Udvalgsaksiomet. Onsdag den 18. november 2009
|
|
|
- Ingvar Clemmensen
- 9 år siden
- Visninger:
Transkript
1 Udvalgsaksiomet Onsdag den 18. november 2009
2 Eksempler
3 Fourier udvikling af f(x)=x
4 Fraktaler Hilbert Mandelbrot Feigenbaum Lorenz
5 Lorenz Ligningerne σ = 10 β = 8/3 ρ =28
6 x -> rx(1-x) LogisLsk vækst
7 Mandelbrots fraktal z -> P c (z) = z 2 +c 0-> P c (0) ->P c (P c (0))->
8 Sammenhæng mellem Mandelbrot og Feigenbaum fraktalerne z -> P c (z) = z 2 +c x -> rx(1-x)
9 Endelige og tællelige mængder Endelig: En mængde A er endelig, såfremt der findes et naturligt tal n, så A er ækvipotent med N n ={0,1,,n 1} Tællelig: En mængde A er tællelig, såfremt A enten er endelig eller ækvipotent med mængden af de naturlige tal N. Uendelig: En mængde A er uendelig, såfremt A ikke er endelig. N (de naturlige tal), Z (de hele tal) og Q (de ralonelle tal) er uendelige men tællelige mængder. R (de reelle tal) er en uendelig men ikke tællelig mængde.
10 Mængden af uendelige binære følger er ikke tællelig a 0 = a 1 = a 2 = a 3 =... b n =1 a nn Følgen (b n ) kan ikke være med i nummereringen a 0, a 1, a 2, Thi, hvis (b n ) = a n, så ville vi have b n = 1 a nn = a nn hvilket er en modstrid.
11 Mængden af de reelle tal er ikke tællelige C 0 = [0,1] C n+1 = Fjærn den miderste tredjedel I alle intervallerne i C n, dvs. erstat alle intervaller [a,b] i C n med følgende to intervaller V[a,b] = [a,a+1/3(b a)] H[a,b] = [a+2/3(b a),b] Svarenden Ll en binær følge c, definer følgen (F c0, F c1, F c2, ) af lukkede intervaller
12 Mængden af de reelle tal er ikke tællelige 2 Funktionen f fra mængden af binære følger ind i de reelle tal defineres ved Cantors mængde defineres som Funktionen f er en en-en-korrespondance mellem mængden af binære følger og Cantors mængde. Da C er en delmængde af R og C er ækvipotent med mængden af binære følger, som ikke er tællelig, kan R heller ikke være tællelig.
13 Det reelle talsystem Transcendente tal Beregnelige reelle tal Algebraiske tal Rationelle tal Hele tal Naturlige tal Transcendente tal = Relle tal der ikke er algabraiske Mængden af beregnelige tal er tællelig Mængden af transcendente tal er ikke tællelig π, γ og e er transcendente tal
14 Limit Points a is a limit point of P There are infinitely many points from P in every neighbourhood of a
15 Point sets of ν th kind As examples Cantor mentions that the 1 st derived set of the rational points in [0,1] is the real interval [0,1], and that {1,1/2,1/3,,1/n, } = {0} A point set P is of kind ν P (ν) is finite.
16 Uendelige serier af afledede
17 Ordinaltallene op Ll ω 2
18 Ordinaltallene op Ll ωω
19 Velordning a S
20 Klassen af Ordinaltal
21 Inkonsistente Mangfoldigheder
22 Kardinaltal
23 Kardinaltal fortsat
24 Cantors Hovedproblemer 1. Kan de reelle tal velordnes? 2. Kontinuumshypotesen: Findes der mægtigheder mellem de rationelle tal og de reelle tal? 3. Generelle Kontinuumahypotese: Findes der for en vilkårlig uendelig mængde M mægtigheder mellem M og P(M)?
25 Strukturelle Aksiomer
26 Eksistensaksiomer
27 KonstrukLonsaksiomer
28 KonstrukLonsaksiomer
29 Udvalgsaksiomet
30 Zermelos formulering af udvalgsaksiomet Det foreliggende bevis beror på den forudsætning, at overdækningen eksisterer, altså på det princip, at også for en uendelig samling af mængder findes der alld Llordninger, som Ll hver mængde Llordner et at dens elementer, eller formelt udtrykt, at produktet af en uendelig samling mængder, som hver mindst har et element, selv er forskellig fra nul [den tomme mængde]. Dele logiske princip lader sig ikke føre Llbage Ll et endnu simplere princip, men bliver uden betænkelighed anvendt overalt i den matemalske deduklon. E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann. Math. Ann., 59 (4), 1904, p. 516 For enhver ikke-tom mængde M er det muligt at finde en udvalgsfunktion f defineret på P(M)\Ø, hvor f(a) er element i A.
31 Gödels og Cohens Resultater Zermelo-Fraenkels mængdelære består af aksiomerne ZF1-ZF9 og betegnes ZF. Udvalgsaksiomet = ZF10 = AC Kontinuumshypotesen: Der er ingen mægtigheder mellem Q og R Den generaliserede kontinuumshypotese: Der er ingen mægtigheder mellem M og P(M). Betegnes GH. Både AC og GH er uafhængige af ZF. Det betyder: Hvis ZF er konsistent, så han AC, GH, -AC og GH tilføjes til ZF uden at der opstår en modstrid.
32 Banach Tarskis Paradoks En kugle kan opdeles i endelig mange dele, som så kan sættes sammen til to kugler, der er kongruente med den oprindelige kugle. Anden udgave: Det er muligt at finde to kongruente figurer, A og B, på en kugleoverflade, hvor man fra A kan fjerne uendelig mange punkter, så B og den modificerede A-figur fortsat er kongruente.
33 KonLnuitet og følgekonlnuitet En reel funktion f er kontinuitet i x 0, såfremt der gælder En reel funktion f er følge-kontinuitet i x 0, såfremt der for en vilkårlig talfølge (x n ) -> x 0 gælder (f(x n )) -> f(x 0 ) Hvis udvalgsaksiomet gælder, er de to former for kontinuitet identiske. Hvis udvalgsaksiomet er falsk, er de to former for kontinuitet ikke identiske.
34 Yderligere Konsekvenser af AC Ethvert vektorrum har en basis Produktmængden af ikke-tomme mængder er ikke tom Zorns lemme: Hvis enhver kæde i en partielt ordnet mængde har en øvre grænse, så har mængden et maksimalt element. Hahn-Banachs sætning: En lineær funktional, defineret på et delrum af et vektorrum, som er begrænset af en seminorm, kan udvides til en lineær funktional, begrænset af samme seminorm, på hele rummet. Eksistens af ikke-trivielle ultrafiltre.
Fremkomsten af mængdelæren. Stig Andur Pedersen
Fremkomsten f mængdelæren Stig Andur Pedersen 1 Fourier række for f(x)=x x n 1 ( 1) 2 sin( nx) n n= 1 sin(2 x) sin(3 x) sin(4 x) = 2 sin( x) + + 2 3 4 De første 15 led er tget med på kurven. 2 Fourierrække
Gödels ufuldstændighedssætninger
Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige 2 Folkeuniversitetet i København, efteråret 2011 Thomas Bolander, FUKBH 11 s. 1/21 Gödels ufuldstændighedssætning
Matematik 3GT. Topologi. Christian Berg
Matematik 3GT Topologi Christian Berg 2001 Universitetsparken 5 2100 København Ø c Matematisk Afdeling 2001 FORORD Kurset 3GT er et nyt kursus i 5. semester omhandlende mængdelære, generel topologi og
LIDT OM UENDELIGHED HENRIK HOLM
LIDT OM UENDELIGHED HENRIK HOLM Denne note omhandler uendelighedsbegrebet, som det er indført af Georg Cantor omkring 1870 Vi henviser til [4] for Cantors arbejder For datiden var Cantors idéer revolutionerende,
Ufuldstændighed, mængdelære og beregnelighed
Ufuldstændighed, mængdelære og beregnelighed Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 2009 Thomas Bolander, FUKBH 09 s. 1/27 Sidste
t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42
Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder
Projekt 7.10 Uendelighed Hilberts hotel
Hvad er matematik? ISBN 909 Projekter: Kapitel Projekt 0 Uendelighed Hilberts hotel Projekt 0 Uendelighed Hilberts hotel (Materialet i dette projekt er hentet fra Hvad er matematik? A, indledningen til
Gult Foredrag Om Net
Gult Foredrag Om Net University of Aarhus Århus 8 th March, 2010 Introduktion I: Fra Metriske til Topologiske Rum Et metrisk rum er en mængde udstyret med en afstandsfunktion. Afstandsfunktionen bruges
Banach-Tarski Paradokset
32 Artikeltype Banach-Tarski Paradokset Uden appelsiner Andreas Hallbäck Langt de fleste af os har nok hørt om Banach og Tarskis såkaldte paradoks fra 1924. Vi har hørt diverse poppede formuleringer af
Archimedes Princip. Frank Nasser. 12. april 2011
Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
NAIV MÆNGDELÆRE. a A,
3. december 1987 Mængder 1 NAIV MÆNGDELÆRE 1. Zermelo Fraenkel s axiomer. (1.0) Hvad er en mængde? Vi har alle en intuitiv fornemmelse af hvad en mængde er. Det er en samling af ting, en klasse af objekter,
Lidt alment om vektorrum et papir som grundlag for diskussion
Definition : vektorrum, vektorer Et vektorrum er en mængde af elementer med operationerne sum (+) og numerisk multiplikation (), så følgende regler gælder for alle a, b, c og for alle reelle tal s, t R.
Gödels ufuldstændighedssætninger
Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 2009 Thomas Bolander, FUKBH 09 s. 1/27 Gödels første ufuldstændighedssætning
Hilbert om det uendelige og matematikkens grundlag omkring 1925
Hilbert om det uendelige og matematikkens grundlag omkring 1925 Klaus Frovin Jørgensen Matematik: Videnskaben om det uendelige 2 Folkeuniversitetet i København, efteråret 2011 1 / 40 Situationen i 1800-tallets
Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).
Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x
Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at
Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn
UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, Indledning
UENDELIG, MERE UENDELIG, ENDNU MERE UENDELIG, ESBEN BISTRUP HALVORSEN 1 Indledning De fleste kan nok blive enige om, at mængden {a, b, c} er større end mængden {d} Den ene indeholder jo tre elementer,
Elementær Matematik. Mængder og udsagn
Elementær Matematik Mængder og udsagn Ole Witt-Hansen 2011 Indhold 1. Mængder...1 1.1 Intervaller...4 2. Matematisk Logik. Udsagnslogik...5 3. Åbne udsagn...9 Mængder og Udsagn 1 1. Mængder En mængde er
Analyse 1. Mads Friis Anders Friis Anne Ryelund. 25. maj 2018
Analyse 1 Mads Friis Anders Friis Anne Ryelund 25. maj 2018 Indhold Introduktion Aksiomer og den matematiske metode Formalistisk struktur Mængder Introduktion Definitioner Delmængder Fællesmængde og foreningsmængde
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
GEOMETRI-TØ, UGE 6. . x 1 x 1. = x 1 x 2. x 2. k f
GEOMETRI-TØ, UGE 6 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imfaudk Opvarmningsopgave 1 Lad f : R 2 R være tre gange kontinuert differentierbar
5 hurtige til de voksne
16 Interview 5 hurtige til de voksne om intuitionisme Jingyu She og Maria Bekker-Nielsen Dunbar Hvad er det, du vil med matematik? Du vil gerne opbygge nogle modeller af et eller andet, som på en eller
Første konstruktion af Cantor mængden
DYNAMIK PÅ CANTOR MÆNGDEN KLAUS THOMSEN Første konstruktion af Cantor mængden For de fleste der har hørt on Cantor-mængden, er den blevet defineret på flg måde: I = 0 I = I = 0 0 OSV Cantor mængden C er
Formelle systemer og aksiomatisk mængdelære
Formelle systemer og aksiomatisk mængdelære Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige 2 Folkeuniversitetet i København, efteråret 2011 Thomas Bolander, FUKBH 11 s. 1/32 Lidt
Skriftlig eksamen - med besvarelse Topologi I (MM508)
INSTITUT FOR MATEMATIK OG DATALOGI SYDDANSK UNIVERSITET, ODENSE Skriftlig eksamen - med besvarelse Topologi I (MM508) Mandag d. 14. januar 2007 2 timer med alle sædvanlige hjælpemidler tilladt. Opgavesættet
Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål
Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )
GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til [email protected]. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder
Om uendelighedsbegrebet
Om uendelighedsbegrebet Henrik Stetkær 19. september 2006 I disse noter vil vi diskutere uendelighedsbegrebet, specielt egenskaber ved tællelige mængder. Vi går ud fra, at læseren har et elementært kendskab
Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014
Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.
Ordbog over Symboler
Ordbog over Symboler Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette
DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer
DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum
Grundlæggende Matematik
Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske
1.1. n u i v i, (u, v) = i=1
1.1 1. Hilbert rum 1.1. Hilbert rum og deres geometri. Definition 1.1. Et komplekst vektor rum V kaldes et indre produkt rum (eller præ-hilbert rum), når det er forsynet med en funktion (, ): V V C, som
Algebra - Teori og problemløsning
Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.
Taylors formel. Kapitel Klassiske sætninger i en dimension
Kapitel 3 Taylors formel 3.1 Klassiske sætninger i en dimension Sætning 3.1 (Rolles sætning) Lad f : [a, b] R være kontinuert, og antag at f er differentiabel i det åbne interval (a, b). Hvis f (a) = f
Matematisk modellering og numeriske metoder. Lektion 8
Matematisk modellering og numeriske metoder Lektion 8 Morten Grud Rasmussen 18. oktober 216 1 Fourierrækker 1.1 Periodiske funktioner Definition 1.1 (Periodiske funktioner). En periodisk funktion f er
Konstruktion af de reelle tal
Konstruktion af de reelle tal Rasmus Villemoes 17. oktober 2005 Indledning De fleste tager eksistensen af de reelle tal R for givet. I Matematisk Analyse-bogen Funktioner af en og flere variable af Ebbe
Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013
Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme
Hvad er et tal? Dan Saattrup Nielsen
12 Det filosofiske hjørne Hvad er et tal? Dan Saattrup Nielsen Det virker måske som et spøjst spørgsmål, men ved nærmere eftertanke virker det som om, at alle vores definitioner af tal refererer til andre
Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20.
Foldning af sandsnlighedsmål Lad µ og ν være to sandsnlighedsmål på (R, B). Fortolkning Lad φ : R R være φ(, ) = + for (, ) R. Lad X og Y være to reelle stokastiske variable defineret på (Ω, F, P). Definition
Gödels ufuldstændighedssætninger
Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik UNF foredrag, HCØ, 13. april 2010 Thomas Bolander, UNF, F10 s. 1/34 Introduktion En populær formulering af Gödel s (første) ufuldstændighedssætning
Talteoriopgaver Træningsophold ved Sorø Akademi 2007
Talteoriopgaver Træningsophold ved Sorø Akademi 2007 18. juli 2007 Opgave 1. Vis at når a, b og c er positive heltal, er et sammensat tal. Løsningsforslag: a 4 + b 4 + 4c 4 + 4a 3 b + 4ab 3 + 6a 2 b 2
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
Hilbert rum. Chapter 3. 3.1 Indre produkt rum
Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E
Lineære 1. ordens differentialligningssystemer
enote 7 enote 7 Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses Der bruges egenværdier og egenvektorer i løsningsproceduren,
Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet
Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt
Grundlæggende Matematik
Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske
Matematiske metoder - Opgaver
Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.
DesignMat Uge 11 Lineære afbildninger
DesignMat Uge Lineære afbildninger Preben Alsholm Forår 008 Lineære afbildninger. Definition Definition Lad V og W være vektorrum over samme skalarlegeme L (altså enten R eller C for begge). Afbildningen
Brug og Misbrug af logiske tegn
Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Kompleks Funktionsteori
Kompleks Funktionsteori Formelræs Holomorfe funktioner Sætning. (Caucy-Riemans ligninger). Funktionen f : G C, f = u+iv er holomorf i z 0 = x 0 + iy 0 hvis og kun hvis i punktet (x 0, y 0 ). du dx = dv
Hilbert rum. Chapter Indre produkt rum
Chapter 4 Hilbert rum 4.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E
Teoretiske Øvelsesopgaver:
Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere
Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)
SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige
Tidligere Eksamensopgaver MM505 Lineær Algebra
Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................
Foredrag i Eulers Venner 30. nov. 2004
BSD-prosper.tex Birch og Swinnerton-Dyer formodningen Johan P. Hansen 26/11/2004 13:34 p. 1/20 Birch og Swinnerton-Dyer formodningen Foredrag i Eulers Venner 30. nov. 2004 Johan P. Hansen [email protected]
Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2
Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket
t a l e n t c a m p d k Kalkulus 1 Mads Friis Anders Friis Anne Ryelund Signe Baggesen 10. januar 2015 Slide 1/54
Slide 1/54 Indhold 1 2 3 4 5 Slide 2/54 Indhold 1 2 3 4 5 Slide 3/54 1) Hvad er et aksiom? Slide 4/54 1) Hvad er et aksiom? 2) Hvorfor har vi brug for aksiomer? The Monty Hall Problem Slide 4/54 1) Hvad
Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931
Kommentar til 1 Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Denne afhandling af den 24-årige Kurt Gödel er blevet en klassiker. Det er vist den eneste
Om uendelighedsbegrebet
Om uendelighedsbegrebet Henrik Stetkær 27. oktober 2004 I disse noter vil vi diskutere uendelighedsbegrebet, specielt egenskaber ved tællelige mængder. Vi går ud fra, at læseren har et elementært kendskab
Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.
Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger
Elementær Matematik. Tal og Algebra
Elementær Matematik Tal og Algebra Ole Witt-Hansen 0 Indhold Indhold.... De naturlige tal.... Regneregler for naturlige tal.... Kvadratsætningerne..... Regningsarternes hierarki...4. Primtal...4 4. Nul
Differentiabilitet. f(h) = f(x 0 +h) f(x 0 ). y = f(x) f(h) df(h) Figur 1: Tangent, tilvækst og differential. lim. df(h) = f (x 0 )h.
Differentiabilitet 1 Funktioner af én reel variabel Tilvækstfunktionen f med udgangspunkt i x 0 er en reel funktion af tilvæksten : f() = f(x 0 +) f(x 0 ). y = f(x) Tangent (x 0,f(x 0 )) df() f() x 0 x
t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25
Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.
brikkerne til regning & matematik tal og algebra preben bernitt
brikkerne til regning & matematik tal og algebra 2+ preben bernitt brikkerne. Tal og algebra 2+ 1. udgave som E-bog ISBN: 978-87-92488-35-0 2008 by bernitt-matematik.dk Kopiering af denne bog er kun tilladt
Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET
I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.
Uendelighed og kardinalitet
Steen Bentzen Uendelighed og kardinalitet - mængder og de reelle tal. Forlaget Bentz - - Indholdsfortegnelse Forord.. s. 2 Kapitel : Ækvipotens og kardinalitet generelt... s. 3 Kapitel 2: Ækvipotens og
Matematik opgave Projekt afkodning Zehra, Pernille og Remuss
Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Opgave A Sæt de overstående symboler ind i en matematisk sammenhæng der gør dem forståelige. Det kan være som en sætning eller med tal og bogstaver
13 Markovprocesser med transitionssemigruppe
13 Markovprocesser med transitionssemigruppe I nærværende kapitel vil vi antage at tilstandsrummet er polsk, hvilket sikrer, at der findes regulære betingede fordelinger. Vi skal se på eksistensen af Markovprocesser.
t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25
Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion
MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 10. september Department of Mathematics University of Copenhagen
MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 10. september 2018 Oversigt Relle tal Notation Tal Største og mindste element, mindste overtal og største undertal
Lineære ligningssystemer
enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.
Polynomium Et polynomium. Nulpolynomiet Nulpolynomiet er funktionen der er konstant nul, dvs. P(x) = 0, og dets grad sættes per definition til.
Polynomier Polynomier Polynomium Et polynomium P(x) = a n x n + a n x n +... + a x + a 0 Disse noter giver en introduktion til polynomier, centrale sætninger om polynomiumsdivision, rødder og koefficienter
MASO Uge 1. Relle tal Følger. Jesper Michael Møller. 7. september Department of Mathematics University of Copenhagen
MASO Uge 1 Relle tal Jesper Michael Møller Department of Mathematics University of Copenhagen 7. september 2016 Formålet med MASO Integer sequences Oversigt Relle tal Notation Tal Overtal og undertal Største
dvs. vinkelsummen i enhver trekant er 180E. Figur 11
Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis
En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby
24 En differentiabel funktion hvis afledte ikke er kontinuert Søren Knudby Det er velkendt for de fleste, at differentiabilitet af en reel funktion f medfører kontinuitet af f, mens det modsatte ikke gælder
