Program: 1. Repetition: sandsynlighedsregning 2. Sandsynlighedsregning fortsat: stokastisk variabel, sandsynlighedsfunktion/tæthed, fordelingsfunktion. 1/16
Sandsynlighedsregning: endeligt udfaldsrum (repetition) Hændelse A delmængde af S = {e 1, e 2,...,e m } Til hvert e j tilordnes positiv vægt p j 0 hvor p 1 + p 2 +... + p m = 1. Sandsynligheden P(A) for hændelsen A: summen af vægtene for elementerne i A. Ex (ærlig terning) S = {1, 2, 3, 4, 5, 6} p 1 = p 2 = = p 6 = 1/6. P({1, 3}) = p 1 + p 3 = 2/6. 2/16
Additive regler for regning med sandsynligheder P(A B) = P(A) + P(B) P(A B) Komplementære hændelse A er hændelsen at A ikke indtræffer: P(A A ) = 1 og P(A A ) = 0 dvs. P(A) = 1 P(A ) 3/16
Betinget sandsynlighed Dvs. P(B A) = P(A B) P(A) P(A B) = P(A)P(B A) 4/16
Uafhængighed A og B er uafhængige hvis P(B A) = P(B) eller (ækvivalent) hvis P(A B) = P(A)P(B) 5/16
Stokastisk variabel Definition 3.1: En stokastisk variabel X er en funktion, der til hvert element e i et udfaldsrum S tilknytter et reelt tal x. I praksis: X bruges som notation til at angive det tilfældige udfald af et eksperiment. Vi benytter x til at angive en konkret værdi for X. Ex: lad X angive ph-værdien i en tilfældig udtaget jordprøve. Formlen er blot en bekvem måde at skrive P(X > 4) = 0.63 der er 63 % sandsynlighed for at ph-værdien i en tilfældig udtaget jordprøve er over 4. Hvis fx. x = 4 har vi P(X > x) = 0.63 6/16
Lidt notation X/x notation: X: den uobserverede tilfældige værdi af et eksperiment der står for udførelse. x: en konkret observeret værdi af eksperimentet. Ex: X angiver summen af øjnene for to terningkast. Hvis P(X = x) = 1 36 hvad er så de mulige værdier for x? 7/16
Diskret stokastisk variabel En stokastisk variabel, der kun kan antage et endeligt antal eller heltallige værdier kaldes en diskret stokastisk variabel. Ex: (tælledata) antal børn i en familie, antal regnvejrsdage i april, antal besøgende på en webside. Ex: (kategoriske data) persons køn (mand eller kvinde), families socialklasse (1, 2, 3, 4 eller 5), persons bopæl (parcelhus eller andelsbolig). NB: analyse af kategoriske data dækkes ikke i dette kursus. 8/16
Sandsynlighedsfunktion for en diskret stokastisk variabel En diskret stokastisk variabel er karakteriseret udfra sandsynlighederne for at den antager forskellige værdier. Definition en funktion f er en sandsynlighedsfunktion hvis 1. f (x) 0 for alle heltallige x. 2. x= f (x) = 1 og f er en sandsynlighedsfunktion for den stokastiske variabel X hvis P(X = x) = f (x). NB: meget lig sandsynligheder for endeligt tilstandsrum, bortset fra at f (x) kan være positiv for uendelig mange værdier af x. Ex: f (0) = 1/2, f (1) = 1/3, f (2) = 1/6, og f (x) = 0 ellers. Ex: (Poisson fordeling) f (x) = exp( λ) λx x! x = 0, 1, 2, 3,... 9/16
Ex: X antal krone når en mønt kastes 4 gange. Udfaldsrum for X: {0, 1, 2, 3, 4} Sandsynlighedsfunktionen for X er givet ved ( 4 f (x) = x) x = 0, 1, 2, 3, 4 16 og 0 ellers. Grafisk fremstilling af f : f(x) 0.0 0.2 0.4 0 1 2 3 4 0.00 0.15 0.30 0 1 2 3 4 x 10/16
Fordelingsfunktion for en stokastisk variabel Definition fordelingsfunktionen F for en stokastisk variabel X er givet ved F(x) = P(X x) Ex: X antal krone når en mønt kastes 4 gange. F(2.3) = P(X 2.3) = P(X = 0) + P(X = 1) + P(X = 2) Grafisk: = f (0) + f (1) + f (2) = 0.6875 Fx 0.0 0.4 0.8 2 0 2 4 6 x 11/16
Kontinuert stokastisk variabel Ex: levetiden X for en elektrisk pære kan i princippet antage en hvilken som helst positiv reel værdi x > 0. X har et kontinuert udfaldsrum bestående af de positive reelle tal og X er en kontinuert stokastisk variabel. indenfor ethvert interval kan X antage uendeligt mange værdier. Hver af disse værdier separat har sandsynlighed 0. vi kan ikke udregne sandsynligheder ved at summere som for diskret stokastisk variabel. vi specificerer istedet sandsynligheder for at X ligger i intervaller P(a < X < b) = P(a < X b) = P(a X b). 12/16
Tæthedsfunktion for en kontinuert stokastisk variabel Definition en reel funktion f er en tæthedsfunktion hvis f (x) 0 for alle reelle tal x f (x)dx = 1 og f er en tæthedsfunktion for X hvis P(a < X b) = b a f (x)dx Ex: χ 2 tæthedsfunktion f(x) 0.00 0.10 0.20 0 2 4 6 8 10 x 13/16
Fordelingsfunktion for en kontinuert stokastisk variabel NB: F (x) = f (x) Ex: χ 2 fordelingsfunktion F(x) = P(X x) = x f (t)dt F(x) 0.0 0.4 0.8 0 2 4 6 8 10 x 14/16
Typer af fordelingsfunktioner Stykkevis konstant kontinuert Fx 0.0 0.4 0.8 F(x) 0.0 0.4 0.8 2 0 2 4 6 0 2 4 6 8 10 x Stykkevis konst. F: P(X = 1) = P(X 1) P(X < 1) = P(X 1) P(X 0) = F(1) F(0) > 0 P(X = 1.5) = P(X 1.5) P(X < 1.5) = P(X 1) P(X 1) = 0 Dvs. diskret stok. var. (positiv sandsynlighed når F springer). Kontinuert F kont. stok. var. P(X = 1) = P(X 1) P(X < 1) = P(X 1) P(X 1) = 0 x 15/16
Empirisk fordelingsfunktion og histogram Observationer: x 1,...,x n. ˆF(x) = 1 1[x i x] n i=1 Konkrete observationer: -1.72-0.72-0.60-0.45 0.14 0.24 0.43 1.18 1.26 1.89 ˆF(x) ecdf(x) histogram/estimat af tæthed Fn(x) 0.0 0.2 0.4 0.6 0.8 1.0 Density 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Histogram of x 2 1 0 1 2 x 2 1 0 1 2 x 16/16