Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931
|
|
|
- Maja Mathiasen
- 10 år siden
- Visninger:
Transkript
1 Kommentar til 1 Gödel: Über formal unentschiedbare Sätze der Principia Mathematica und verwandter Systeme I, 1931 Denne afhandling af den 24-årige Kurt Gödel er blevet en klassiker. Det er vist den eneste moderne matematiske afhandling som menigmand kender af omtale. Dens resultater er af populærjournalistiken blevet tolket som "matematikkens sammenbrud", - ja, som "den menneskelige tankes fallit". Gödel viser først at der i enhver matematisk teori, som omfatter aritmetikken, findes udsagn som hverken kan bevises eller modbevises. Hvis et sådant, eller dets negation, skal bevises, må der føjes flere aksiomer til teorien. Der er intet mærkeligt i dette. En smule overraskende er måske nok Gödel's andet resultat: for en teori som omfatter aritmetikken kan et bevis for at den er modsigelsesfri ikke formaliseres indenfor teorien selv. Der skal altså flere aksiomer til for at bevise at teorien er modsigelsesfri end der er i teorien selv. Men selv om man havde et bevis for at teorien er modsigelsesfri, som var formaliseret indenfor teorien selv, ville det ikke uden videre bevise at teorien er modsigelsesfri. Thi hvis der er en modsigelse i teorien, kan ethvert udsagn jo bevises (se...), og dermed også udsagnet "teorien er modsigelsesfri". Et bevis for at teorien er modsigelsesfri har kun værdi, hvis der kun gøres brug af helt harmløse aksiomer, dvs. aksiomer af endelig karakter. At teorien kan bevises at være modsigelsesfri, hvis man gør brug af flere aksiomer end der er i teorien, er Gentzen's bevis et eksempel på (...). Gödel's afhandling er på 26 sider og har 4 afsnit. Vi skitserer indholdet af hver af disse, og til sidst skitserer vi beviset for Church s uafgørbarhedssætning. 1 er den citerede indledning. Gödel nævner at det udsagn han vil konstruere, som hverken kan bevises eller modbevises, er inspireret af Richard's paradoks. Dette paradoks (Richard, 1905) kan formuleres således: Vi ordner alle sproglige udsagn, hvori der indgår netop eet (variabelt) naturlige tal n, på rad og række (efter et leksikografisk princip). Det k-te udsagn betegnes E k (n). Vi betragter nu udsagnet "E n (n) er falsk". Da dette er et sprogligt udsagn, hvori der indgår netop eet (variabelt) naturlige tal n, må det være blandt E k -erne. Lad os antage at det har nummer q, altså E q (n) = "E n (n) er falsk". Men heraf følger (for n = q) at hvis E q (q) er sand er E q (q) falsk, og omvendt. Paradoksaliteten beror på, at i det naturlige sprog findes der ikke et sandhedsbegreb således at ethvert udsagn kan tildeles en sandhedsværdi sand/
2 falsk (se tredie bog,...). I 2 sættes det formale begrebsapparat op, og Gödel beviser at "i en teori som omfatter aritmetikken og som er ω-modsigelsesfri (se nedenfor), findes der et udsagn som hverken kan bevises eller modbevises". 2 Beviset føres ved at aritmetisere metamatematikken: enhver formal term, ethvert formalt udsagn og ethvert bevis tildeles et naturligt tal, herved kan ethvert metamatematisk udsagn omformes til et formalt aritmetisk udsagn. Gödel giver hvert af tegnene i den formale teori et nummer (som er et naturligt tal). Enhver tegnstreng, altså specielt enhver term og ethvert udsagn, kun nu tildeles et naturligt tal, nemlig 2 n 1 3 n 2 5 n 3 7 n 4 11 n 5... (k-te primtal) n k, hvis tegnstrengen består af k tegn, og det første tegn har nummer n 1, det andet tegn har nummer n 2, osv. Et naturligt tal n er ikke nødvendigvis et Gödelnummer, men hvis det er et sådant, vil vi betegne den tilsvarende tegnstreng G n. Tilsvarende kan ethvert bevis, som jo er en følge af udsagn, tildeles et nummer. Alle beviser kan opstilles på rad og række ved hjælp af et leksikografisk princip. Gödelnummeret til det k-te bevis betegnes B k. Gödel kalder en talteoretisk relation R(x 1,..., x n ) (x 1,..., x n naturlige tal) rekursiv, hvis den kan dannes ved en særlig iterativ procedure. I årene fremkom der forskellige forslag til en definition af begrebet effektiv beregnelighed for en talteoretisk relation R(x 1,..., x n ). Dvs. en regneprocedure ved hjælp af hvilken man, for et givet sæt (x 1,..., x n ) af naturlige tal, kan afgøre om udsagnet R(x 1,..., x n ) er sandt eller falsk. Bl.a. generel rekursiv (Gödel, 1934), λ-definerbar (Church og Kleene, ) og Turing-beregnelig (Turing, l936). Det viste sig at disse definitioner er ensbetydende. Dette førte Church til at fremsætte den tese at "alle tilstrækkelig rummelige definitioner af effektiv beregnelighed er ensbetydende". En regneprocedure udformet som et computerprogram, i et tilstrækkelig rummeligt computersprog, er altså ensbetydende med disse definitioner. En relation som er rekursiv i Gödel's forstand kaldes idag simpel rekursiv. Gödel beviser at for enhver rekursiv relation R(x 1,..., x n ), findes et formalt udsagn r(x 1,..., x n ) således at a. (R(x 1,..., x n ) er sand) (r(x 1,..., x n ) er et teorem), b. (R(x 1,..., x n ) er falsk) ( r(x 1,..., x n ) er et teorem), her skal vi strengt taget i r(x 1,..., x n ) erstatte x 1,..., x n med deres Gödelnumre. Alle udsagn p(x), med een variabel x som gennemløber de naturlige tal, kan opstilles på rad og række ved hjælp af et leksikografisk princip. Gödel kalder et sådant udsagn "ein Klassenzeichen". Det n-te udsagn betegnes R(n). Funk-
3 tionen "n Gödelnummeret af R(n)" kan defineres i den formale teori. Udsagnet R(n)(m) betegnes [R(n):m]. Relationen R(m, n) = "B m er ikke et bevis for [R(n):n]" er rekursiv, derfor findes der et formalt udsagn r(m, n) således at a. "B m er ikke et bevis for [R(n):n]" r(m, n) er et teorem b. "B m er et bevis for [R(n):n]" r(m, n) er et teorem. 3 Udsagnet " m: r(m, n)" har een fri variabel, og er derfor R(q) for et naturligt tal q. Altså [R(q):n] = " m: r(m, n)", og derfor [R(q):q] = " m: r(m, q)". Gödel kalder en teori ω-modsigelsesfri, hvis der ikke findes et udsagn p(n) således at 1. ( n IN: p(n)) er et teorem og 2. p(n) er et teorem for ethvert n IN (husk at hvis " n IN: p(n)" er et teorem er p(n) et teorem for ethvert n, men det omvendte gælder ikke, jvf. logisk aksiom... side...). Hvis teorien er ω-modsigelsesfri er den modsigelsesfri. Thi hvis den var kontradiktorisk, ville ethvert formalt udsagn jo være et teorem, derfor ville den ikke kunne være ω-modsigelsesfri. Af det ovenstående følger nu: 1. Hvis teorien er modsigelsesfri kan [R(q):q] ikke bevises. Bevis: Hvis [R(q): q] var et teorem, ville findes et m' således at B m' var et bevis for [R(q):q]. Derfor ville, ifølge b, r(m', q) være et teorem, men dette strider mod at " m: r(m, q)" er et teorem. 2. Hvis teorien er ω-modsigelsesfri kan [R(q):q] ikke bevises. Bevis: Hvis teorien er ω-modsigelsesfri er den modsigelsesfri. Derfor kan, ifølge 1., [R(q): q] ikke bevises, dvs. for ethvert m er Bm ikke et bevis for [R(q):q]. Ifølge a er r(m, q) derfor et teorem for ethvert m. Hvis nu [R(q):q] kunne bevises, ville ( m: r(m, q)) være et teorem, men dette strider imod at teorien er ω- modsigelsesfri. Hvis teorien er modsigelsesfri kan " m: r(m, q)" altså ikke bevises, men r(m, q) er ikke destomindre et teorem for ethvert m. Hvis vi føjer " ( m: r(m, q))" til teorien som et nyt aksiom, får vi en teori som er stadig er modsigelsesfri (vis dette!), men ikke ω-modsigelsesfri, idet det både gælder at ( m: r(m, q)) er et teorem og at r(m, q) er et teorem for ethvert m. For at bevise at [R(q):q] ikke kan bevises, forudsætter Gödel at teorien er modsigelsesfri, men for at bevise at [R(q):q] ikke kan bevises, behøver Gödel en kraftigere forudsætning, nemlig at teorien er ω-modsigelsesfri. I 1936 viste Rosser at man kan nøjes med at forudsætte at teorien er modsigelsesfri.
4 4 I 3 viser Gödel at enhver rekursiv relation er aritmetisk, dvs. den kan dannes alene ved hjælp af aritmetikkens tegn. Det følger heraf at i udsagnet " m: r(m, q)", kan r(m, q) erstattes med et aritmetisk udsagn s(m), således at hvis " m: r(m, q)" kan bevises da kan også " m: s(m)" bevises, og omvendt. Hvis altså teorien (som omfatter aritmetikken) er ω-modsigelsesfri, findes et aritmetisk udsagn som hverken kan bevises eller modbevises. Desuden viser Gödel at udsagnet " m: r(m, q)", kan erstattes med et udsagn " x: F(x)" i den rene prædikat kalkyle (se...), således at hvis " m: r(m, q)" kan bevises da kan også " x: F(x)" bevises, og omvendt. Hvis altså teorien (som omfatter aritmetikken) er ω-modsigelsesfri, findes et udsagn i den rene prædikat kalkyle som hverken kan bevises eller modbevises. I 4 skitseres beviset til "ein merkwürdiges Resultat". Nemlig at "for en teori som omfatter aritmetikken kan et bevis for at den er modsigelsesfri ikke formaliseres indenfor teorien selv". Et komplet bevis er langt og indviklet - det blev udarbejdet af Hilbert og Bernay i At "teorien er modsigelsesfri" betyder at "der findes et udsagn som ikke kan bevises". Dette metamatematiske udsagn kan formaliseres som " k: G k udsagn m: B m ikke bevis for k". Gödel argumenterer nu for at beviset i 3, for at "hvis teorien er modsigelsesfri da kan udsagnet [R(q):q] ikke bevises", kan omformes til et formalt aritmetisk bevis. Udsagnet "( k: G k udsagn m: B m ikke bevis for k) ( m: B m bevis for [R(q):q])" er altså et teorem. Men da det allerede er bevist at hvis teorien er modsigelsesfri da kan udsagnet [R(q):q] ikke bevises, følger heraf at præmissen " k: G k udsagn m: B m ikke bevis for k" ikke kan bevises hvis teorien er modsigelsesfri. Til sidst nævner Gödel at forudsætningen i 3, at teorien er ω-modsigelsesfri, nu kan erstattes med "at teorien er kontradiktorisk kan ikke bevises i teorien selv", thi da er udsagnet " k: G k udsagn m: B m ikke bevis for k" et eksempel på et udsagn som hverken kan bevises eller modbevises. I 1936 beviste Church at enhver teori, som omfatter aritmetikken eller den rene prædikat kalkyle, er uafgørbar. Dvs. der findes ikke en effektiv beregningsprocedure, ved hjælp af hvilken man kan afgøre om et givet udsagn har et bevis eller ej. I tilfældet hvor teorien omfatter aritmetikken, går Church således til værks: Alle computerprogrammer som udfører beregninger med naturlige tal, således at såvel input som (evt.) output er ét tal, opstilles på rad og række ved hjælp af et leksikografisk ordningsprincip. Det k-te program betegnes P k. Hvis tallet m er input i P k, kan der ske 1. programmet går ikke igang, 2. programmet går igang men kører i det uendelige, 3. programmet går igang og
5 standser efter endelig mange udregninger, output er et tal n. Lad udsagnet T(k, m, n) være givet ved: T(k, m, n) er sandt hvis og kun hvis 3. gælder, og lad funktionen t: IN IN være givet ved t(m) = n + 1 hvis T(m, m, n) er sandt, og t(m) = 0 hvis der ikke findes noget n således at T(m, m, n) er sandt. 5 Denne funktion er ikke beregnelig. Bevis: Hvis t var beregnelig, ville der findes et tal q således at P q beregner den, dvs. T(q, m, t(m)) ville være sandt for ethvert m. Specielt ville T(q, q, t(q)) være sandt. Men dette ville medføre at t(p) = t(p) + 1 (da n er entydigt bestemt ved k og m, hvis T(k, m, n) er sandt). Det følger umiddelbart heraf at det ikke, ved en beregnings-procedure, kan afgøres om udsagnet " n: T(m, m, n) er sandt" (med én variabel m) er sandt eller falsk. Ifølge et tidligere nævnt resultat af Gödel, findes et formalt udsagn r(m, n) således at a. T(m, m, n) er sandt r(m, n) er et teorem b. T(m, m, n) er falsk r(m, n) er et teorem, og af dette følger at ( n: T(m, m, n) er sandt) (( n: r(m, n)) er et teorem). Hvis teorien var både ω-modsigelsesfri og afgørbar, ville sandhedsværdien af udsagnet "( n: r(m, n)) er et teorem" (med én fri variabel m) være beregnelig. Og dette ville medføre at sandhedsværdien af udsagnet " n:t(m, m, n) er sandt" var beregnelig, men det har vi lige vist at den ikke er.
t a l e n t c a m p d k Matematiske Metoder Anders Friis Anne Ryelund 25. oktober 2014 Slide 1/42
Slide 1/42 Hvad er matematik? 1) Den matematiske metode 2) Hvad vil det sige at bevise noget? 3) Hvor begynder det hele? 4) Hvordan vælger man et sæt aksiomer? Slide 2/42 Indhold 1 2 3 4 Slide 3/42 Mængder
Elementær Matematik. Mængder og udsagn
Elementær Matematik Mængder og udsagn Ole Witt-Hansen 2011 Indhold 1. Mængder...1 1.1 Intervaller...4 2. Matematisk Logik. Udsagnslogik...5 3. Åbne udsagn...9 Mængder og Udsagn 1 1. Mængder En mængde er
Gödels ufuldstændighedssætninger
Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige 2 Folkeuniversitetet i København, efteråret 2011 Thomas Bolander, FUKBH 11 s. 1/21 Gödels ufuldstændighedssætning
Ufuldstændighed, mængdelære og beregnelighed
Ufuldstændighed, mængdelære og beregnelighed Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 2009 Thomas Bolander, FUKBH 09 s. 1/27 Sidste
1 < 2 og 1 > 2 (2.1) er begge udsagn. Det første er sandt det andet er falsk. Derimod er
Kapitel 2 Logik Dette kapitel omhandler matematiske udsagn og prædikater. I et formelt kursus om logik opstiller man helt præcise regler for hvilke tegnstrenge, der kan tillades i opbygningen af udsagn
Noter til Perspektiver i Matematikken
Noter til Perspektiver i Matematikken Henrik Stetkær 25. august 2003 1 Indledning I dette kursus (Perspektiver i Matematikken) skal vi studere de hele tal og deres egenskaber. Vi lader Z betegne mængden
Gödels ufuldstændighedssætninger
Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik Matematik: Videnskaben om det uendelige Folkeuniversitetet i København, efteråret 2009 Thomas Bolander, FUKBH 09 s. 1/27 Gödels første ufuldstændighedssætning
Noter om primtal. Erik Olsen
Noter om primtal Erik Olsen 1 Notation og indledende bemærkninger Vi lader betegne de hele tal, og Z = {... 3, 2, 1, 0, 1, 2, 3...} N = {0, 1, 2, 3...} Z være de positive hele tal. Vi minder her om et
Undersøgende aktivitet om primtal. Af Petur Birgir Petersen
Undersøgende aktivitet om primtal. Af Petur Birgir Petersen Definition: Et primtal er et naturligt tal større end 1, som kun 1 og tallet selv går op i. Eksempel 1: Tallet 1 ikke et primtal fordi det ikke
Hvad er et tal? Dan Saattrup Nielsen
12 Det filosofiske hjørne Hvad er et tal? Dan Saattrup Nielsen Det virker måske som et spøjst spørgsmål, men ved nærmere eftertanke virker det som om, at alle vores definitioner af tal refererer til andre
Matematisk Metode. Jesper Lützen og Ian Kiming
Matematisk Metode Jesper Lützen og Ian Kiming 17. oktober 2008 ii Contents Introduktion. Den aksiomatisk-deduktive metode ix 1 Logik 1 1.1 Udsagn og prædikater........................ 1 1.2 Sammensatte
Logik. Af Peter Harremoës Niels Brock
Logik Af Peter Harremoës Niels Brock December 2009 1 Indledning Disse noter om matematisk logik er en videreudbygning af det, som står i bogen MAT A [1]. Vi vil her gå lidt mere systematisk frem og være
Eksempel på den aksiomatisk deduktive metode
Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13
01017 Diskret Matematik E12 Alle bokse fra logikdelens slides
01017 Diskret Matematik E12 Alle bokse fra logikdelens slides Thomas Bolander 1 Udsagnslogik 1.1 Formler og sandhedstildelinger symbol står for ikke eller og ( A And) hvis... så... hvis og kun hvis...
Den sproglige vending i filosofien
ge til forståelsen af de begreber, med hvilke man udtrykte og talte om denne viden. Det blev kimen til en afgørende ændring af forståelsen af forholdet mellem empirisk videnskab og filosofisk refleksion,
Bevisteknikker. Bevisteknikker (relevant både ved design og verifikation) Matematisk induktion. Matematisk induktion uformel beskrivelse
Bevisteknikker Bevisteknikker (relevant både ved design og verifikation) Bevisførelse ved modstrid (indirekte bevis) Antag, at det givne teorem er falsk Konkluder, at dette vil føre til en modstrid Teorem:
Thomas Bolander og Helge Elbrønd Jensen. 7. marts 2005
Om Gödels sætning Thomas Bolander og Helge Elbrønd Jensen 7. marts 2005 Resumé Gödels sætning er en af det 20. århundredes mest berømte matematiske sætninger. Den er kendt langt ud over de professionelle
Matematiske metoder - Opgavesæt
Matematiske metoder - Opgavesæt Anders Friis, Anne Ryelund, Mads Friis, Signe Baggesen 24. maj 208 Beskrivelse af opgavesættet I dette opgavesæt vil du støde på opgaver, der er markeret med enten 0, eller
BOSK F2012, 1. del: Prædikatslogik
ε > 0. δ > 0. x. x a < δ f (x) L < ε February 8, 2012 Prædikater Vi skal lære om prædikatslogik lad os starte med prædikater. Et prædikat er et orakel der svarer ja eller nej. Eller mere præcist: Prædikater
Primtal - hvor mange, hvordan og hvorfor?
Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret
Gödels ufuldstændighedssætninger
Gödels ufuldstændighedssætninger Thomas Bolander, DTU Informatik UNF foredrag, HCØ, 13. april 2010 Thomas Bolander, UNF, F10 s. 1/34 Introduktion En populær formulering af Gödel s (første) ufuldstændighedssætning
Tal. Vi mener, vi kender og kan bruge følgende talmængder: N : de positive hele tal, Z : de hele tal, Q: de rationale tal.
1 Tal Tal kan forekomme os nærmest at være selvfølgelige, umiddelbare og naturgivne. Men det er kun, fordi vi har vænnet os til dem. Som det vil fremgå af vores timer, har de mange overraskende egenskaber
Henrik Bulskov Styltsvig
Matematisk logik Henrik Bulskov Styltsvig Datalogiafdelingen, hus 42.1 Roskilde Universitetscenter Universitetsvej 1 Postboks 260 4000 Roskilde Telefon: 4674 2000 Fax: 4674 3072 www.dat.ruc.dk Disposition
Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen
Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er
Filosofisk logik og argumentationsteori. Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet
Filosofisk logik og argumentationsteori Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet Nogle vigtige kendetegn på god videnskab rationalitet systematik éntydighed (klarhed) kontrollérbarhed
Baggrundsnote om logiske operatorer
Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første
Hvad er svært ved beviser for gymnasieelever - og kan vi gøre noget ved det?
Hvad er svært ved beviser for gymnasieelever - og kan vi gøre noget ved det? Fredag den 18. marts 2011 13:00-14:15 Auditorium F, bygn. 1534 Matematiklaboratoriet, bygn. 1536 Hvad er svært ved beviser?
Appendiks 6: Universet som en matematisk struktur
Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes
Hvad er formel logik?
Kapitel 1 Hvad er formel logik? Hvad er logik? I daglig tale betyder logisk tænkning den rationelt overbevisende tænkning. Og logik kan tilsvarende defineres som den rationelle tænknings videnskab. Betragt
Brug og Misbrug af logiske tegn
Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:
Analyse 2. Gennemgå bevis for Sætning Supplerende opgave 1. Øvelser. Sætning 1. For alle mængder X gælder #X < #P(X).
Analyse 2 Øvelser Rasmus Sylvester Bryder 3. og 6. september 2013 Gennemgå bevis for Sætning 2.10 Sætning 1. For alle mængder X gælder #X < #P(X). Bevis. Der findes en injektion X P(X), fx givet ved x
Grundlæggende Matematik
Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske
Logik. Helge Elbrønd Jensen og Tom Høholdt Fortolket af Michael Elmegård og Øistein Wind-Willassen.
Logik Helge Elbrønd Jensen og Tom Høholdt Fortolket af Michael Elmegård og Øistein Wind-Willassen. 25. juni 2014 2 Indhold 1 Matematisk Logik 5 1.1 Udsagnslogik.................................... 5 1.2
Matematiske metoder - Opgaver
Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.
Sikre Beregninger. Kryptologi ved Datalogisk Institut, Aarhus Universitet
Sikre Beregninger Kryptologi ved Datalogisk Institut, Aarhus Universitet 1 Introduktion I denne note skal vi kigge på hvordan man kan regne på data med maksimal sikkerhed, dvs. uden at kigge på de tal
Opspaltning i primfaktorer
1 Opspaltning i primfaktorer Et program som kan undersøge om et tal er et primtal, eller finde hvilke primtal det er sammensat af, er det allerførste program enhver talentusiast laver. For den tid jo er
t a l e n t c a m p d k Talteori Anne Ryelund Anders Friis 16. juli 2014 Slide 1/36
Slide 1/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 2/36 sfaktorisering Indhold 1 2 sfaktorisering 3 4 5 Slide 3/36 1) Hvad er Taleteori? sfaktorisering Slide 4/36 sfaktorisering 1) Hvad er
Gödels ufuldstændighedssætninger
Gödels ufuldstændighedssætninger Thomas Bolander, DTU Compute UNF foredrag, HCØ, 16. september 2014 (c_e)l[^ga=f]2 (F[_E_B])L[=A,_Ac]L[=E,_B,_E]- [E,B,E]2L[F,=B,=E]2 L[^F,C=F] Thomas Bolander, UNF, 16/9-2014
Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv
Naturvidenskab En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab defineres som menneskelige aktiviteter, hvor
1 Beregnelighed. 1.1 Disposition. 1.2 Præsentation. Def. TM. Def. RE/R. Def. 5 egenskaber for RE/R. Def. NSA. Bevis. NSA!RE. Def. SA. Bevis. SA!
1 Beregnelighed 1.1 Disposition Def. TM Def. RE/R Def. 5 egenskaber for RE/R Def. NSA Bevis. NSA!RE Def. SA Bevis. SA!R Bevis. SA RE Def. Beslutningsproblem Arg. Self-Accepting er uløselig 1.2 Præsentation
Matematisk induktion
Induktionsbeviser MT01.0.07 1 1 Induktionsbeviser Matematisk induktion Sætninger der udtaler sig om hvad der gælder for alle naturlige tal n N, kan undertiden bevises ved matematisk induktion. Idéen bag
Eksempel 2: Forløb med inddragelse af argumentation
Eksempel 2: Forløb med inddragelse af Læringsmål i forhold til Analyse af (dansk, engelsk, kult) 1. Hvad er (evt. udgangspunkt i model) 2. Argumenter kommer i bølger 3. Evt. argumenttyper 4. God Kobling:
Talteori II. C-serien består af disse arbejdskort: C1 Talteori på forskellige klassetrin C2 Den pythagoræiske tripelsætning
1 Talteori er ikke direkte nævnt i Fælles Mål 2009 som et fagområde, alle skal arbejde med. Det betyder dog ikke, at talteori nødvendigvis må vælges fra som indhold i skolen. Faktisk kan det tænkes, at
Diskrete Matematiske Metoder. Jesper Lützen
Diskrete Matematiske Metoder Jesper Lützen Juni 2013 ii Indhold Introduktion. ix 0.1 Den aksiomatisk-deduktive metode................. ix 0.2 Diskret matematik; hvad er det?.................. x 1 Tal,
Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.
Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger
Skriftlig Eksamen Beregnelighed (DM517)
Skriftlig Eksamen Beregnelighed (DM517) Institut for Matematik & Datalogi Syddansk Universitet Torsdag den 1 November 212, kl. 1 14 Alle sædvanlige hjælpemidler (lærebøger, notater etc.) samt brug af computer
Syllogistik teoretisk set
Syllogistik teoretisk set Peter Øhrstrøm August 2009 Syllogistikken som den er overleveret til os kommer først og fremmest fra middelalderlogikken, som systematisk og pædagogisk bearbejdede Aristoteles
Implikationer og Negationer
Implikationer og Negationer Frank Villa 5. april 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Eksamen i Diskret Matematik
Eksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 15. juni, 2015. Kl. 9-13. Nærværende eksamenssæt består af 12 nummererede sider med ialt 17 opgaver. Tilladte hjælpemidler:
Opgaver i logik, torsdag den 20. april
Opgaver i logik, torsdag den 20. april Opgave 1 Oversæt følgende udsagn til logiske udtryk. c) Hvis Jones ikke bliver valgt til leder af partiet, så vil enten Smith eller Robinson forlade kabinettet, og
Grundlæggende Matematik
Grundlæggende Matematik Hayati Balo, AAMS Juli 2013 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske
Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen
36 Induktion: fra naturlige tal til generaliseret skønhed Dan Saattrup Nielsen En artikel om induktion, hvordan er det overhovedet muligt? Det er jo trivielt! Bevis ved induktion er en af de ældste matematiske
Fraktaler Mandelbrots Mængde
Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................
Aalborg University. Synopsis. Titel: Traveling Salesman Problem
Aalborg University Department of Computer Science. Fredrik Bajers Vej 7E, 9220 Aalborg Ø. Titel: Traveling Salesman Problem Projektperiode: 16. maj 2003 til 20. juni 2003 Semester: BOS03 Gruppebetegnelse:
Aksiomatiske systemer og Gödels sætninger. Jørgen Ebbesen
"0" 1 "ƒ" 3 " " 5 " " 7 " " 9 "(" 11 ")" 13 Aksiomatiske systemer og Gödels sætninger Jørgen Ebbesen Aksiomatiske systemer og Gödels sætninger. Her kan man fx tage udgangspunkt i et eller flere eksempler
brikkerne til regning & matematik tal og algebra F+E+D preben bernitt
brikkerne til regning & matematik tal og algebra F+E+D preben bernitt 1 brikkerne. Tal og algebra E+D 2. udgave som E-bog ISBN: 978-87-92488-35-0 2010 by bernitt-matematik.dk Kopiering af denne bog er
Archimedes Princip. Frank Nasser. 12. april 2011
Archimedes Princip Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er
Matematikkens fundament i krise
Matematikkens fundament i krise Videnskabsfagprojekt ved IMFUFA, RUC David Hilbert 1862-1943 Gottlob Frege Georg Cantor 1845-1918 Gottlob Frege Henri Poincaré 1854-1912 Gottlob Frege Bertrand Russell 1872-1970
Formaliseringens grænser i matematik og logik
i løbet af 1900-tallet afmonterede mange af de klippefaste videnskabelige overbevisninger fra 1800-tallet og erstattede dem med nye, mere præcise, men også mere relativerende lovmæssigheder. Det viste
Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet
Projekt 1.4 De reelle tal og 2. hovedsætning om kontinuitet Mens den 1. hovedsætning om kontinuerte funktioner kom forholdsvis smertefrit ud af intervalrusebetragtninger, så er 2. hovedsætning betydeligt
Reeksamen i Diskret Matematik
Reeksamen i Diskret Matematik Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet Torsdag den 9. august, 202. Kl. 9-3. Nærværende eksamenssæt består af 9 nummererede sider med ialt 2 opgaver.
TALTEORI Følger og den kinesiske restklassesætning.
Følger og den kinesiske restklassesætning, december 2006, Kirsten Rosenkilde 1 TALTEORI Følger og den kinesiske restklassesætning Disse noter forudsætter et grundlæggende kendskab til talteori som man
Den matematiske grundlagskrise 12. januar 2010. Søren Frejstrup Grav Petersen
Den matematiske grundlagskrise 12. januar 2010 Asger Haugstrup Helene Juncher Søren Frejstrup Grav Petersen Mikkel Nichlas Rauf Rasmus Sylvester Bryder Indhold 1 Problemformulering 2 2 Indledning 2 3 Logicisme
Projekt 7.10 Uendelighed Hilberts hotel
Hvad er matematik? ISBN 909 Projekter: Kapitel Projekt 0 Uendelighed Hilberts hotel Projekt 0 Uendelighed Hilberts hotel (Materialet i dette projekt er hentet fra Hvad er matematik? A, indledningen til
Limitations in Formal Systems and Languages
Limitations in Formal Systems and Languages Abstract This thesis has two major aims. The first is to demonstrate the centrality of Cantor s diagonal argument in the proofs of the classical limitation results
Opgaver hørende til undervisningsmateriale om Herons formel
Opgaver hørende til undervisningsmateriale om Herons formel 20. juni 2016 I Herons formel (Danielsen og Sørensen, 2016) er stillet en række opgaver, som her gengives. Referencer Danielsen, Kristian og
Gruppeteori. Michael Knudsen. 8. marts For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel.
Gruppeteori Michael Knudsen 8. marts 2005 1 Motivation For at motivere indførelsen af gruppebegrebet begynder vi med et eksempel. Eksempel 1.1. Lad Z betegne mængden af de hele tal, Z = {..., 2, 1, 0,
De rigtige reelle tal
De rigtige reelle tal Frank Villa 17. januar 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet
Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Hans Hüttel 27. oktober 2004 Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics.
Mat H /05 Note 2 10/11-04 Gerd Grubb
Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med
Lad os som eksempel se på samtidigt kast med en terning og en mønt:
SANDSYNLIGHEDSREGNING Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet Til gengæld kan vi prøve
Kalkulus 2 - Grænseovergange, Kontinuitet og Følger
Kalkulus - Grænseovergange, Kontinuitet og Følger Mads Friis 8. januar 05 Indhold Grundlæggende uligheder Grænseovergange 3 3 Kontinuitet 9 4 Følger 0 5 Perspektivering 4 Grundlæggende uligheder Sætning
Hjerner i et kar - Hilary Putnam. noter af Mogens Lilleør, 1996
Hjerner i et kar - Hilary Putnam noter af Mogens Lilleør, 1996 Historien om 'hjerner i et kar' tjener til: 1) at rejse det klassiske, skepticistiske problem om den ydre verden og 2) at diskutere forholdet
Banalitetens paradoks
MG- U D V I K L I N G - C e n t e r f o r s a m t a l e r, d e r v i r k e r E - m a i l : v r. m g u @ v i r k e r. d k w w w. v i r k e r. d k D e c e m b e r 2 0 1 2 Banalitetens paradoks Af Jonas Grønbæk
Kommentarer til den ægyptiske beregning Kommentarer til den ægyptiske beregning... 5
Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Projekter: Kapitel - Projektet er delt i to små projekter, der kan laves uafhængigt af hinanden. Der afsættes fx - timer til vejledning med efterfølgende
Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen
Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen
5 hurtige til de voksne
16 Interview 5 hurtige til de voksne om intuitionisme Jingyu She og Maria Bekker-Nielsen Dunbar Hvad er det, du vil med matematik? Du vil gerne opbygge nogle modeller af et eller andet, som på en eller
Introduktion til prædikatlogik
Introduktion til prædikatlogik Torben Braüner Datalogisk Afdeling Roskilde Universitetscenter 1 Plan Symbolisering af sætninger Syntaks Semantik 2 Udsagnslogik Sætningen er den mindste syntaktiske enhed
Affine rum. a 1 u 1 + a 2 u 2 + a 3 u 3 = a 1 u 1 + (1 a 1 )( u 2 + a 3. + a 3. u 3 ) 1 a 1. Da a 2
Affine rum I denne note behandles kun rum over R. Alt kan imidlertid gennemføres på samme måde over C eller ethvert andet legeme. Et underrum U R n er karakteriseret ved at det er en delmængde som er lukket
Projekt 7.9 Euklids algoritme, primtal og primiske tal
Projekter: Kapitel 7 Projekt 79 Euklids algoritme, primtal og primiske tal Projekt 79 Euklids algoritme, primtal og primiske tal Projektet giver et kig ind i metodee i modee talteori Det kan udbygges med
Logisk set. Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet. Sokrates dialoger blev beskrevet af Platon ( f.kr.
Logisk set Peter Øhrstrøm Institut for Kommunikation Aalborg Universitet Glimt af logikkens historie Sokrates dialoger blev beskrevet af Platon (427-347 f.kr.) logos dialog Aristoteles (384-322 f.kr) analytikken
Teoretiske Øvelsesopgaver:
Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere
Fraktaler. Mandelbrots Mængde. Foredragsnoter. Af Jonas Lindstrøm Jensen. Institut For Matematiske Fag Århus Universitet
Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Komplekse tal 3 1.1 Definition.......................................
Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal.
Tre slags gennemsnit Allan C. Malmberg Det er en af de hyppigst forekommende udregninger i den elementære talbehandling at beregne gennemsnit eller middeltal af en række tal. For mange skoleelever indgår
Divisorer. Introduktion. Divisorer og delelighed. Divisionsalgoritmen. Definition (Divisor) Lad d og n være hele tal. Hvis der findes et helt tal q så
Introduktion 1) Hvad er Taleteori? Læren om de hele tal Primtal 2) Formalistisk struktur Definition Lemma Divisorer Definition (Divisor) Lad d og n være hele tal Hvis der findes et helt tal q så d q =
Matematik. Matematiske kompetencer
Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske
Udvalgsaksiomet. Onsdag den 18. november 2009
Udvalgsaksiomet Onsdag den 18. november 2009 Eksempler Fourier udvikling af f(x)=x 4 3 5 10 2 1 1 2 0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 1 2 3 4
