden Counter Steer [s] Tid med Counter Steer [s] NA Tabel 3: Målinger. NA betyder at runden ikke blev gennemført. 8

9 C R script withc<-read.csv("with_time_seconds.txt",header=t) withoutc<-read.csv("without_time_seconds.txt",header=t) # Remove the failed sample withoutcnona = rep(0,30); withoutcnona[1:6] = withoutc$time[1:6]; withoutcnona[7:30] = withoutc$time[8:31]; hist(withc$time,freq=t,main="",xlab="tid [s]",ylab="frekvens", breaks=c(50,50.8,52.3,53.8,55.3,56.8,58.3,59.8,61.3,62.8,64.3,65.8,67.3,68.8,70)) hist(withc$time,freq=t,main="",xlab="tid [s]",ylab="frekvens", breaks=c(50,50.65,52.3,53.95,55.6,57.25,58.9,60.55,62.2,63.85,65.5,67.15,68.8,70)) hist(withoutcnona,freq=t,main="",xlab="tid [s]",ylab="frekvens", breaks=c(56.5,60,63.5,67,70.5,74,77.5,81,84.5,88,91.5,95)) t.test(withc$time,withoutc$time) 9

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Løsning til eksaminen d. 14. december 2009

Løsning til eksaminen d. 14. december 2009 DTU Informatik 02402 Introduktion til Statistik 200-2-0 LFF/lff Løsning til eksaminen d. 4. december 2009 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition,

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese

Ensidet eller tosidet alternativ. Hypoteser. tosidet alternativ. nul hypotese testes mod en alternativ hypotese Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik Bygning 305/324 Danmarks Tekniske Universitet

Læs mere

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse

Afsnit E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Afsnit 8.3 - E1 Konfidensinterval for middelværdi i normalfordeling med kendt standardafvigelse Først skal normalfordelingen lige defineres i Maple, så vi kan benytte den i vores udregninger. Dette gøres

Læs mere

(studienummer) (underskrift) (bord nr)

(studienummer) (underskrift) (bord nr) Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 14. december 2009 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Statistik og Sandsynlighedsregning 2 Repetition og eksamen T-test Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige

Læs mere

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge

Statistik og Sandsynlighedsregning 2. Repetition og eksamen. Overheads til forelæsninger, mandag 7. uge Statistik og Sandsynlighedsregning 2 Repetition og eksamen Overheads til forelæsninger, mandag 7. uge 1 Normalfordelingen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele

Anvendt Statistik Lektion 4. Hypotesetest generelt Test for middelværdi Test for andele Anvendt Statistik Lektion 4 Hypotesetest generelt Test for middelværdi Test for andele Hypoteser og Test Hypotese I statistik er en hypotese en påstand om en populationsparameter. Typisk en påstand om

Læs mere

Løsning eksamen d. 15. december 2008

Løsning eksamen d. 15. december 2008 Informatik - DTU 02402 Introduktion til Statistik 2010-2-01 LFF/lff Løsning eksamen d. 15. december 2008 Referencer til Probability and Statistics for Engineers er angivet i rækkefølgen [8th edition, 7th

Læs mere

Benyt evt. programmeringsguiden Kør frem vælg sekunder i stedet for rotationer.

Benyt evt. programmeringsguiden Kør frem vælg sekunder i stedet for rotationer. Lego Mindstorms Education NXT nat1 nat april 2014 Dette dokument ligger på adressen: http://www.frborg-gymhf.dk/eh/oev/legonxtnat1nat2014.pdf Følgende er en introduction til Lego Mindstorms NXT. Her er

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0

Hypotesetest. Altså vores formodning eller påstand om tingens tilstand. Alternativ hypotese (hvis vores påstand er forkert) H a : 0 Hypotesetest Hypotesetest generelt Ingredienserne i en hypotesetest: Statistisk model, f.eks. X 1,,X n uafhængige fra bestemt fordeling. Parameter med estimat. Nulhypotese, f.eks. at antager en bestemt

Læs mere

For at få 8 linjer ud, skal dette specifiseres i kommandoen ved at sætte antal lig 8 n=8:

For at få 8 linjer ud, skal dette specifiseres i kommandoen ved at sætte antal lig 8 n=8: Klasseøvelser dag 1 Opgave 1 1.1. Vi gemmer først dbase filen "perulung.dbf" i den relevante mappe og derefter sættes working directory til denne mappe ved at vælge menuen Session -> Set Working Directory

Læs mere

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19

Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 Program: 1. Repetition: p-værdi 2. Simpel lineær regression. 1/19 For test med signifikansniveau α: p < α forkast H 0 2/19 p-værdi Betragt tilfældet med test for H 0 : µ = µ 0 (σ kendt). Idé: jo større

Læs mere

Apparatur: 1 EV3 startkasse, målebånd, sort bred lærredstape, oplader, kan benyttes som passer, kridt, plader til at lave bakker med, niveauborde.

Apparatur: 1 EV3 startkasse, målebånd, sort bred lærredstape, oplader, kan benyttes som passer, kridt, plader til at lave bakker med, niveauborde. Lego Mindstorms Education EV3 Projektarbejde med Lego Mindstorms version EV3. til Windows 7og 8 og Mac Apparatur: 1 EV3 startkasse, målebånd, sort bred lærredstape, oplader, kan benyttes som passer, kridt,

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar

Opgave I.1 II.1 II.2 II.3 III.1 IV.1 IV.2 IV.3 V.1 VI.1 Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 30. maj 2006 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

AGV Kursus August 1999

AGV Kursus August 1999 AGV Kursus August 1999 Dato: 26.08.99 Morten Nielsen Daniel Grolin Michael Krag Indledning: Princippet bag en AGV (Autonomous Guided Vehicle) er at få et køretøj til at bevæge sig rundt i nogle omgivelser,

Læs mere

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/ Program: 1. Repetition af vigtige sandsynlighedsfordelinger: binomial, (Poisson,) normal (og χ 2 ). 2. Populationer og stikprøver 3. Opsummering af data vha. deskriptive størrelser og grafer. 1/29 Binomial

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Klasseøvelser dag 2 Opgave 1

Klasseøvelser dag 2 Opgave 1 Klasseøvelser dag 2 Opgave 1 1.1. Vi sætter først working directory og data indlæses: library( foreign ) d

Læs mere

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne

Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne Statistik og Sandsynlighedsregning 1 Indledning til statistik, kap 2 i STAT Susanne Ditlevsen Institut for Matematiske Fag Email: susanne@math.ku.dk http://math.ku.dk/ susanne 5. undervisningsuge, onsdag

Læs mere

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm.

Schweynoch, 2003. Se eventuelt http://www.mathematik.uni-kassel.de/~fathom/projekt.htm. Projekt 8.5 Hypotesetest med anvendelse af t-test (Dette materiale har været anvendt som forberedelsesmateriale til den skriftlige prøve 01 for netforsøget) Indhold Indledning... 1 χ -test... Numeriske

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet stx11-matn/a-080501 Tirsdag den 8. maj 01 Forberedelsesmateriale til stx A Net MATEMATIK Der

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1

Opgave I II III IV V VI Spørgsmål (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) Svar 5 4 4 2 3 1 1 5 4 1 Danmarks Tekniske Universitet Side 1 af 18 sider. Skriftlig prøve: 1. juni 2005 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle sædvanlige Dette sæt er besvaret af (navn)

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Kapitel 7 Forskelle mellem centraltendenser

Kapitel 7 Forskelle mellem centraltendenser Kapitel 7 Forskelle mellem centraltendenser Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 29 Indledning 1. z-test for ukorrelerede data 2. t-test for ukorrelerede data med ens

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet!

Den endelige besvarelse af opgaverne gøres ved at udfylde nedenstående skema. Aflever KUN skemaet! Danmarks Tekniske Universitet Side 1 af 19 sider. Skriftlig prøve: 2. juni 2008 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (studienummer)

Læs mere

Notat vedr. interkalibrering af ålegræs

Notat vedr. interkalibrering af ålegræs Notat vedr. interkalibrering af ålegræs Notat fra DCE - Nationalt Center for Miljø og Energi Dato: 4. januar 2012 Michael Bo Rasmussen Thorsten Balsby Institut for Bioscience Rekvirent: Naturstyrelsen

Læs mere

Kom godt i gang med Mini Bots fra

Kom godt i gang med Mini Bots fra Kom godt i gang med Mini Bots fra Indholdsfortegnelse Generel Information... 3 Elektricitet... 3 Robotter, kunstige mennesker?...3 Forklaring af komponenter... 4 Robot-byggesættet inderholder følgende:...4

Læs mere

Løsninger til kapitel 9

Løsninger til kapitel 9 Opgave 9.1 a) test for spredning, ensidet b) test for middelværdi, ensidet c) test for andel, ensidet d) test for to andele, ensidet e) test for spredning, tosidet f) test for middelværdi, ensidet g) test

Læs mere

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved Matematisk Modellering 1 (reeksamen) Side 1 Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved { 1 hvis x {1, 2, 3}, p X (x) = 3 0 ellers,

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402

Side 1 af 17 sider. Danmarks Tekniske Universitet. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Danmarks Tekniske Universitet Side 1 af 17 sider. Skriftlig prøve: 25. maj 2007 Kursus navn og nr: Introduktion til Statistik, 02402 Tilladte hjælpemidler: Alle Dette sæt er besvaret af (navn) (underskrift)

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5

02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 02402 Vejledende løsninger til hjemmeopgaver og øvelser i uge 5 Opgave 5.117, side 171 (7ed: 5.116 side 201 og 6ed: 5.116 side 197) I denne opgave skal vi benytte relationen mellem den log-normale fordeling

Læs mere

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X 1 +... + X n ) N(µ, σ2 Statistik og Sandsynlighedsregning IH kapitel Overheads til forelæsninger, onsdag 5. uge Resultater om normalfordeling X N(µ,σ ). N har tæthed ϕ µ,σ (x) = exp (x µ) πσ σ EX = µ, Var(X) = σ X µ N(0,) σ

Læs mere

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau

Hvad skal vi lave? Nulhypotese - alternativ. Teststatistik. Signifikansniveau Hvad skal vi lave? 1 Statistisk inferens: Hypotese og test Nulhypotese - alternativ. Teststatistik P-værdi Signifikansniveau 2 t-test for middelværdi Tosidet t-test for middelværdi Ensidet t-test for middelværdi

Læs mere

Dig og din puls Lærervejleding

Dig og din puls Lærervejleding Dig og din puls Lærervejleding Indledning I det efterfølgende materiale beskrives et forløb til matematik C, hvori eleverne skal måle hvilepuls og arbejdspuls og beskrive observationerne matematisk. Materialet

Læs mere

Modul 5: Test for én stikprøve

Modul 5: Test for én stikprøve Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 5: Test for én stikprøve 5.1 Test for middelværdi................................. 1 5.1.1 t-fordelingen.................................

Læs mere

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM

CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM CMU PROJEKT HYPOTESETEST OG SIMULERING MICHAEL AGERMOSE JENSEN CHRISTIANSHAVNS GYMNASIUM FORMÅL - BEKENDTGØRELSEN STX MATEMATIK A Kompetencer anvende simple statistiske eller sandsynlighedsteoretiske modeller

Læs mere

LEGO Energimåler. Sådan kommer du i gang

LEGO Energimåler. Sådan kommer du i gang LEGO Energimåler Sådan kommer du i gang Energimåleren består af to dele: LEGO Energidisplay og LEGO Energiakkumulator. Energiakkumulatoren passer i bunden af Energidisplayet. Installer Energiakkumulatoren

Læs mere

β 2 : forskel i skæring polymer 1 og 2. β 3 forskel i skæring polymer 1 og 3.

β 2 : forskel i skæring polymer 1 og 2. β 3 forskel i skæring polymer 1 og 3. Program suspended 200 250 300 350 400 1 2 3 6.5 7.0 7.5 8.0 8.5 9.0 1. kategoriske variable - kodning som indikator variable. 2. model selektion, R 2, F-test samt eksempler. ph Model: forskellig skæring

Læs mere

Module 4: Ensidig variansanalyse

Module 4: Ensidig variansanalyse Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Appendiks Økonometrisk teori... II

Appendiks Økonometrisk teori... II Appendiks Økonometrisk teori... II De klassiske SLR-antagelser... II Hypotesetest... VII Regressioner... VIII Inflation:... VIII Test for SLR antagelser... IX Reset-test... IX Plots... X Breusch-Pagan

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller

men nu er Z N((µ 1 µ 0 ) n/σ, 1)!! Forkaster hvis X 191 eller X 209 eller Type I og type II fejl Type I fejl: forkast når hypotese sand. α = signifikansniveau= P(type I fejl) Program (8.15-10): Hvis vi forkaster når Z < 2.58 eller Z > 2.58 er α = P(Z < 2.58) + P(Z > 2.58) =

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Estimation Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Estimation Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev herefter

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Statistik viden eller tilfældighed

Statistik viden eller tilfældighed MATEMATIK i perspektiv Side 1 af 9 DNA-analyser 1 Sandsynligheden for at en uskyldig anklages Følgende histogram viser, hvordan fragmentlængden for et DNA-område varierer inden for befolkningen. Der indgår

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05

Hvis α vælges meget lavt, bliver β meget stor. Typisk vælges α = 0.01 eller 0.05 Statistik 7. gang 9. HYPOTESE TEST Hypotesetest ved 6 trins raket! : Trin : Formuler hypotese Spørgsmål der ønskes testet vha. data H : Nul hypotese Formuleres som en ligheds hændelse H eller H A : Alternativ

Læs mere

Stastistik og Databehandling på en TI-83

Stastistik og Databehandling på en TI-83 Stastistik og Databehandling på en TI-83 Af Jonas L. Jensen (jonas@imf.au.dk). 1 Fordelingsfunktioner Husk på, at en fordelingsfunktion for en stokastisk variabel X er funktionen F X (t) = P (X t) og at

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14

5.11 Middelværdi og varians Kugler Ydelse for byg [Obligatorisk opgave 2, 2005]... 14 Module 5: Exercises 5.1 ph i blod.......................... 1 5.2 Medikamenters effektivitet............... 2 5.3 Reaktionstid........................ 3 5.4 Alkohol i blodet...................... 3 5.5

Læs mere

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo Kursusindhold: Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet Sandsynlighedsregning og lagerstyring Normalfordelingen og Monte

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm.

Ovenstående figur viser et (lidt formindsket billede) af 25 svampekolonier på en petriskål i et afgrænset felt på 10x10 cm. Multiple choice opgaver Der gøres opmærksom på, at ideen med opgaverne er, at der er ét og kun ét rigtigt svar på de enkelte spørgsmål. Endvidere er det ikke givet, at alle de anførte alternative svarmuligheder

Læs mere

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test.

Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ 2 -test og Goodness of Fit test. Lars Andersen: Anvendelse af statistik. Notat om deskriptiv statistik, χ -test og Goodness of Fit test. Anvendelser af statistik Statistik er et levende og fascinerende emne, men at læse om det er alt

Læs mere

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse

Basal statistik Esben Budtz-Jørgensen 4. november Forsøgsplanlægning Stikprøvestørrelse Basal statistik Esben Budtz-Jørgensen 4. november 2008 Forsøgsplanlægning Stikprøvestørrelse 1 46 Planlægning af et studie Videnskabelig hypotese Endpoints Instrumentelle/eksponerings variable Variationskilder

Læs mere

Produkt og marked - matematiske og statistiske metoder

Produkt og marked - matematiske og statistiske metoder Produkt og marked - matematiske og statistiske metoder Rasmus Waagepetersen Institut for Matematiske Fag Aalborg Universitet February 19, 2016 1/26 Kursusindhold: Sandsynlighedsregning og lagerstyring

Læs mere

Maple-oversigt til matematik B-niveau: Rungsted Gymnasium Definer en funktion og funktionsværdier. Tegn grafen for en funktion.

Maple-oversigt til matematik B-niveau: Rungsted Gymnasium Definer en funktion og funktionsværdier. Tegn grafen for en funktion. Maple-oversigt til matematik B-niveau: Rungsted Gymnasium 2011 Definer en funktion og funktionsværdier (1.1) 32 (1.2) (1.3) Tegn grafen for en funktion (2.1) 250 200 150 100 50 0 5 10 8 6 4 2 0 1 2 0 y

Læs mere

En Introduktion til SAS. Kapitel 5.

En Introduktion til SAS. Kapitel 5. En Introduktion til SAS. Kapitel 5. Inge Henningsen Afdeling for Statistik og Operationsanalyse Københavns Universitet Marts 2005 6. udgave Kapitel 5 T-test og PROC UNIVARIATE 5.1 Indledning Dette kapitel

Læs mere

Kræver generelt at diverse ventetider er eksponentialfordelte. Faste rammer for serverdiscipliner mv. Svært at modellere ikke-standard køsystemer.

Kræver generelt at diverse ventetider er eksponentialfordelte. Faste rammer for serverdiscipliner mv. Svært at modellere ikke-standard køsystemer. Opsamling eksakte modeller Fordele Praktiske til initierende analyser/dimensionering Ofte nemme at regne på. Kan bruges til at løse optimeringsopgaver, som ellers ville kræve snedige simulationsdesigns.

Læs mere

LEGO Energimåler. Sådan kommer du i gang

LEGO Energimåler. Sådan kommer du i gang LEGO Energimåler Sådan kommer du i gang Energimåleren består af to dele: LEGO Energidisplay og LEGO Energiakkumulator. Energiakkumulatoren passer i bunden af Energidisplayet. Installer Energiakkumulatoren

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 7: Hypotesetest 2

ØVELSER Statistik, Logistikøkonom Lektion 7: Hypotesetest 2 ØVELSER Statistik, Logistikøkonom Lektion 7: Hypotesetest 2 Eksempel 1 TEST AF FORSKEL PÅ TO MIDDELVÆRDIER Apple har udviklet et nyt batteri (type B), som skulle have længere brændtid end den hidtidige

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK I Sammenligning af to eller flere kvalitative variable (TI 89 og Statgraphics)

MOGENS ODDERSHEDE LARSEN. VIDEREGÅENDE STATISTIK I Sammenligning af to eller flere kvalitative variable (TI 89 og Statgraphics) MOGENS ODDERSHEDE LARSEN VIDEREGÅENDE STATISTIK I Sammenligning af to eller flere kvalitative variable (TI 89 og Statgraphics) DANMARKS TEKNISKE UNIVERSITET 6. udgave 005 FORORD Dette notat kan læses på

Læs mere

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer.

1. Lav en passende arbejdstegning, der illustrerer samtlige enkeltobservationer. Vejledende besvarelse af hjemmeopgave Basal statistik, efterår 2008 En gruppe bestående af 45 patienter med reumatoid arthrit randomiseres til en af 6 mulige behandlinger, nemlig placebo, aspirin eller

Læs mere

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Ikke-parametriske metoder. Repetition Wilcoxon Signed-Rank Test Kruskal-Wallis Test Friedman Test Chi-i-anden Test Ikkeparametriske metoder Repetition Wilcoxon SignedRank Test KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge

Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Kommentarer til opg. 1 og 3 ved øvelser i basalkursus, 3. uge Opgave 1. Data indlæses i 3 kolonner, som f.eks. kaldessalt,pre ogpost. Der er således i alt tale om 26 observationer, idet de to grupper lægges

Læs mere

1. Når egenskaben Handling er indstillet til "Altid" for et løkke-ikon, vises symbolet for uendeligt ( ) nederst til højre i ikonet.

1. Når egenskaben Handling er indstillet til Altid for et løkke-ikon, vises symbolet for uendeligt ( ) nederst til højre i ikonet. Løkke-ikon Brug dette ikon til at gentage programkodesekvenser. Indstil den betingelse, der skal standse løkken: tid, antal gentagelser, et logisk signal eller en sensor. Du kan også indstille en løkke

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Test nr. 6 af centrale elementer 02402

Test nr. 6 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 6 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1)

Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Kursus 02402: Besvarelser til øvelsesopgaver i uge 9 Opgave 10.1, side 282 (for 6. og 7. ed. af lærerbogen se/løs opgave 9.1) Som model benyttes en binomialfordeling, som beskriver antallet, X, blandt

Læs mere

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1

Mikro-kursus i statistik 2. del Mikrokursus i biostatistik 1 Mikro-kursus i statistik 2. del 24-11-2002 Mikrokursus i biostatistik 1 Hvad er hypotesetestning? I sundhedsvidenskab:! Hypotesetestning = Test af nulhypotesen Hypotese-testning anvendes til at vurdere,

Læs mere

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM KVANTITATIV KEMISK ANALYSE OG STATISTISKE MODELLER

OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM KVANTITATIV KEMISK ANALYSE OG STATISTISKE MODELLER OPLÆG TIL STUDIERETNINGSPROJEKTER I MATEMATIK-KEMI OM KVANTITATIV KEMISK ANALYSE OG STATISTISKE MODELLER Indledning Ved en kvantitativ kemisk analyse forstår man en tilbundsgående undersøgelse af et kemisk

Læs mere

Ikke-parametriske tests

Ikke-parametriske tests Ikke-parametriske tests 2 Dagens menu t testen Hvordan var det nu lige det var? Wilcoxson Mann Whitney U Kruskall Wallis Friedman Kendalls og Spearmans correlation 3 t-testen Patient Drug Placebo difference

Læs mere

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger

Program. Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering. Test for ens spredninger Program Sammenligning af to stikprøver Ikke-parametriske metoder Opsummering Helle Sørensen E-mail: helle@math.ku.dk I formiddag: Analyse af ikke-parrede stikprøver: repetition of rettelse af fejl! Lidt

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

En intro til radiologisk statistik. Erik Morre Pedersen

En intro til radiologisk statistik. Erik Morre Pedersen En intro til radiologisk statistik Erik Morre Pedersen Hypoteser og testning Statistisk signifikans 2 x 2 tabellen og lidt om ROC Inter- og intraobserver statistik Styrkeberegning Konklusion Litteratur

Læs mere