Differentialregning Infinitesimalregning

Størrelse: px
Starte visningen fra side:

Download "Differentialregning Infinitesimalregning"

Transkript

1 Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel II side 49 til 100 i Vejen til matematik B2. Der er endvidere stof fra Vejen til matematik A2 bogen side Sct. Knud Gmnasium Henrik S. Hansen

2 Indhold Infinitesimalregning... 1 Overgang fra sammenhænge til væksthastighed... 1 Funktionstilvækst... 2 Grænseværdi... 2 Sekant... 3 Differentialkvotient (differentiering)... 3 Definition af differentialkvotient... 4 Sætning: Differentialkvotienten af en konstant... 4 Sætning: Differentialkvotienten af en potens... 5 Sætning: Differentialkvotienten for en konstant gange funktion... 6 Sætning: Sumregel/differensregel for differentialkvotienten... 7 Sætning: Differentialkvotienten for et produkt (Produktregel)... 8 Sætning: Differentialkvotienten for en brøk (Brøkregel)... 9 Sætning: Differentialkvotienten for en sammensat funktion Differentiering af grundfunktioner Tangent Sætning: Tangentens ligning Monotoniforhold (monotoniintervaller) Optimering... 13

3 Infinitesimalregning Infinitesimalregning er en gren inden for matematikken, grundlagt af Isaac Newton og Gottfried Leibniz med skabelsen af differentialregning. Der var en lang kontrovers om, hvorvidt det var Newton eller Leibniz, der skabte infinitesimalregningen. Den almindelige konsensus er, at begge opdagede den uafhængigt af hinanden, men at Newton kom først, og Leibniz publicerede først. Infinitesimalregning beskæftiger sig med "uendeligt små" ændringer af kontinuerte funktioner, dvs. matematiske funktioner, der beskriver noget, der ændrer sig "glat". Et eksempel er bevægelse; man kan ikke bevæge sig fra et sted til et andet uden at have været alle steder imellem. For at forstå begrebet "uendeligt lille" (differentielt) kan man som analogi betragte fotografering: Vi tænker på et fotografi som et billede taget på et bestemt tidspunkt, men i virkeligheden er billedet eksponeret i et kort tidsrum. Jo kortere man kan gøre eksponeringstiden, jo mindre ser man rstelser etc. Hvis eksponeringstiden kunne gøres uendelig kort, ville billedet blive perfekt. Infinitesimalregningen kan groft sagt opdeles i to intimt relaterede discipliner: Differentialregning og integralregning. Vi vil i det efterfølgende kigge nærmere på differentialregningen. Overgang fra sammenhænge til væksthastighed Vi har tidligere set på begrebet funktion på baggrund af sammenhænge mellem den afhængige variabel og den uafhængige variabel. Hertil kiggede vi lidt på monotoniintervaller. En bestemt vækst f(x) kunne være den som vist på figuren. Det ses at væksten (i graf området) i starten er aftagende, derefter voksende for til sidst igen at være aftagende. Vi nævnte tidligere begrebet monotoniintervaller i denne sammenhæng. Der efter koblede vi begreberne lineærvækst, eksponentielvækst og potensvækst på specielle sammenhænge, som var monotone ( , ) ( , ) f(x) Nu går vi skridtet videre og kigger på hvor hurtigt at funktioner/sammenhænge vokser til bestemte tidspunkter. (video) Det kunne være interessant at spørge hvor stor væksten var ved punktet P altså ved x=2. Løst sagt: Jo større væksthastigheden er i et punkt, jo stejlere er kurven i det videre forløb. P x 1

4 Funktionstilvækst Vi får brug for begrebet funktionstilvækst for en funktion ud fra et punkt x 0 i definitionsmængden. Et punkt lidt til højre eller venstre for x 0 på x-aksen kaldes et nabopunkt til x 0. Et sådan punkt betegnes, hvor er en MEGET lille størrelse. Funktionstilvæksten er dermed givet som Tilvæksten kan være negativ, positiv eller 0 afhængig af grafens udseende omkring punktet i x 0. Grænseværdi Grænseværdi har været et centralt begreb i matematikken siden infinitesimalregningens opståen i slutningen af det 17. århundrede. Man siger, at en talfølge x 1,x 2,...,x n,... har grænseværdien x, hvis tallet x n er vilkårligt tæt på x, blot tallets nummer n er tilstrækkelig højt. Dette skrives sædvanligvis lim n x n = x under brug af det latinske ord limes 'grænse'. Kig på, hvor 0 < x og bestem grænseværdien når. Denne bliver. Kan også tit se skrevet som Her bliver akserne asmptoter til grafen f(x) = 1/x x I sammenhæng med differentialregning, så skal man kunne finde en konkret grænseværdi fra begge sider for at en kontinuert funktion kan kaldes differentiabel. Med andre ord: funktionen skal være sammenhængende og glat. (se evt noterne om funktioner) Lav øvelse 1.1 side 53 og side 1 i tillæg til differentialregning.pdf 2

5 Sekant En sekant er i matematikken en ret linje, der skærer en kurve. Her bruger vi den til at bestemme tangenten og dermed hældningen/differentialkvotienten i et punkt. En ret linje kan bestemmes ud fra to punkter, men en tangent rører jo kun i ét punkt på grafen!! Hvis vi bentter egenskaben for en sekant og vores ne viden om grænseværdier, så kan vi bestemme tangentens hældning til en given x- værdi (og senere tangentens ligning i punktet P). (video) Vi tager fat på vores vækst fra tidligere og zoomer lidt ind omkring x=2 (altså punktet P) Udgangspunktet er P og Q1. Her udfra kan g(x) bestemmes. Nu holdes P fast og Q1 flttes over Q2 du har vi h(x). Ved at lade Q2 gå mod P, vil den beregnede linje nærme sig tangenten i P (her ). 24 P Y = 15.X h(x) ( , ) Q2 Q g(x) f(x) x i Se illustrationen af ovenstående i geometer. (programmet) Lav opgave 51 side 96 og opgave 52 side 96 Differentialkvotient (differentiering) Differentialregningen beskæftiger sig med, hvor meget en såkaldt afhængig variabel ændres, hvis der sker små ændringer i den uafhængige variabel. Forholdet mellem ændringerne i hhv. den afhængige og den uafhængige variabel kaldes differenskvotienten, og spiller en central rolle i differentialregningen. Differenskvotienten er funktionstilvæksten divideret med forskellen i x. Når afstanden i x er uendelig lille vil differenskvotienten være lig med differentialkvotienten. Differentialkvotienten er hældningen på tangenten i punktet. Lav opgaver i tillæg til differentialregning.pdf 3

6 Definition af differentialkvotient En kontinuert* funktion f siges at være differentiabel i et tal, hvis differenskvotienten, har en grænseværdi for Denne grænseværdi kaldes funktionens differentialkvotient i og betegnes eller *En graf kaldes kontinuert hvis dens graf er sammenhængende. Se side 53 for derligere info. Hvis vi kigger på hvordan en sekant beregnes, bliver det tdeligere, at differenskvotienten (hældningen på sekanten) vil blive det samme som (gå imod) differentialkvotienten (hældningen på tangenten), når. Når en funktion differentieres så bestemmes en funktion til bestemmelse af differentialkvotienten til givne x-værdier. I praksis benttes tretrinsreglen til at bestemme differentialkvotienten. (video) 1. Bestem differenskvotienten 2. Reducer udtrkket 3. Bestem, hvis det er muligt, grænseværdien for for Der vil altså gælde jf. ovenstående at for Gennemgå side 59 Lav opgave 53 side 96, opgave 54 side 96, opgave 55 side 96 og opgave 56 side 96 I de næste sætninger kunne vi lige så godt erstatte med, da det vil gælde for alle x i definitionsmængden. Endvidere fordi, at differentiering resulterer i en funktion (den afledede funktion af f(x)), som kan bestemme differentialkvotienter til givne x-værdier. Beviserne føres dog med (for at minde mest mulig om bogen). Lad os starte fra en ende af, og kigge på polnomier hvor vi lader graden stige løbende. Her kigger vi først på en konstant. Sætning: Differentialkvotienten af en konstant Differentialkvotienten af en konstant k er 0: Bevis (video) Hvis vi tegner den grafisk, kan vi se at den ikke vokser på noget tidspunkt, så intuitivt må differentialkvotienten være 0 uanset hvor vi er på grafen 4

7 , hvor k er konstant Bruger tretrinsreglen Hermed bevist Sætning: Differentialkvotienten af en potens Vi kigger nu på polnomier, hvor vi starter med den lineære som den første. Differentialkvotienten af en potens er for alle reelle tal n givet ved Bevis (video) Funktionen er en potensfunktion. Lad n=1 (her har vi et førstegradspolnomium) Nu har vi funktionen dermed skal Bruger tretrinsreglen , hermed bevist med n=1 Lad nu n=2 (her har vi et andengradspolnomium) Nu har vi funktionen dermed skal Bruger tretrinsreglen , hermed bevist med n=2 5

8 Lad nu n=3 Nu har vi funktionen dermed skal Bruger tretrinsreglen , hermed bevist med n=3 Det gælder for alle reelle n. NB: HUSK at alle rødder kan skrives som potenser for rødder som ved potenser. Eks. kan, og dermed løses differentialkvotienter. Ligeledes kan Hermed bevist Lav øvelse 3.6 side 64, opgave 58 side 96 og opgave 59 side 96 Sætning: Differentialkvotienten for en konstant gange funktion Hvis g er en differentiabel funktion, og k er konstant, gælder der at: så bliver Bevis (video) Vi har Bruger tretrinsreglen Da g er differentiabel vil den have en grænseværdi for derfor vil vi få, Hermed bevist. (kobling af sætninger) Lav øvelse 3.9 side 66 6

9 Sætning: Sumregel/differensregel for differentialkvotienten Hvis h og g er differentiable funktioner, så gælder der at: Bevis (video) Vi har Bruger tretrinsreglen ( ) 3. Da g og h er differentiable vil de have en grænseværdi for derfor vil vi få Tilsvarende vil gælde for Hermed bevist Nu kan vi igen vende blikket mod vores graf i starten og væksten i x=2. Der gælder at Vi bestemmer den afledede funktion jf. ovenstående sætninger Når vi så spørger efter væksten til x=2 bestemmes blot Læg mærke til at den afledede er en funktion og differentialkvotienten er et tal. Vi kan tdeligt se at når f (x) er negativ så er f(x) aftagende og når f (x) er positiv er f(x) voksende. (video) Se en illustration af ovenstående i geometer. (programmet) f (x) P (2,15) f(x) x Når vi senere skal kigge på monotoniintervaller igen, udntter vi at f (x) kan afgøre om f(x) er voksende eller aftagende. Lav øvelse 3.12 side 67, opgave 60 side 96, opgave 61 side 96 og opgave 62 side 96 7

10 Sætning: Differentialkvotienten for et produkt (Produktregel) Hvis h og g er differentiable, er differentiabel og Bevis (video) Vi bruger tretrinsreglen på ( ) ( ) ( ) ( ) 3. Man kan vise at grænseværdien for et produkt er produktet af grænseværdierne. Vi kan derfor bestemme grænseværdierne for hvert led og hver faktor for sig. Da h og g er differentiable er grænseværdierne for brøkerne og når Da g er kontinuert vil når når Hermed bevist. Lav øvelse 4.5 side 82 A2, opgave 75 side 113 A2 8

11 Sætning: Differentialkvotienten for en brøk (Brøkregel) Hvis h og g er differentiable og, er differentiabel ( ) Bevis: (video) kan omskrives til Nu kan vi bentte produktreglen til at differentiere. Nu isolerer vi ( ) ( ) Hermed bevist Lav øvelse 4.8 side 83 A2, opgave 76 side 113 A2 9

12 Sætning: Differentialkvotienten for en sammensat funktion Hvis h og g er differentiabel, er ( ) differentiabel: Bevis: (video) ( ) Vi bentter tretrinsreglen på ( ) Hvis vi forudsætter, at kan vi lave følgende omskrivning: Tilvæksten kalder vi for k og kalder vi for. Da Da g er differentiabel vil samtidig med at vil vi få følgende grænseværdi ( ) ( ) Hermed bevist. Lav øvelse 4.12 side 85 A2, opgave 77 side 113 A2 og opgave 78 side 113 A2 10

13 Differentiering af grundfunktioner I bogen side 69 B2 eller 79 A2 ses en tabel over differentiering af nogle grundformler. Der vil ikke blive ført bevis for disse. Lav opgave 62, opgave 63 (via TII) og opgave 70 Tangent Nu har vi kigget på den afledede funktion, som til en bestemt -værdi gav en differentialkvotient. Det kan dog i mange henseender være praktisk at kunne bestemme tangentens ligning. Se Illustration af en tangent i geometer. (programmet) Hældningen har vi allerede beskæftiget os med, nemlig differentialkvotienten. Sætning: Tangentens ligning Hvis f(x) er differentiabel og vi har, så vil tangenten i dette punkt have ligningen. Bevis (video) I punktet ( ) har tangenten hældningen jf. definitionen af differentialkvotienten. (x0,f (x0)) f (x) f(x) Sætningen: En ret linje, der har hældningen a og går gennem et punkt ( ) har ligningen Giver os nu: x0 (x0,f(x0)) x Hermed bevist tangent Nu kan vi igen vende blikket mod vores graf i starten og bestemme tangentligningen i x=2. Hældningen bliver og funktionsværdien Tangentligningen bliver t(x) = 15x-3 39 f(x) P x t(x) = 15x-3 f(x) P x Lav øvelse 7.4 side 83, opgave 75 side 98, opgave 77 side 98 og opgave 78 side 98 11

14 Monotoniforhold (monotoniintervaller) I noterne for funktioner gennemgik vi monotoniintervaller og ekstremaer. Nu har vi fået et nt værktøj til at bestemme dette eksakt. Vi foretager en monotoniundersøgelse. Vi kan se en sammenhæng mellem og grafen til højre. på Funktionsværdierne for f (x) er negative når er aftagende og positive når er voksende. Når har vi en vandret tangent og dermed er væksten 0. (video) Til bestemmelse af monotoniforhold i praksis (monotoniundersøgelse): (3.28, ) f(x) (.05, 4.97) 3.5 (3.28, 0) x (.05, 0.) f (x) 1. Bestem den afledede funktion 2. Løs 3. Tegn fortegnslinje udfra resultaterne i (2.) Bestem funktionsværdierne i intervallerne og angiv disse med et tegn som angiver om de er voksende eller aftagende. 4. Konklusion. Se nederst på side 86 i bogen. I vores tilfælde Dette er et andengradspolnomie og har maks. to rødder. Her er de tidligere bestemt til 3. Så ser fortegnslinjen således ud f (x) , , > x f(x) min max 12

15 4. Konklusion f(x) er aftagende på intervallet f(x) er voksende på intervallet f(x) er aftagende på intervallet Der er et lokalt minimum i med minimumsværdien Der er et lokalt maksimum i med maksimumsværdien Denne funktion har ingen globale ekstremaer da og Lav øvelse 8.6 side 90, opgave 90 side 99, opgave 91 side 99 og opgave 96 side 99 Optimering Tidligere i vores rapport og afleveringer har vi arbejdet med optimering. Nu kan vi via en monotoniundersøgelse bestemme den optimale værdi. Se eksempel 9.1 side 92 Lav opgave 100 side 100 og bestem minimale materialeforbrug i jeres rapport udfra 13

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0 MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...

Læs mere

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Projekt 4.6 Løsning af differentialligninger ved separation af de variable Projekt 4.6 Løsning af differentialligninger ved separation af de variable Differentialligninger af tpen d hx () hvor hx ()er en kontinuert funktion, er som nævnt blot et stamfunktionsproblem. De løses

Læs mere

Differentialregning ( 16-22)

Differentialregning ( 16-22) Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)

Læs mere

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f

Læs mere

Betydningen af ordet differentialkvotient...2. Sekant...2

Betydningen af ordet differentialkvotient...2. Sekant...2 PeterSørensen.dk Differentiation Indold Betydningen af ordet differentialkvotient... Sekant... Differentiable funktioner...3 f (x) er grafens ældning i punktet med første-koordinaten x....3 Ikke alle grafpunkter

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Pointen med Differentiation

Pointen med Differentiation Pointen med Differentiation Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Differential- regning

Differential- regning Differential- regning del () f () m l () 6 Karsten Juul Indhold Tretrinsreglen 59 Formler for differentialkvotienter64 Regneregler for differentialkvotienter67 Differentialkvotient af sammensat funktion7

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 35-del 1, 2010 Redigeret af Jessica Carter efter udgave af Hans J. Munkholm 1 Nogle talmængder s. 4 N = {1,2,3, } omtales som de naturlige tal eller de positive heltal. Z =

Læs mere

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak Introduktion til differentialregning 1 Jens Siegstad og Annegrete Bak 16. juli 2008 1 Indledning I denne note vil vi kort introduktion til differentilregning, idet vi skal bruge teorien i et emne, Matematisk

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

M A T E M A T I K B 2

M A T E M A T I K B 2 M A T E M A T I K B 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f a x b () Matematik B2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3

Opvarmningsopgaver. Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3. Forkort brøken. Gang parentesen ud: (x 0 + x) 3 eks. Intro til differentialregning side 1 Opvarmningsopgaver 10. november 2012 12:58 Gang parentesen ud: Forkort brøken: Gang parentesen ud: (1.5 + x) 2 (1 + x) 3 Gang parentesen ud: Forkort brøken (x

Læs mere

Matematik B2. Mike Auerbach. (2) f (1)

Matematik B2. Mike Auerbach. (2) f (1) Matematik B2 Mike Auerbach (2) f a b () Matematik B2. udgave, 205 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet vha. tekstformateringsprogrammet

Læs mere

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010

Matematikprojekt. Differentialregning. Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen. 4 Oktober 2010 Matematikprojekt om Differentialregning Lavet af Arendse Morsing Gunilla Olesen Julie Slavensky Michael Hansen 4 Oktober 2010 Indhold I Del 1................................ 3 I Differentialregningens

Læs mere

A U E R B A C H. (2) f. a x b

A U E R B A C H. (2) f. a x b M A T E M A T I K B 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f a x b () Matematik B2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

M A T E M A T I K A 2

M A T E M A T I K A 2 M A T E M A T I K A 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f 4 () Matematik A2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Mike Vandal Auerbach. Differentialregning (2) (1)

Mike Vandal Auerbach. Differentialregning (2) (1) Mike Vandal Auerbach Differentialregning f () www.mathematicus.dk Differentialregning. udgave, 208 Disse noter er skrevet til matematikundervisningen på stx A- og B-niveau efter gymnasiereformen 207. Noterne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

A U E R B A C H M I K E (2) (1)

A U E R B A C H M I K E (2) (1) M A T E M A T I K A 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f 4 () Matematik A2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Øvelse 1 a) Voksende b) Voksende c) Konstant d) Aftagende. Øvelse 2 a) f aftagende i f voksende i b) f aftagende i

Øvelse 1 a) Voksende b) Voksende c) Konstant d) Aftagende. Øvelse 2 a) f aftagende i f voksende i b) f aftagende i 1 af 30 Kapitel 6 Udskriv siden Øvelse 1 Voksende Voksende Konstant Aftagende Øvelse 2 Øvelse 3 Hældningen er i alle tilfælde 0, så. Forklar e) Forklar Interval + + 2 af 30 Øvelse 4 i i f er aftagende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 HTX

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i 1 af 41 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1 Voksende Voksende Konstant Aftagende ØVELSE 2 f aftagende i f aftagende i f aftagende i f aftagende i ØVELSE 3 Hældningen

Læs mere

Differentiation af Logaritmer

Differentiation af Logaritmer Differentiation af Logaritmer Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold

Læs mere

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5 Lineære funktioner Indhold Definition:... Hældningskoefficient... 3 Begndelsesværdi... 3 Formler... 4 Om E-opgaver a... 5 Definition: En lineær funktion er en funktion, hvor grafen er lineær. Dvs. grafen

Læs mere

Matematik A2. Mike Auerbach (2) (1)

Matematik A2. Mike Auerbach (2) (1) Matematik A2 Mike Auerbach (2) f () Matematik A2. udgave, 205 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet vha. tekstformateringsprogrammet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 2009 Institution Silkeborg Handelsskole Uddannelse Fag og niveau Lærer(e) Hold Hhx Matematik, niveau

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

MATEMATIK ( 3 h ) DATO : 8. juni 2009

MATEMATIK ( 3 h ) DATO : 8. juni 2009 EUROPÆISK STUDENTEREKSAMEN 2009 MATEMATIK ( 3 h ) DATO : 8. juni 2009 PRØVENS VARIGHED: 3 timer (180 minutter) TILLADTE HJÆLPEMIDLER: Europaskolernes formelsamling ikke-grafisk, ikke-programmerbar lommeregner

Læs mere

P2-projektforslag Kombinatorik: grafteori og optimering.

P2-projektforslag Kombinatorik: grafteori og optimering. P2-projektforslag Kombinatorik: grafteori og optimering. Vejledere: Leif K. Jørgensen, Diego Ruano 1. februar 2013 1 Indledning Temaet for projekter på 2. semester af matematik-studiet og matematikøkonomi-studiet

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold HFe Mat C-B Henrik Jessen

Læs mere

Differentiation af Potensfunktioner

Differentiation af Potensfunktioner Differentiation af Potensfunktioner Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Some like it HOT: Højere Ordens Tænkning med CAS

Some like it HOT: Højere Ordens Tænkning med CAS Some like it HOT: Højere Ordens Tænkning med CAS Bjørn Felsager, Haslev Gymnasium & HF, 2001 I år er det første år, hvor CAS-forsøget er et standardforsøg og alle studentereksamensopgaverne derfor foreligger

Læs mere

Differentialregning 2

Differentialregning 2 Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()

Læs mere

Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Sommer Uddannelse. X1maB18s og X2maB18s

Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Sommer Uddannelse. X1maB18s og X2maB18s Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2019 Institution Uddannelse Fag og niveau Lærer(e) Hold Campus Vejle Hf Matematik B Jane Madsen X1maB18s

Læs mere

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion ISBN 978877664974 Projekter: Kapitel. Projekt. Omvendt funktion og differentiation af omvendt funktion Projekt. Omvendt funktion og differentiation af omvendt funktion Vi har i Bbogens kapitel 4 afsnit

Læs mere

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:

Læs mere

matx.dk Mikroøkonomi

matx.dk Mikroøkonomi matx.dk Mikroøkonomi Dennis Pipenbring 31. august 2011 Indold 1 Udbuds- og efterspørgselskurver 3 1.1 Lineær.............................. 4 1.2 Eksponentiel........................... 5 1.3 Potens..............................

Læs mere

Funktioner af flere variable

Funktioner af flere variable Funktioner af flere variable Stud. Scient. Martin Sparre Københavns Universitet 23-10-2006 Definition 1 (Definition af en funktion af flere variable). En funktion af n variable defineret på en delmængde,

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Selvstuderende Lærer Maj-juni 2014 Skoleår 2013/2014

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni skoleåret 2016/17 Institution Viden Djurs - VID Gymnasier Uddannelse Fag og niveau Lærer Hold HTX

Læs mere

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier: Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med

Læs mere

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb Studieplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 10-juni 11 Institution Grenaa Tekniske Gymnasium Uddannelse Fag og niveau Lærer(e) Hold HTX Matematik B2 Klavs Skjold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 16/17 Institution Hf i Nørre Nissum VIA UC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin 2011-2012 Institution Favrskov Gymnasium Uddannelse Fag og niveau Lærer Hold stx Matematik B Bente Madsen 1e mab Oversigt over gennemførte undervisningsforløb Titel 1 Titel

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2018/19 Institution Viden Djurs - VID Gymnasier Uddannelse Fag og niveau Lærer Hold HTX Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 14MACB11E14

Læs mere

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler

Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 008 HHX08-MAB Matematik Niveau B Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse

Læs mere

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas UVB Skoleår: 2013-2014 Institution: Fag og niveau: Lærer(e): Hold: Teknisk Gymnasium Skive Matematik A Claus Vestergaard og Franka Gallas 3. A Titel 1: Rep af 1. og 2. år + Gocart Titel 2: Vektorer i rummet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 14 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2018 Institution Kolding HF og VUC, Kolding Åpark 16, 6000 Kolding Uddannelse Fag og niveau Lærer(e)

Læs mere

Kontinuerte og differentiable modeller benyttet i SRP med matematik A og biologi A eller B

Kontinuerte og differentiable modeller benyttet i SRP med matematik A og biologi A eller B 1 Kontinuerte og differentiable modeller benyttet i SRP med matematik A og biologi A eller B Bent Selchau Indledningsvis vil vi betragte to typer populationsudviklinger, som altid bliver gennemgået i matematikundervisningen

Læs mere

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold:

Monotoniforhold Der gælder følgende sætninger om en differentiabel funktions monotoniforhold: Side 21 Oversigt over undervisningen i matematik - 2x 05/06 Der undervises efter: Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 Claus Jessen, Peter Møller og

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Hold Vinter 2016/17 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Trine Eliasen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 14/15 Hf

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Opgaver med hjælp Funktioner 2 - med Geogebra

Opgaver med hjælp Funktioner 2 - med Geogebra Opgaver med hjælp Funktioner 2 - med Geogebra Nulpunkter, monotoniforhold og ekstrema Formålet med denne note er at tegne os frem til nulpunkter, monotoniforhold og ekstrema for en funktion ved hjælp af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2015-2016 Institution Vestegnen HF & VUC Uddannelse Fag og niveau Lærer Hold HF: E-learning Matematik

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Matematik B-niveau STX 7. december 2012 Delprøve 1

Matematik B-niveau STX 7. december 2012 Delprøve 1 Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme

Læs mere

Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Stamoplysninger til brug ved prøver til gymnasiale uddannelser Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2018 Institution Uddannelse Thy-Mors HF & VUC Hfe Fag og niveau Hold Matematik, niveau B Hold Id: tfjhmab Lærer Knud Søgaard

Læs mere

Differential- regning

Differential- regning Differential- regning del f(5) () f f () f ( ) I 5 () 006 Karsten Juul Indhold 6 Kontinuert funktion 7 Monotoniforhold7 8 Lokale ekstrema44 9 Grænseværdi5 Differentialregning del udgave 006 006 Karsten

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2014/15, eksamen maj-juni 2015 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2016 Institution Uddannelse Fag og niveau Lærer(e) Hold Rybners HTX Esbjerg HTX Matematik B Shihua Wang

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Juni 119 Institution Uddannelse Fag og niveau Lærere Hold Erhvervsgymnasiet Grindsted HHX Matematik B John Hansen (JO) Christian Norling Svane (CS) 1.AI18 Forløbsoversigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Hold Sommer 2016 Thy-Mors HF & VUC Hfe Matematik, niveau

Læs mere

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er

Læs mere

Differentiation. Frank Nasser. 11. juli 2011

Differentiation. Frank Nasser. 11. juli 2011 Differentiation Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere

Koblede differentialligninger.

Koblede differentialligninger. 2. 3. 4. Koblede differentialligninger. En udvidelse af Newtons afkølingslov løst numerisk ved hjælp af integralkurver. Sidste gang så vi på, hvordan vi kunne opstille og løse en model for afkølingen af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold Hfe / GSK Matematik B Kirsten

Læs mere