Introducerende undervisningsmateriale til Geogebra

Størrelse: px
Starte visningen fra side:

Download "Introducerende undervisningsmateriale til Geogebra"

Transkript

1 Klaus Frederiksen & Christine Hansen Introducerende undervisningsmateriale til Geogebra - Dynamisk geometriundervisning

2 Indhold 1. Intro til programmets udseende Menuerne Ikonerne Afsættelse af punkter Linjer Linjer fortsat Polygoner Cirkler Vinkler Længde, areal og hældning Spejl, drej og parallelforskyd Indsæt tekst og billede Tegnefladen Opgaver og henvisninger Side 1 af 16

3 1. Intro til programmets udseende Menuerne Algebravindue Ikonerne Input-felt Tegneflade Side 2 af 16

4 2. Menuerne Akse: Hvis du trykker på akse, fjerner du aksen på tegnefladen. OBS.: Man kan godt både have akserne og gitteret på tegnefladen. Gitter: Du kan prøve at trykke på gitter, så vil du få et ternet papir du kan arbejde med. 3. Ikonerne 3.1 Afsættelse af punkter Tryk på ikonet Du ved at ikonet er aktivt når der er en blå markering om det Indsæt nu punkter på tegnefladen ved at klikke som normalt på musen. OBS: Hvis du trykker på den lille pil i hjørnet af ikonet, kommer der flere ikoner op som du kan vælge. Prøv nu at gå ned i input-feltet og indsæt følgende. (HUSK parenteser), tryk på enter hver gang du har skrevet et punkt. o (3,4) o (2,7) o (9,2) o (-2,3) o (-3,-4) Side 3 af 16

5 3.2 Linjer Du kan lave linjer på flere måder Klik på ikonet Hvis du trykker på den lille pil, kommer der flere muligheder frem. Prøv at trykke på de forskellige linjer, og tryk derefter på tegnefladen for at konstruere linjerne. 3.3Linjer fortsat Lav nu en linje mellem to punkter ved at trykke på OBS: Læg mærke til at der til højre for ikonerne er beskrevet hvad du skal gøre, hver gang du trykker på et ikon. Lav nu en linje der går vinkelret på denne ved at aktivere ikonet vinkelret linje Klik på et sted på tegnefladen hvor din vinkelrette linje skal starte, og derefter på den linje du i forvejen har tegnet. (Du får nu en vinkelret linje). Side 4 af 16

6 Prøv dig lidt frem med de andre linjer, eksempelvis parallel linje. 3.4 Polygoner Vi skal nu til at lave polygoner Du skal starte med at finde ikonet polygon Tryk tre steder på tegnefladen, for at lave dit polygon. Husk at trykke på det første punkt igen til sidst. Lav nu en stiv polygon. Du bestemmer selv hvor mange hjørner dit polygon skal have. Når du har lavet et polygon, kan du finde det ikon der hedder areal. Du kan herefter trykke på selve polygonet og programmet finder hurtigt arealet. På samme måde kan du finde det ikon der hedder længde, hvis du gør det samme som ved arealet, finder du denne gang omkredsen. OBS: Polygon er det græske navn for en mangekant og ordet betyder egentlig "mangehjørne". Det er en betegnelse for todimensionelle figurer der begrænses af linjestykker. Hos en polygon siges at være regulær dersom alle sider og vinklerne mellem dem ens. Hos en irregulær er dette ikke tilfældet. 3.5 Cirkler Tryk på ikonet Klik nu et sted på tegneoverfladen ved at klikke som normalt på musen Når du slipper museknappen har du afsat cirklens midtpunkt og i algebra vinduet kan du set koordinaterne dertil Prøv at flytte musen uden at klikke og du kan dermed lave cirklen så stor som du ønsker OBS: Der er 9 i Danmark (alle kvinder) som i 2012 hedder Cirkel til fornavn, Danmarks Statistik Side 5 af 16

7 Klik på Cirkel ud fra centrum og radius og derefter på tegnefladen og nedenstående boks kommer frem I denne boks kan du selv bestemme længden af radius Prøv med tallet 4 og du får dermed en cirkel med midtpunkt der hvor du klikkede (inden boksen kom frem) og med en radius på 4 Hvis du vil lave en cirkel med midtpunkt et bestemt sted på tegnefladen kan du skrive det i Inputfeltet (i bunden), f.eks. punktet 4,2 skrives sådan her (4,2) og derefter tryk på og derefter på punktet A hvorefter cirklen kan laves og f.eks. se sådan ud (med 4,2 som midtpunkt) Side 6 af 16

8 Klik på Cirkel gennem tre punkter og derefter vælg tre steder på tegnefladen og du har en cirkel med tre selvvalgte punkter som f.eks. herunder, med punkterne som nu også står i algebravinduet. De sidste fem punkter under dette ikon ser sådan ud og herunder kan du lave cirkelbuer, cirkeludsnit bl.a. ud fra diverse punkter. Prøv dig frem 3.6 Vinkler Klik på ikonet og lav en linje, hvorefter du skal lave endnu en linje som hænger sammen med den første og derefter ser nogenlunde sådan ud: Side 7 af 16

9 Tryk på ikonet og klik så på punktet B, derefter A og til sidst C, hvorefter en vinkel fremkommer hos A (fordi den blev klikket på som nr. 2), se her: Du kan nu lave en polygon og derefter klikke på figuren hvorved vinklerne vises, se her: Man kan også finde en given vinkel ved at klikke her (prøv dig frem): Side 8 af 16

10 3.7 Længde, areal og hældning Lav et polygon som f.eks. dette: Klik på dette ikon længde : Og så kan man måle længden af de enkelte linjestykker på to måder, enten ved at klikke på to punkter og længden måles mellem dem, eller at klikke direkte på linjen. Se her polygonet med mål på: Du kan herefter prøve dig frem med at måle forskellige afstande mellem punkter du konstruerer For at finde arealet i en figur skal du først have en figur, så prøv at lave et polygon som f.eks. kan se sådan ud: Side 9 af 16

11 Derefter skal du klikke på dette ikon (areal): Klik så på den figur du har lavet og arealet kommer frem, let og enkelt se her: Hvis du skal finde forskriften for en linje (linær funktion), kan du prøve først at lave linje, som f.eks. den her: Side 10 af 16

12 Herefter klikker du på dette ikon: og klikker på linjen, dermed kommer hældnings-graden på, se her (1,66): Hvis du vil finde skæringspunktet med y-aksen klikker du på dette ikon: Klik der hvor linjen skærer y-aksen og dermed fremkommer punktet, i dette tilfælde (0;3,02), se her: OBS: Hvis du har hældningstallet 1,66 og skæringspunkt 3,02 på y-aksen er funktionsforskriften: Y = 1,66x + 3,02 Side 11 af 16

13 3.8 Spejl, drej og parallelforskyd Spejl Funktionerne spejl, drej og parrallelforskyd findes under dette ikon som er vist på tegningen til højre. Tegn et vilkårligt polygon Aktiver ikonet Spejl Tryk nu på polygonet, og på den linje du vil spejle den i. I dette tilfælde har jeg valgt at spejle den i x- aksen. Du kan nu også prøve at spejle dit polygon i y- aksen. OBS: Du kan også selv lave en linje og spejle dit polygon i, eller du kan spejle et enkelt punkt i en linje. Du kan også vælge at spejle et objekt i et punkt. Side 12 af 16

14 Drej Tegn et vilkårligt objekt Indsæt et vilkårligt punkt på tegnefladen. Aktiver ikonet: Klik på det objekt der skal drejes, og på det punkt det skal drejes om. Angiv den drejningsvinkel som objektet skal drejes i. I dette tilfælde har jeg indsat 90⁰. Parrallelforskyd 3.9 Indsæt tekst og billede Du kan også indsætte en kort tekst som knytter sig til den opgave du laver. Tryk på ikonet Indsæt tekst. Klik på det sted på tegnefladen hvor du ønsker at indsætte din tekst. Du kan også indsætte et billede på samme måde, brug funktionen indsæt billede, som er under samme sted som indsæt tekst Tegnefladen Du kan ændre på tegnefladen på forskellige måder Aktiver ikonet Side 13 af 16

15 Tag fat på tegnefladen og træk i den, sådan at akserne flytter sig, se nedenfor. Du kan også ændre på intervallerne på akserne ved at aktivere det samme ikon som før. Tag fat i en akse når curseren er markeret som en pil. Du kan nu trække i aksen, så intervallerne bliver større eller mindre. Du kan også forstørre og formindske tegnefladen ved at scrolle på musen, eller ved at aktivere formindsk eller forstår under dette ikon. Side 14 af 16

16 4 Opgaver og henvisninger Se hjemmesiden: hvor der er en masse uddybende materiale og man kan der differentiere sit fremtidige arbejde i klassen alt efter individuelle niveauer. Side 15 af 16

DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE.

DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. Geogebra. DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. (dvs. det er ikke alle emner i SYMBOLLINIEN, der beskrives). Navnet GEOGEBRA er en

Læs mere

GeoGebra 3.0.0.0 Quickstart. det grundlæggende

GeoGebra 3.0.0.0 Quickstart. det grundlæggende GeoGebra 3.0.0.0 Quickstart det grundlæggende Grete Ridder Ebbesen frit efter GeoGebra Quickstart af Markus Hohenwarter Virum, 28. februar 2009 Introduktion GeoGebra er et gratis og meget brugervenligt

Læs mere

Introduktion til GeoGebra

Introduktion til GeoGebra Introduktion til GeoGebra Om navne Ib Michelsen Herover ses GeoGebra's brugerflade. 1 I øverste linje finder du navnet GeoGebra og ikoner til at minimere vinduet, ændre til fuldskærm og lukke I næste linje

Læs mere

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5)

GeoGebra. Tegn følgende i Geogebra. Indsæt tegningen fra geogebra. 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Tegn følgende i Geogebra 1. Indsæt punkterne: (2,3) (-2, 4) (-3, -4,5) Forbind disse tre punker (brug polygon ) 2. Find omkreds, vinkler, areal og sidelængder 3. Tegn en vinkelret linje fra A og ned på

Læs mere

Computerundervisning

Computerundervisning Frederiksberg Seminarium Computerundervisning Koordinatsystemer og Funktioner Lærervejledning 12-02-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Indhold Introduktion... 3

Læs mere

Når eleverne skal opdage betydningen af koefficienterne i udtrykket:

Når eleverne skal opdage betydningen af koefficienterne i udtrykket: Den rette linje og parablen GeoGebra er tænkt som et dynamisk geometriprogram, som både kan anvendes til euklidisk og analytisk geometri Eksempel Tegn linjen med ligningen: Indtast ligningen i Input-feltet.

Læs mere

Lad os prøve GeoGebra.

Lad os prøve GeoGebra. Brug af Geogebra i matematik Programmet Geogebra er et matematisk tegneprogram. Det findes i øjeblikket i flere versioner. Direkte på nettet uden download. http://www.geogebra.org/cms/ Klik på billedet.!

Læs mere

Sådan gør du i GeoGebra.

Sådan gør du i GeoGebra. Sådan gør du i GeoGebra. Det første vi skal prøve er at tegne matematiske figurer. Tegne: Lad os tegne en trekant. Klik på trekant knappen Klik på punktet ved (1,1), (4,1) (4,5) og til sidst igen på (1,1)

Læs mere

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a.

Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Geogebra Begynder Ku rsus

Geogebra Begynder Ku rsus Navn: Klasse: Matematik Opgave Kompendium Geogebra Begynder Ku rsus Kompendiet indeholder: Mål side længder Mål areal Mål vinkler Vinkelhalveringslinje Indskrevne cirkel Midt normal Omskrevne cirkel Trekant

Læs mere

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at:

Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med geometri at: Noter til læreren side 1 I Trinmål for faget matematik står der bl.a. Undervisningen skal lede frem mod, at eleverne har tilegnet sig kundskaber og færdigheder, der sætter dem i stand til i arbejdet med

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

M A T E M A T I K B A NK E NS G E O G E B R A K O M P E ND I U M

M A T E M A T I K B A NK E NS G E O G E B R A K O M P E ND I U M M A T E M A T I K B A NK E NS G E O G E B R A K O M P E ND I U M Geometri Funktioner Boksplot Konstruktioner Kommandolinjen Helle Fjord Morten Graae Kim Lorentzen Kristine Møller-Nielsen INDHOLD Indhold...

Læs mere

Sådan kommer du i gang med GeomeTricks

Sådan kommer du i gang med GeomeTricks Sådan kommer du i gang med GeomeTricks Ved hjælp af programmet GeomeTricks kan du tegne figurer i geometri. Når du tegner en figur, så skal du opbygge din figur ved hjælp af geometriske objekter. Geometriske

Læs mere

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius.

Mødet. 6 Geometri. Begreb Eksempel Navn. Parallel. Vinkelret. Linjestykke. Polygon. Cirkelperiferi. Midtpunkt. Linje. Diagonal. Radius. 6.01 Mødet Begreb Eksempel Navn Parallel Vinkelret Linjestykke Polygon Cirkelperiferi Midtpunkt Linje Diagonal Radius Ret vinkel 6.02 Fire på stribe Regler Hver spiller får en spilleplade (6.03). Alle

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1) Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,

Læs mere

Lineær Programmering i GeoGebra Side 1 af 8

Lineær Programmering i GeoGebra Side 1 af 8 Lineær Programmering i GeoGebra Side 1 af 8 Grundlæggende find selv flere funktioner, fx i GG s indbyggede hjælpefunktion. Vær opmærksom på at grænsefladen i GeoGebra ændrer sig med tiden, da værktøjet

Læs mere

1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210

1.1.1 Første trin. Læg mærke til at linjestykket CP ikke er en cirkelbue; det skyldes at det ligger på en diameter, idet = 210 1.1 Konstruktionen Denne side går lidt tættere på den hyperbolske geometri. Vi bruger programmet HypGeo, og forklarer nogle geometriske konstruktioner, som i virkeligheden er de samme, som man kan udføre

Læs mere

1 Oversigt I. 1.1 Poincaré modellen

1 Oversigt I. 1.1 Poincaré modellen 1 versigt I En kortfattet gennemgang af nogle udvalgte emner fra den elementære hyperbolske plangeometri i oincaré disken. Der er udarbejdet både et Java program HypGeo inkl. tutorial og en Android App,

Læs mere

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da:

Opgave 1 10. Opgave 2 Andengradsligningen løses, idet. Opgave 3. 11 er en løsning til ligningen, da: 7. marts 0 FVU AVU HF X FAG : Matematik B ark nr. antal ark 8 Opgave 0 a b 5 a b 5 = b 3 er en løsning til ligningen, da: = 9 = 3 Opgave Andengradsligningen løses, idet a = b = 3 c = 4 d (diskriminanten)

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

i matematikundervisningen medianer, vinkelhalveringslinier samt center- og periferivinkler i regulære polygoner IT-færdighedsniveau

i matematikundervisningen medianer, vinkelhalveringslinier samt center- og periferivinkler i regulære polygoner IT-færdighedsniveau i matematikundervisningen medianer, vinkelhalveringslinier samt center- og periferivinkler i regulære polygoner IT-færdighedsniveau Dette E-læringsmodul er udarbejdet af: Jacob Kjær Hansen Tommerup Skole

Læs mere

Værktøjskasse til analytisk Geometri

Værktøjskasse til analytisk Geometri Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Kompleks ligning 1. - en illustration af hvordan løsninger til ligningen z 5 + iz + 1 = 0 ser ud. 1. Oprette den frie variabel z.

Kompleks ligning 1. - en illustration af hvordan løsninger til ligningen z 5 + iz + 1 = 0 ser ud. 1. Oprette den frie variabel z. Kompleks ligning 1 - en illustration af hvordan løsninger til ligningen z 5 + iz + 1 = 0 ser ud Formål At give mulighed for at undersøge/illustrere hvordan et komplekst polynomium opfører sig, og hvordan

Læs mere

Geometri Følgende forkortelser anvendes:

Geometri Følgende forkortelser anvendes: Geometri Følgende forkortelser anvendes: D eller d = diameter R eller r = radius K eller k = korde tg = tangent Fig. 14 Benævnelser af cirklens liniestykker Cirkelperiferien inddeles i grader Cirkelperiferien

Læs mere

Projekt 3.4 Introduktion til geometri med TI-Nspire

Projekt 3.4 Introduktion til geometri med TI-Nspire Projekt 3.4 Introduktion til geometri med TI-Nspire 1. Introduktion til geometriværktøjerne i TI-Nspire cas... 2 1.2. Åben en geometriapplikation... 2 1.2. Klik-Flyt-Klik... 2 Eksempel: Tegn en cirkel...

Læs mere

Matematik Aflevering - Æggebæger

Matematik Aflevering - Æggebæger Matematik Aflevering - Æggebæger Lavet af Morten Kvist i samarbejde med Benjamin Afleveret d. 17/3-2006 Afleveret til Kristine Htx 3.2 Side 1 af 6 Opgave 1 Delopgave A Først har jeg de to logaritme funktioner,

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Opgaver med hjælp Funktioner 2 - med Geogebra

Opgaver med hjælp Funktioner 2 - med Geogebra Opgaver med hjælp Funktioner 2 - med Geogebra Nulpunkter, monotoniforhold og ekstrema Formålet med denne note er at tegne os frem til nulpunkter, monotoniforhold og ekstrema for en funktion ved hjælp af

Læs mere

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer:

Fig. 1 En bue på en cirkel I Geogebra er der adskillige værktøjer til at konstruere cirkler og buer: Euclidean Eggs Freyja Hreinsdóttir, University of Iceland 1 Introduction Ved hjælp af et computerprogram som GeoGebra er det nemt at lave geometriske konstruktioner. Specielt er der gode værktøjer til

Læs mere

Parabel og tangent. Illustration af opgaven Givet en parabel og et punkt. Find de tangenter til parablen, som går gennem punktet.

Parabel og tangent. Illustration af opgaven Givet en parabel og et punkt. Find de tangenter til parablen, som går gennem punktet. Parabel og tangent Formål Illustration af opgaven Givet en parabel og et punkt. Find de tangenter til parablen, som går gennem punktet. Man kan flytte på punktet, dreje linjen, iagttage hvor mange løsninger,

Læs mere

Klassetrinsoversigt 0. kl. 1. kl. 2. kl. 3. kl. 4. kl. 5. kl. 6. kl. 7. kl. 8. kl. 9. kl. Computere og netværk

Klassetrinsoversigt 0. kl. 1. kl. 2. kl. 3. kl. 4. kl. 5. kl. 6. kl. 7. kl. 8. kl. 9. kl. Computere og netværk I nedenstående klassetrinsoversigt gives et indblik i, hvornår man begynder at introducere klasserne for de enkelte programmer på Lundehusskolen. Som udgangspunkt introduceres klasserne for de enkelte

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8 Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt

Læs mere

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet

Matematik A. 5 timers skriftlig prøve. Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA. Undervisningsministeriet Højere Teknisk Eksamen i Grønland maj 2009 GLT091-MAA Matematik A 5 timers skriftlig prøve Undervisningsministeriet Fredag den 29. maj 2009 kl. 9.00-14.00 Matematik A 2009 Prøvens varighed er 5 timer.

Læs mere

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri

Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når

Læs mere

Dernæst vil der komme et vindue frem, hvor man kan ændre på x- og y-aksen samt andre indstillinger så som farve og skrift.

Dernæst vil der komme et vindue frem, hvor man kan ændre på x- og y-aksen samt andre indstillinger så som farve og skrift. IT Inden du starter med at tegne funktionerne ind i Graph er det en god ide, at indstille akserne til behovet. Det gør man ved at gå op i værktøjslinjen hvor man finder det ikon som her er markeret med

Læs mere

Begyndermanual og introduktion til

Begyndermanual og introduktion til Begyndermanual og introduktion til Design 3D parametrisk CAD www.nettocad.dk mail@a-engineering.dk Tlf. 61337807 1 Part Workspace Zoom værktøjer De gule ikoner viser dine konstruktioner fra forskellige

Læs mere

GEOMETER-BANALITETER DEC SIDE 1

GEOMETER-BANALITETER DEC SIDE 1 GEOMETER-BANALITETER DEC. 2002 SIDE 1 GEOMETER-BANALITETER Indhold: Indhold side 1 Forord side 2 Et lille tip side 2 En trekants omskrevne cirkel side 3 Sæt bogstaver på hjørnerne og centrum for omskreven

Læs mere

Tegne, redigerings- og slettefunktioner.

Tegne, redigerings- og slettefunktioner. Tegne, redigerings- og slettefunktioner. Generelt Dette afsnit gennemgår systematisk alle programmets funktioner til at tegne, redigere og slette objekter. Afsnittet tager ikke udgangspunkt i nogen bestemt

Læs mere

Ib Michelsen Vejledende løsning stxb 101 1

Ib Michelsen Vejledende løsning stxb 101 1 Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Analytisk plangeometri 1

Analytisk plangeometri 1 1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Geometri med Geometer II

Geometri med Geometer II hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne

Læs mere

GeomeTricks Windows version

GeomeTricks Windows version GeomeTricks Windows version Elevarbejdsark MI 130 En INFA-publikation - 1998 GeomeTricks - Elevarbejdsark Viggo Sadolin 16 september 1997 Oversigt over elevarbejdsarkene Klassetrin Type ark 3 4 5 6 7 8

Læs mere

Geometri med Geometer I

Geometri med Geometer I f Frans Kappel Øvre, Morsø Gymnasium Geometri med Geometer I Markeringspil: Klik på et objekt (punkt, linje, cirkel) for at markere det. Hvis du trykker Shift samtidig kan du markere flere objekter eller

Læs mere

Forlag Malling Beck Best. nr Sigma for syvende

Forlag Malling Beck Best. nr Sigma for syvende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse: Forlag Malling Beck Best. nr. 0 Sigma for svende Navn: Klasse:

Læs mere

Vejledning til Din natur

Vejledning til Din natur Vejledning til Din natur Indhold DIN NATUR ER FOR LANDMÆND OG LODSEJERE 3 SÅDAN VIRKER DIN NATUR 3 ADGANG OG LOG IND 4 NemID 4 Accept af vilkår 4 OVERSIGTSKORT 5 Find adresse 5 DE FIRE KORT I DIN NATUR

Læs mere

Dynamisk geometri i skolen med GeoGebra

Dynamisk geometri i skolen med GeoGebra Dynamisk geometri i skolen med GeoGebra Der tages udgangspunkt i GeoGebra version 3,2 udgivet juni 2009 dog er nogle skærmdumps fra tidligere versioner af programmet. Projektleder: Markus Hohenwarter,

Læs mere

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer.

Elevbog s. 14-25 Vi opsummerer hvad vi ved i. kendskab til geometriske begreber og figurer. Årsplan 5. LH. Matematik Lærer Pernille Holst Overgaard (PHO) Lærebogsmateriale. Format 5 Tid og fagligt Aktivitet område Uge 33-37 Tal Uge 38-41 (efterårsferie uge 42) Figurer Elevbog s. 1-13 Vi opsummerer

Læs mere

Projekt 3.3 Linjer og cirkler ved trekanten

Projekt 3.3 Linjer og cirkler ved trekanten Projekt 3.3 Linjer og cirkler ved trekanten Midtnormalerne i en trekant Konstruer et linjestykke (punkt-menuen) og navngiv endepunkterne A og B (højreklik og vælg: Etiket), dvs. linjestykket betegnes AB.

Læs mere

GeoMeter håndbogen. GeoMeter v. 1.0. (The GeoMeter s Sketchpad Version 4.02)

GeoMeter håndbogen. GeoMeter v. 1.0. (The GeoMeter s Sketchpad Version 4.02) GeoMeter håndbogen GeoMeter v. 1.0 (The GeoMeter s Sketchpad Version 4.02) Geometriprogrammet GeoMeter Dansk udgave af The GeoMeter s Sketchpad version 4.0, 2001 - Det dynamiske geometriprogram til eksperimenterende

Læs mere

i matematikundervisningen arealer, vinkler, polygoner og vinkelsummer IT-færdighedsniveau

i matematikundervisningen arealer, vinkler, polygoner og vinkelsummer IT-færdighedsniveau i matematikundervisningen arealer, vinkler, polygoner og vinkelsummer IT-færdighedsniveau Dette E-læringsmodul er udarbejdet af: Jacob Kjær Hansen Tommerup Skole April 2011 Indledning I dette e-læringsmodul

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed

6 Geometri. Faglige mål. Geometriske begreber. Vinkler. Modeller. Kongruens og ligedannethed 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Geometriske begreber: kunne sætte matematiske begreber ind i en matematisk kontekst samt kende den visuelle betydning

Læs mere

geometri trin 2 brikkerne til regning & matematik preben bernitt

geometri trin 2 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik geometri trin 2 preben bernitt brikkerne til regning & matematik geometri, trin 2 ISBN: 978-87-92488-16-9 1. Udgave som E-bog 2003 by bernitt-matematik.dk Kopiering er

Læs mere

Fagudtryk. Murerviden.dk - René Eriksen. Fri brug af materialet. Materialet må ikke videresælges. Side 1

Fagudtryk. Murerviden.dk - René Eriksen. Fri brug af materialet. Materialet må ikke videresælges. Side 1 Fagudtryk Side 1 Find segmentbuens radius i tabelen: R R R R R Stikhøjde(b) 108 168 228 288 348 Åbningsmål(a) Skifter ned(c) mm mm mm mm mm 612 1 931,81 1034,37 1133,69 1230,41 1324,99 2 591,99 683,79

Læs mere

Matematik A August 2016 Delprøve 1

Matematik A August 2016 Delprøve 1 Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Start SketchUp vælg File Open og åben filen Milimeters.skp under Templates

Start SketchUp vælg File Open og åben filen Milimeters.skp under Templates For at få SketchUp til at virke skal programmet først sættes op Start SketchUp vælg File Open og åben filen Milimeters.skp under Templates Herefter vælges Window -> Entity Info Kontroller at units er i

Læs mere

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A

Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00

Læs mere

Grupperede observationer

Grupperede observationer Grupperede observationer Tallene i den følgende tabel viser antallet af personer på Læsø 1.januar 2012, opdelt i 10-års intervaller. alder antal 0 131 10 181 20 66 30 139 40 251 50 318 60 421 70 246 80

Læs mere

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.

Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål. Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler

Læs mere

De 2D Constraints, der findes i programmet, er vist herunder (dimension er også en form for 2D Constraint). Fig. 298

De 2D Constraints, der findes i programmet, er vist herunder (dimension er også en form for 2D Constraint). Fig. 298 Inventor 2011 - Del 1 Featuren Circular Pattern 2D Constraints Constraints er bindinger, der kan oprettes mellem de forskellige elementer i fx en Sketch. Du har allerede arbejdet med nogle af dem, programmet

Læs mere

Årsplan matematik 5 kl 2015/16

Årsplan matematik 5 kl 2015/16 Årsplan matematik 5 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

Brugervejledning. Cabri Geometry TI-89 / TI-92 Plus

Brugervejledning. Cabri Geometry TI-89 / TI-92 Plus Cabri Geometry TI-89 / TI-92 Plus Brugervejledning Resumé af geometri...2 Geometri: Grundlæggende viden... 3 Håndtering af filoperationer... 12 Angivelse af programindstillinger... 14 Markering og flytning

Læs mere

Geogebra. Dynamisk matematik. Version: August 2012

Geogebra. Dynamisk matematik. Version: August 2012 Geogebra Dynamisk matematik Version: August 2012 Indholdsfortegnelse Hvad er Geogebra?...4 Denne manual...4 Hent og installer programmet...4 Geogebra gennemgang og praktiske eksempler...4 Menuerne...5

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE

MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE MATEMATIK, MUNDTLIG PRØVE TEMA: SEFTON PARK PALM HOUSE I den midtengelske by Liverpool ligger bydelen Sefton med Sefton Park - et parkanlæg, der bl.a. er kendt for det ottekantede palmehus, hvor man kan

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)

Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,

Læs mere

PowerPoint Intro 2010 Segment - en del af dit netværk

PowerPoint Intro 2010 Segment - en del af dit netværk PowerPoint Intro 2010 7 Arbejde med objekter Formål Udover at arbejde med almindelig tekst og punktopstillinger, kan du i PowerPoint indsætte diverse objekter. Med objekter menes der fx; billeder, figurer,

Læs mere

Diagrammer visualiser dine tal

Diagrammer visualiser dine tal Diagrammer visualiser dine tal Indledning På de efterfølgende sider vil du blive præsenteret for nye måder at arbejde med Diagrammer på i Excel. Vejledningen herunder er vist i Excel 2007 versionen, og

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

Dynamisk geometri i skolen med GeoGebra

Dynamisk geometri i skolen med GeoGebra Dynamisk geometri i skolen med GeoGebra Der tages udgangspunkt i GeoGebra version 3,2 udgivet juni 2009 dog er nogle skærmdumps fra tidligere versioner af programmet. Projektleder: Markus Hohenwarter,

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Solid Edge 2D Drafting

Solid Edge 2D Drafting Solid Edge 2D version 106 - tutorial: Solid edge 2d er et gratis tegneprogram, der er genialt til Teknologi. Det kan bruges til at tegne maskintegninger med mål, til at tegne skitser til fysik-afleveringer,

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Værktøjet ARTOGIS AGS/Redline tilbyder brugeren mulighed for at indsætte egne grafik- og tekstobjekter

Værktøjet ARTOGIS AGS/Redline tilbyder brugeren mulighed for at indsætte egne grafik- og tekstobjekter AGS/Redline Værktøjet ARTOGIS AGS/Redline tilbyder brugeren mulighed for at indsætte egne grafik- og tekstobjekter i kortet. AGS/Redline aktiveres ved, at klikke på ikonet RedLine ved en værktøjsmenu kommer

Læs mere

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også?

Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Et tal som både består af et helt tal og en brøk, for eksempel. Hvad hedder det? Et kommatal som for eksempel 1,25 kaldes også noget andet. Hvad kaldes det også? Hvad kalder man tallet over brøkstregen

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydningsloven Når en bølge, fx en lysbølge, rammer en grænseflade mellem to stoffer, vil bølgen normalt blive spaltet i to: Noget af bølgen kastes tilbage (spejling), hvor udfaldsvinklen u

Læs mere

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13

FUNKTIONER. Eks. hvis man sætter 3 ind på x s plads bliver værdien 2*3 + 5 = 11. Sætter man 4 ind på x s plads vil værdien blive 2*4 + 5 = 13 En funktion beskriver, hvordan en afhængig variabel afhænger af en uafhængig variabel. Læringsmål Forstå koordinatsystemet Vide hvad 1. og 2. aksen er Vide at x er 1. akse og y er 2. akse Forståelsen for

Læs mere

i matematikundervisningen former, symmetri, arealer og længder IT-færdighedsniveau

i matematikundervisningen former, symmetri, arealer og længder IT-færdighedsniveau i matematikundervisningen former, symmetri, arealer og længder IT-færdighedsniveau Dette E-læringsmodul er udarbejdet af: Jacob Kjær Hansen Tommerup Skole April 2011 Indledning I dette e-læringsmodul vil

Læs mere

Hvordan du opretter, bruger og tildeler kategorier til arrangementer og nyheder

Hvordan du opretter, bruger og tildeler kategorier til arrangementer og nyheder Hvordan du opretter, bruger og tildeler kategorier til arrangementer og nyheder Opret kategorier 1. For at kunne bruge kategorier på nyheder og arrangementer skal man først oprette en række kategorier,

Læs mere

Animationer med TI-Nspire CAS

Animationer med TI-Nspire CAS Animationer med TI-Nspire CAS Geometrinoter til TI-Nspire CAS version 2.0 Brian Olesen & Bjørn Felsager Midtsjællands Gymnasieskoler Marts 2010 Indholdsfortegnelse: Indledning side 1 Eksempel 1: Pythagoras

Læs mere

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling

Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Dynamiske konstruktioner med et dynamisk geometriprogram En øvelsessamling Disse opgaver er i sin tid udarbejdet til programmerne Geometer, og Geometrix. I dag er GeoGebra (af mange gode grunde, som jeg

Læs mere

Flytninger og mønstre

Flytninger og mønstre Flytninger og mønstre KTIVITET ESKRIV MØNSTRE FLYTNINGER OG MØNSTRE 9 I dette kapitel skal du arbejde med flytninger og mønstre i planen. Der findes mønstre overalt omkring os. Det er indenfor kunst og

Læs mere

dvs. vinkelsummen i enhver trekant er 180E. Figur 11

dvs. vinkelsummen i enhver trekant er 180E. Figur 11 Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.

Læs mere

Vejledning til online-redigering i Danmarks Arealinformation

Vejledning til online-redigering i Danmarks Arealinformation Vejledning til online-redigering i Danmarks Arealinformation Redigeringsfunktioner i Danmarks Arealinformation Med denne vejledning vil Danmarks Miljøportal give en kort introduktion til de mest brugte

Læs mere

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari

Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Athena DIMENSION Tværsnit 2

Athena DIMENSION Tværsnit 2 Athena DIMENSION Tværsnit 2 Januar 2002 Indhold 1 Introduktion.................................. 2 2 Programmets opbygning........................... 2 2.1 Menuer og værktøjslinier............................

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

bruge en formel-samling

bruge en formel-samling Geometri Længdemål og omregning mellem længdemål... 56 Omkreds og areal af rektangler og kvadrater... 57 Omkreds og areal af andre figurer... 58 Omregning mellem arealenheder... 6 Nogle geometriske begreber

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Vejledning i brug af dinnatur

Vejledning i brug af dinnatur Vejledning i brug af dinnatur Indhold Formålet med din natur.dk... 2 Adgang og log ind... 2 Oversigtskort... 4 De forskellige kortlag... 5 Oprettelse af et observationsområde... 8 Redigering/ sletning

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere