Figur y. Nøgleord og begreber Tangentlinje for graf Tangentplan for graf
|
|
|
- Monika Laursen
- 9 år siden
- Visninger:
Transkript
1 Oversigt [S] 2.7, 2.9, 11. Tangentlinje [S] 2.7 Derivatives Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Figur y y = f(a) + f (a)( a) Test tangentplan Lineær approimation i en og flere variable Test approimation (a, f(a)) f() Differentiabilitet i flere variable Differentialet af en funktion Test differentialet I R, f : I R Calculus Uge Calculus Uge Ligning for tangent [S] 2.7 Derivatives Find tangentlinjen [S] 2.7 Derivatives Tangentlinjen for grafen for en funktion y = f() i et punkt (a, b), b = f(a) er linjen gennem (a, b), som indeholder tangentvektoren (1, f (a)) til grafen (, f()) Eksempel 2 Find ligningen for tangentlinjen til y = i punktet (3, 6). Den afledede er y = 2 8, Ligningen for tangentlinjen er y (3) = 2 En ligning for tangentlinjen er y b = f (a)( a) eller y ( 6) = ( 2)( 3) y = 2 Calculus Uge Calculus Uge
2 Tangentplan [S] 11. Tangent planes and linear approimations Tangentplan Figur y Tangentplanen til grafen for en funktion z = f(, y) i et punkt ( 0, y 0, z 0 ), z 0 = f( 0, y 0 ) er planen gennem ( 0, y 0, z 0 ), som indeholder tangentvektorerne D (, y) f(, y) til koordinatkurverne (1, 0, f ( 0, y 0 )), (0, 1, f y ( 0, y 0 )) 0 på grafen Γ f. (, y 0, f(, y 0 )), y ( 0, y, f( 0, y)) D R 2, f : D R Calculus Uge Calculus Uge Ligning for tangentplan Find tangentplan [S] 11. Tangent planes and linear... 2 Sætning Antag at f har kontinuerte partielle afledede f, f y i en lille cirkelskive om ( 0, y 0 ). Tangentplanen for grafen i et punkt ( 0, y 0, z 0 ), z 0 = f( 0, y 0 ) har ligning Bevis Indsættes z z 0 = f ( 0, y 0 )( 0 ) + f y ( 0, y 0 )(y y 0 ) (, y, z) = ( 0, y 0, z 0 ) + (1, 0, f ( 0, y 0 )) = ( 0 + 1, y 0, z 0 + f ( 0, y 0 )) er ligningen opfyldt. Ligeså for den anden tangentvektor. Eksempel 1 Find ligningen for tangentplanen til i punktet (1, 1, 3). De partielle afledede er z = y 2 z =, z y = 2y z(1, 1) = 3, z (1, 1) =, z y (1, 1) = 2 I punktet (1, 1, 3) er tangentplanen givet ved z 3 = ( 1) + 2(y 1) Calculus Uge Calculus Uge
3 Tangentplan [S] 11. Tangent planes and linear approimations Find endnu en tangentplan [S] 11. Tangent planes and linear... Figur - Eksempel 1 z Eksempel Find en ligning for tangentplan i (1, 2, f(1, 2)). f = y 3 2y 2 f = y 3, f y = 3 2 y 2 y y f(1, 2) = 1, f (1, 2) = 19, f y (1, 2) = I punktet ( 0, y 0, z 0 ) = (1, 2, 1) er tangentplanen givet ved z z 0 = f ( 0, y 0 )( 0 ) + f y ( 0, y 0 )(y y 0 ) Tangentplan i (1, 1, 3) Som giver z 1 = 19( 1) + (y 2) Calculus Uge Calculus Uge Test tangentplan [S] 11. Tangent planes and linear... Lineær approimation [S] 3.8 Linear approimations Test Lad f(, y) = + y. Så har grafen for f vandret tangentplan i (0, 0, 0). Udregningen giver f = 1 + y, f y = f (0, 0) = 1 0 Afkryds: ja nej Tangentlinjen for en funktion i en variabel er grafen for en lineær funktion L() = f(a) + f (a)( a) kaldet lineariseringen af f i a. Approimationen f() f(a) + f (a)( a) kaldes den lineære approimation af f for a. Calculus Uge Calculus Uge
4 Find approimation [S] 3.8 Linear approimations Approimation i to variable [S] 11. Tangent planes and lin... Eksempel Find den lineære approimation af f() = i a = 1. Lineariseringen er Approimationen er f () = 1 2, f (1) = 1 2 L() = ( 1) 2 3 Tangentplanen er grafen for en lineær funktion L(, y) = f(a, b) + f (a, b)( a) + f y (a, b)(y b) kaldet lineariseringen til f i (a, b). Approimationen f(, y) f(a, b) + f (a, b)( a) + f y (a, b)(y b) kaldes den lineære approimation af f for (, y) (a, b) ( 1), for 1 2 Calculus Uge Calculus Uge Brug approimation Test approimation [S] 11. Tangent planes and linear... Eksempel f = y 3 2y 2 f = y 3, f y = 3 2 y 2 y f(1, 2) = 1, f (1, 2) = 19, f y (1, 2) = I punktet (1, 2) er den lineære approimation f(, y) ( 1) + (y 2) Benyttes til tilnærmelse f(1.1, 1.9) (1.1 1) + (1.9 2) = 2.5 Calculus Uge Test Betragt den lineære approimation til funktionen f(, y) = y 1 2 i punktet (, y) = (1, 1). Den er givet ved (a) f(, y) 1 2 (c) f(, y) 1 + y. 1 ( 1) + (y 1). (b) f(, y) 2y. (d) f(, y) 1 ( 2 + y) 2. Afkryds den rigtige: Udeluk (b), (c), (d) ved indsættelse af (1, 1). (a) (b) (c) (d) Calculus Uge
5 Test approimation [S] 11. Tangent planes and linear... Omskriv differentiabel Test - løsning f = giver i punktet (1, 1) f(, y) = y ( 2 + y) 2, f y = 1 ( 2 + y) 2 Bemærkning En funktion y = f() er differentiabel i a, hvis 5 y = f (a) + ɛ hvor ɛ 0, når 0 f (1, 1) = 1 2, f y(1, 1) = 1 Approimationen af f for (, y) (1, 1) skrives f(, y) ( 1) + (y 1) Calculus Uge Calculus Uge Tilvækst Differentiabilitet i to variable [S] 11. Tangent planes and linear... For funktion z = f(, y) er tilvæksten i (a, b) 6 z = f(a +, b + y) f(a, b) 7 z = f(, y) er differentiabel i (a, b), hvis z = f (a, b) + f y (a, b) y + ɛ 1 + ɛ 2 y Eksempel For z = 2 + y 2 er tilvæksten i (a, b) hvor ɛ 1, ɛ 2 0, når, y 0 Altså z = (a + ) 2 + (b + y) 2 (a 2 + b 2 ) z = 2a + 2b y y 2 Bemærkning En funktion er differentiabel, når den lineære approimation er god. Calculus Uge Calculus Uge
6 Differentiabilitet som forventet [S] 11. Tangent planes and lin... Brug approimation 8 Sætning Antag at f har kontinuerte partielle afledede f, f y i en omegn af (a, b). Så er f differentiabel i (a, b). Bemærkning I så fald f(a +, b + y) f(a, b) + f (a, b) + f y (a, b) y når, y 0. Eksempel 2 f = e y f = e y + ye y, f y = 2 e y f(1, 0) = 1, f (1, 0) = 1, f y (1, 0) = 1 I punktet (1, 0) er den lineære approimation e y 1 + ( 1) + y Benyttes til tilnærmelse 1.1e 1.1 ( 0.1) 1 + (1.1 1) + ( 0.1) = 1 Calculus Uge Calculus Uge Differentialet [S] 11. Tangent planes and linear approimations Skriv differentialet Differentialet af en funktion y = f() er 9 dy = f ()d og for funktionen z = f(, y) 10 df = f (, y)d + f y (, y)dy dz = z z d + y dy Eksempel f = 2 + 3y y 2 f = 2 + 3y, f y = 3 2y dz = (2 + 3y)d + (3 2y)dy Benyttes til tilnærmelse f(2, 3) = 13, f (2, 3) = 13, f y (2, 3) = 0 f(2.05, 2.96) ( 0.0) = Bemærk z dz Calculus Uge Calculus Uge
7 Opgave [S] 11. Tangent planes and linear approimations Opgave fortsat [S] 11. Tangent planes and linear approimations Øvelse 9 f(, y) = y Begrund differentiabilitet om (1, ) og find den lineære approimation. er kontinuerte om (1, ). f = y, f y = 2 y Øvelse 9 - fortsat Skrives også Beregn tilnærmelse (1 + ) + y y ( 0.1) = 1.9 når (, y) (1, ). y 2 + 2( 1) + 1 (y ) Calculus Uge Calculus Uge Test differentialet [S] 11. Tangent planes and linear... Udvid til mange variable Test Givet z = ln(a + by). Differentialet er: (a) dz = a d + b dy. (b) dz = a d + a+by (c) dz = a ln(a + by)d + b ln(a + by)dy. Udregningen giver differentialet z = Afkryds den rigtige: a, z a+by y = b a+by b dy. a+by (a) (b) (c) Omtalen af tangentplan, lineær approimation og differentialer udvides umiddelbart til funktioner af tre eller flere variable. Funktionen w = f(, y, z) har tangentplan i punktet (a, b, c, d), d = f(a, b, c) med ligning w d = f (a, b, c)( a) + f y (a, b, c)(y b) + f z (a, b, c)(z c) dz = z d + z y dy Calculus Uge Calculus Uge
8 Udvid til mange variable Afsluttende opgave - fortsat Funktionen w = f(, y, z) har lineær approimation f(, y, z) f(a, b, c) + f (a, b, c)( a) + f y (a, b, c)(y b) + f z (a, b, c)(z c) og differential dw = w w w d + dy + y z dz Øvelse Find differentialet af Beregn først w = = w = ln 2 + y 2 + z 2 1 d 2 + y 2 + y 2 + z 2 d 2 + z y 2 + z 2 Calculus Uge Calculus Uge Afsluttende opgave Afsluttende opgave Øvelse - alternativ Øvelse - fortsat Beregn w = ln 2 + y 2 + z 2 = 1 2 ln(2 + y 2 + z 2 ) w = y 2 + z 2 2 = 2 + y 2 + z 2 Ved symmetri w y = Differentialet er w = ln 2 + y 2 + z 2 w = 2 + y 2 + z 2 y 2 + y 2 + z 2, w z = dw = d + ydy + zdz 2 + y 2 + z 2 z 2 + y 2 + z 2 Calculus Uge Calculus Uge
Oversigt [S] 2.7, 2.9, 11.4
Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable
Oversigt [S] 2.7, 2.9, 11.4
Oversigt [S] 2.7, 2.9, 11.4 Nøgleord og begreber Tangentlinje for graf Tangentplan for graf Test tangentplan Lineær approximation i en og flere variable Test approximation Differentiabilitet i flere variable
Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning
Oversigt [S] 2.7, 3.1, 3.4, 11.3 Nøgleord og begreber Differentiabel funktion i en variabel Partielle afledede i flere variable Notation og regneregler for partielle afledede Test partielle afledede Grafisk
Funktion af flere variable
Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel
Funktioner af flere variable
Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,
Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt
Oversigt [S] 5., 5.3, 5.4,.,. Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 6 Uge 39.
Lektion 6 Logaritmefunktioner
Lektion 6 Logaritmefunktioner Den naturlige logaritmefunktion Andre logaritmefunktioner log() Regneregler Integration ln() =, ln(e) = ln(a b) = ln(a) + ln(b) ln(a r ) = r ln(a) d = ln + C En berømt grænseværdi
CALCULUS "SLIDES" TIL CALCULUS 1 + 2
CALCULUS "SLIDES" TIL CALCULUS + INSTITUT FOR MATEMATISKE FAG AARHUS UNIVERSITET 4 Indhold Forord 5 I. Differentiation 7. Kontinuitet 7. Partielle afledede 7 3. Tangentplan 5 4. Kædereglen 34 5. Gradient
MM502+4 forelæsningsslides. uge 6, 2009
MM502+4 forelæsningsslides uge 6, 2009 1 Definition partielle afledede: De (første) partielle afledede af en funktion f(x, y) af to variable er f(x + h, y) f(x, y) f 1 (x, y) := lim h 0 h f(x, y + k) f(x,
Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h.
Differentiabilitet 1 Funktioner af én reel variabel Tilvækstfunktionen f med udgangspunkt i x 0 er en reel funktion af tilvæksten : f() = f(x 0 +) f(x 0 ). y = f(x) Tangent (x 0,f(x 0 )) df() f() x 0 x
Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1
Oversigt [S]. Nøgleord og begreber Retningsafledt Gradientvektor Gradient i flere variable Fortolkning af gradientvektoren Agst, opgave 5 Delvis afledt [S]. Directional derivatives and te... Definition
Differentiation af Logaritmer
Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold
Reeksamen i Calculus Torsdag den 16. august 2012
Reeksamen i Calculus Torsdag den 16. august 2012 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider
Mere om differentiabilitet
Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget
Funktion af flere variable
Funktion af flere variable Preben Alsholm 6. oktober 2008 1 Funktion af flere variable 1.1 Punktmængder i R k : Definitioner Punktmængder i flerdimensionale rum: Definitioner q Normen af x 2 R k er kxk
Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x).
Uden hjælpemidler Opgave 8.00 Funktionen f(x) er bestemt ved skitse af grafen for f(x). f ( x) = x 3 4x. På figuren ses en Grafen skærer førsteaksen i punkterne P(,0), O(0,0) og Q(,0). Sammen med førsteaksen
Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt
Oversigt [S] 5.2, 5.3, 5.4, 2., 2.2 Nøgleord og begreber Analysens hovedsætning Stamfunktioner Itereret integral Test itereret integral Fubinis sætning Test Fubini Eksempler Test produkt Calculus - 26
Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med
Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform
Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet
Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning
MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen
MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner f : R R En funktion f : R R er differentiabel
Gradienter og tangentplaner
enote 16 1 enote 16 Gradienter og tangentplaner I denne enote vil vi fokusere lidt nærmere på den geometriske analyse og inspektion af funktioner af to variable. Vi vil især studere sammenhængen mellem
Differential- regning
Differential- regning 1 del () (1) 006 Karsten Juul Indhold 1 Funktionsværdi, graf og tilvækst1 Differentialkvotient og tangent8 3 Formler for differentialkvotient16 4 Opgaver med tangent 5 Væksthastighed5
Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.
Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.
Funktionalligninger - løsningsstrategier og opgaver
Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =
Ligninger med reelle løsninger
Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger
Den svingende streng
Den svingende streng Stig Andur Pedersen October 2, 2009 Ufuldstændigt udkast. Abstract 1 I det 18. århundrede blev differential- og integralregningen, som var introduceret af Newton, Leibniz og mange
Oversigt [LA] 6, 7, 8
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen
VIA læreruddannelsen Silkeborg. WordMat kompendium
VIA læreruddannelsen Silkeborg WordMat kompendium Bolette Fisker Olesen 25-11-2015 Indholdsfortegnelse Ligning... 2 Løs ligning... 2 WordMat som lommeregner... 4 Geometri... 4 Trekanter... 4 Funktioner...
MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen
MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner
1 Kapitel 5: Forbrugervalg
1 Kapitel 5: Forbrugervalg Vi har set på: 1. budgetbegrænsninger 2. præferencer og nyttefunktioner. Nu stykker vi det hele sammen og studerer forbrugerens optimale valg. 2 Optimalt forbrug - grafisk fremstilling
Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.
Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
Differentialligninger. Ib Michelsen
Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3
Reeksamen i Calculus
Reeksamen i Calculus Torsdag den 11. august 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 8 nummererede sider
Funktioner af to variable
enote 15 1 enote 15 Funktioner af to variable I denne og i de efterfølgende enoter vil vi udvide funktionsbegrebet til at omfatte reelle funktioner af flere variable; vi starter udvidelsen med 2 variable,
DesignMat Uge 11 Vektorrum
DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation
er en n n-matrix af funktioner
Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Ligning og løsning Nøgleord og begreber Eksistens og entdighed Elementære funktioner Eksponential af matrix Retningsfelt Hastighedsfelt for sstem for sstem Stabilitet
Differential- regning
Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7
Største- og mindsteværdi Uge 11
Uge 11 : Definitioner Efterår 2009 : Definitioner Lad A R n og f : A R en reel funktion af n. : Definitioner : Definitioner Lad A R n og f : A R en reel funktion af n. Punktet a = (a 1, a 2,..., a n )
MATEMATIK B-NIVEAU STX081-MAB
MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over
PeterSørensen.dk : Differentiation
PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3
Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen
Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold
Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium
Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium
Lektion 5 Det bestemte integral
a f(x) dx = F (b) F (a) Lektion 5 Det bestemte integral Definition Integralregningens Middelværdisætning Integral- og Differentialregningens Hovedsætning Beregning af bestemte integraler Regneregler Areal
matx.dk Differentialregning Dennis Pipenbring
mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten
MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi
MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012
MM501 forelæsningsslides
MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele
FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i
1 af 41 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1 Voksende Voksende Konstant Aftagende ØVELSE 2 f aftagende i f aftagende i f aftagende i f aftagende i ØVELSE 3 Hældningen
Differentialregning Infinitesimalregning
Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en
10. Differentialregning
10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side
Løsningsforslag 7. januar 2011
Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen
Matematisk modellering og numeriske metoder
Matematisk modellering og numeriske metoder Morten Grud Rasmussen 5. september 2016 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).
Differentialregning 1.lektion. 2x MA September 2012
Differentialregning 1.lektion 2x MA September 2012 1 Figur 1: Hvor stejl er den blå linje? Figur 2: Hvor stejl er den røde kurve i punktet P? 2 Figur 3: Hvor hurtigt kører cyklisten? 3 Eksempel: Cyklistens
Reeksamen i Calculus
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 08 Dette eksamenssæt består af 8 nummererede sider med afkrydsningsopgaver.
Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010
Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor
Variabel- sammenhænge
Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende
MATEMATIK A-NIVEAU-Net Forberedelsesmateriale
STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale
Forslag til løsning af Opgaver til ligningsløsning (side172)
Forslag til løsning af Opgaver til ligningsløsning (side17) Opgave 1 Hvis sønnens alder er x år, så er faderens alder x år. Der går x år, før sønnen når op på x år. Om x år har faderen en alder på: x x
Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017
Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Differentiation af sammensatte funktioner
1/7 Differentiation af sammensatte funktioner - Fra www.borgeleo.dk En sammensat funktion af den variable x er en funktion, vor x først indsættes i den såkaldte indre funktion. Resultatet fra den indre
Differentialregning 2
Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()
Matematisk modellering og numeriske metoder. Lektion 1
Matematisk modellering og numeriske metoder Lektion 1 Morten Grud Rasmussen 4. september, 2013 1 Ordinære differentialligninger ODE er 1.1 ODE er helt grundlæggende Definition 1.1 (Ordinære differentialligninger).
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
(Prøve)Eksamen i Calculus
(Prøve)Eksamen i Calculus Sæt 1, april 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende (prøve)eksamenssæt består af 7 nummererede sider
MATEMATIK B. Videooversigt
MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.
Arealer under grafer
HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens
Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet
Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal
Afstand fra et punkt til en linje
Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold
11. Funktionsundersøgelse
11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med
Kurver i planen og rummet
Kurver i planen og rummet John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Kurver i planen og rummet. Noterne er beregnet til at blive brugt sammen med foredraget. Afsnit 2 er
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave B
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Opgaven består af fire dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene
Differentialkvotient af cosinus og sinus
Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises
Reeksamen i Calculus. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. 17.
Reeksamen i Calculus Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 17. februar 2017 Dette eksamenssæt består af 11 nummererede sider med
Mat H /05 Note 2 10/11-04 Gerd Grubb
Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med
Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering
Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen
Konstruktion af Splines
Konstruktion af Splines Svend Daugaard Pedersen 29 maj 2011 Indhold 1 Hvad er en spline? 1 2 Matematisk behandling af en spline 1 3 Den naturlige spline 2 4 Andre splines 4 5 Tilpasset spline 4 6 Afslutning
Beregning af bestemt integrale ved partiel integration og integration ved substitution:
Beregning f estemt integrle ved prtiel integrtion og integrtion ved sustitution: f John V. Petersen Prtiel integrtion Sætning : Prtiel integrtion... si. Løsning f integrle... si. Plot f løsningsrelet...
Formler, ligninger, funktioner og grafer
Formler, ligninger, funktioner og grafer Omskrivning af ligninger og formler... 39 To ligninger med to ubekendte... 44 Formler, ligninger, funktioner og grafer Side 38 Omskrivning af ligninger og formler
Partielle afledede og retningsafledede
Partielle afledede og retningsafledede 1 Partielle afledede, definitioner og notationer Bertragt en funktion af to reelle variable f : D R, hvor D R 2 er et åbent område Med benyttelse af tilvækstfunktionen
Eksamen i Calculus Mandag den 4. juni 2012
Eksamen i Calculus Mandag den 4. juni 212 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 7 nummererede sider med ialt
MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen
MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible
Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.
Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f
Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7
Oversigt [S] 11.8 Nøgleord og begreber Lagranges metode i to variable Lagranges metode i tre variable Flere bindinger August 2000, opgave 7 Calculus 2-2006 Uge 47.2-1 Skitse [S] 11.8 Niveaukurver y f(x,y)=1
To find the English version of the exam, please read from the other end! Eksamen i Calculus
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår
