Egenvärden och egenvektorer

Størrelse: px
Starte visningen fra side:

Download "Egenvärden och egenvektorer"

Transkript

1 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Carmen Arévalo Carmen Arévalo Egenvärden och egenvektorer / 16

2 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Översikt Introduktion: Grundläggande definitioner Karakteristiska polynomet i MATLAB Potensmetoden Visualisering av egenvärden och egenvektorer Skiftade potensmetoden Invers iteration Egenvärden, egenvektorer och diagonalisering i MATLAB Carmen Arévalo Egenvärden och egenvektorer / 16

3 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Definitioner Diagonalisering Skalären λ är en egenvärde till matrisen A om Ax = λx, x 0 och vektorn x är en (motsvarande) egenvektor till A. ( ) ( ) ( ) ( ) ( = 10, ) ( 1 = 4 1 ) Om A är en n n matris, är p A (λ) = det(λi A) ett n-grad polynom som kallas för det karakteristiska polynomet för A. ( ) λ 9 5 det(λi A) = det 1 λ 5 = (λ 9) (λ 5) 5 = λ 2 14λ + 40 Carmen Arévalo Egenvärden och egenvektorer / 16

4 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Definitioner Diagonalisering Skalären λ är en egenvärde till matrisen A om Ax = λx, x 0 och vektorn x är en (motsvarande) egenvektor till A. ( ) ( ) ( ) ( ) ( = 10, ) ( 1 = 4 1 ) Om A är en n n matris, är p A (λ) = det(λi A) ett n-grad polynom som kallas för det karakteristiska polynomet för A. ( ) λ 9 5 det(λi A) = det 1 λ 5 = (λ 9) (λ 5) 5 = λ 2 14λ + 40 Carmen Arévalo Egenvärden och egenvektorer / 16

5 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Satser Diagonalisering Om Ax = λx så gäller att ca har egenvektorn x med motsvarande egenvärdet cλ, A + ci har egenvektorn x med motsvarande egenvärdet λ + c, A n har egenvektorn x med motsvarande egenvärdet λ n, A 1 har egenvektorn x med motsvarande egenvärdet 1/λ (om A är inverterbar). Egenvärdena till A är nollställena till p A. Egenvektorerna är lösningarna till (λi A)x = 0. ( ) λ 9 5 det = λ 2 14λ λ 5 = (λ 10) (λ 4) Carmen Arévalo Egenvärden och egenvektorer / 16

6 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Satser Diagonalisering Om Ax = λx så gäller att ca har egenvektorn x med motsvarande egenvärdet cλ, A + ci har egenvektorn x med motsvarande egenvärdet λ + c, A n har egenvektorn x med motsvarande egenvärdet λ n, A 1 har egenvektorn x med motsvarande egenvärdet 1/λ (om A är inverterbar). Egenvärdena till A är nollställena till p A. Egenvektorerna är lösningarna till (λi A)x = 0. ( ) λ 9 5 det = λ 2 14λ λ 5 = (λ 10) (λ 4) Carmen Arévalo Egenvärden och egenvektorer / 16

7 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Satser Diagonalisering Om Ax = λx så gäller att ca har egenvektorn x med motsvarande egenvärdet cλ, A + ci har egenvektorn x med motsvarande egenvärdet λ + c, A n har egenvektorn x med motsvarande egenvärdet λ n, A 1 har egenvektorn x med motsvarande egenvärdet 1/λ (om A är inverterbar). Egenvärdena till A är nollställena till p A. Egenvektorerna är lösningarna till (λi A)x = 0. ( ) λ 9 5 det = λ 2 14λ λ 5 = (λ 10) (λ 4) Carmen Arévalo Egenvärden och egenvektorer / 16

8 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Diagonaliserbara matriser Diagonalisering En n n matris A är diagonaliserbar om det finns en matris S och en diagonalmatris D så att S 1 AS = D Detta betyder att det finns n linjärt oberoende egenvektorer till A. Kolonnerna i S är egenvektorerna och diagonalelementen i D är motsvarande egenvärden. ( ) 1 ( ) ( ) = ( ) Carmen Arévalo Egenvärden och egenvektorer / 16

9 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Diagonaliserbara matriser Diagonalisering En n n matris A är diagonaliserbar om det finns en matris S och en diagonalmatris D så att S 1 AS = D Detta betyder att det finns n linjärt oberoende egenvektorer till A. Kolonnerna i S är egenvektorerna och diagonalelementen i D är motsvarande egenvärden. ( ) 1 ( ) ( ) = ( ) Carmen Arévalo Egenvärden och egenvektorer / 16

10 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Symmetriska matriser Diagonalisering Om A T = A, gäller det att egenvektorer svarande mot olika egenvärden är ortogonala, alla egenvärden är reella, A är diagonaliserbar och S T AS = D med S ortogonal. Carmen Arévalo Egenvärden och egenvektorer / 16

11 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Symmetriska matriser Diagonalisering Om A T = A, gäller det att egenvektorer svarande mot olika egenvärden är ortogonala, alla egenvärden är reella, A är diagonaliserbar och S T AS = D med S ortogonal. Carmen Arévalo Egenvärden och egenvektorer / 16

12 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Symmetriska matriser Diagonalisering Om A T = A, gäller det att egenvektorer svarande mot olika egenvärden är ortogonala, alla egenvärden är reella, A är diagonaliserbar och S T AS = D med S ortogonal. Carmen Arévalo Egenvärden och egenvektorer / 16

13 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Symmetriska matriser Diagonalisering Om A T = A, gäller det att egenvektorer svarande mot olika egenvärden är ortogonala, alla egenvärden är reella, A är diagonaliserbar och S T AS = D med S ortogonal. Carmen Arévalo Egenvärden och egenvektorer / 16

14 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Lösning av karakteristiska polynomet i MATLAB För att hitta ett polynoms nollställen, konstruerar MATLAB en matris som har det givna polynomet som karakteristiskt polynom och bestämmer matrisens egenvärden. Därför är det inte rimligt att bestämma egenvärdena i MATLAB genom att beräkna nollställena till karakteristiska polynomet. Istället använder MATLAB en iterativ metod. Man börjar med en gissning x 0 till lösningen x, och genererar en sekvens {x 0, x 1, x 2,... } som konvergerar mot x. Carmen Arévalo Egenvärden och egenvektorer / 16

15 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Potensmetoden Potensmetoden är en iterativ metod för att beräkna en egenvektor. Antag att A är en diagonaliserbar n n matris med reella egenvärden och λ 1 > λ 2 λ 3 λ n. Antag att v 1, v 2,..., v n är en bas av egenvektorer som svarar mot λ 1, λ 2,..., λ n. Startvektorn x 0 kan skrivas som x 0 = c 1 v 1 + c 2 v c n v n. Kom ihåg att Ax = λx A k x = λ k x. A k x 0 = λ k 1v 1 + c 2 λ k 2v c n λ k nv n A k ( ) x k ( ) k 0 λ2 λn λ k = c 1 v 1 + c 2 v c n v n 1 λ 1 λ 1 När k är stort har A k x 0 (nästan) samma riktning som egenvektorn v 1. Kom ihåg att om v är en egenvektor så är cv en egenvektor. Därför kan vi säga att x k = A k x 0 närmar sig den egenvektor som motsvarar det egenvärde med största absolutbelopp. Carmen Arévalo Egenvärden och egenvektorer / 16

16 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Potensmetoden Potensmetoden är en iterativ metod för att beräkna en egenvektor. Antag att A är en diagonaliserbar n n matris med reella egenvärden och λ 1 > λ 2 λ 3 λ n. Antag att v 1, v 2,..., v n är en bas av egenvektorer som svarar mot λ 1, λ 2,..., λ n. Startvektorn x 0 kan skrivas som x 0 = c 1 v 1 + c 2 v c n v n. Kom ihåg att Ax = λx A k x = λ k x. A k x 0 = λ k 1v 1 + c 2 λ k 2v c n λ k nv n A k ( ) x k ( ) k 0 λ2 λn λ k = c 1 v 1 + c 2 v c n v n 1 λ 1 λ 1 När k är stort har A k x 0 (nästan) samma riktning som egenvektorn v 1. Kom ihåg att om v är en egenvektor så är cv en egenvektor. Därför kan vi säga att x k = A k x 0 närmar sig den egenvektor som motsvarar det egenvärde med största absolutbelopp. Carmen Arévalo Egenvärden och egenvektorer / 16

17 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Potensmetoden Potensmetoden är en iterativ metod för att beräkna en egenvektor. Antag att A är en diagonaliserbar n n matris med reella egenvärden och λ 1 > λ 2 λ 3 λ n. Antag att v 1, v 2,..., v n är en bas av egenvektorer som svarar mot λ 1, λ 2,..., λ n. Startvektorn x 0 kan skrivas som x 0 = c 1 v 1 + c 2 v c n v n. Kom ihåg att Ax = λx A k x = λ k x. A k x 0 = λ k 1v 1 + c 2 λ k 2v c n λ k nv n A k ( ) x k ( ) k 0 λ2 λn λ k = c 1 v 1 + c 2 v c n v n 1 λ 1 λ 1 När k är stort har A k x 0 (nästan) samma riktning som egenvektorn v 1. Kom ihåg att om v är en egenvektor så är cv en egenvektor. Därför kan vi säga att x k = A k x 0 närmar sig den egenvektor som motsvarar det egenvärde med största absolutbelopp. Carmen Arévalo Egenvärden och egenvektorer / 16

18 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Potensmetoden Potensmetoden är en iterativ metod för att beräkna en egenvektor. Antag att A är en diagonaliserbar n n matris med reella egenvärden och λ 1 > λ 2 λ 3 λ n. Antag att v 1, v 2,..., v n är en bas av egenvektorer som svarar mot λ 1, λ 2,..., λ n. Startvektorn x 0 kan skrivas som x 0 = c 1 v 1 + c 2 v c n v n. Kom ihåg att Ax = λx A k x = λ k x. A k x 0 = λ k 1v 1 + c 2 λ k 2v c n λ k nv n A k ( ) x k ( ) k 0 λ2 λn λ k = c 1 v 1 + c 2 v c n v n 1 λ 1 λ 1 När k är stort har A k x 0 (nästan) samma riktning som egenvektorn v 1. Kom ihåg att om v är en egenvektor så är cv en egenvektor. Därför kan vi säga att x k = A k x 0 närmar sig den egenvektor som motsvarar det egenvärde med största absolutbelopp. Carmen Arévalo Egenvärden och egenvektorer / 16

19 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Potensmetoden Potensmetoden är en iterativ metod för att beräkna en egenvektor. Antag att A är en diagonaliserbar n n matris med reella egenvärden och λ 1 > λ 2 λ 3 λ n. Antag att v 1, v 2,..., v n är en bas av egenvektorer som svarar mot λ 1, λ 2,..., λ n. Startvektorn x 0 kan skrivas som x 0 = c 1 v 1 + c 2 v c n v n. Kom ihåg att Ax = λx A k x = λ k x. A k x 0 = λ k 1v 1 + c 2 λ k 2v c n λ k nv n A k ( ) x k ( ) k 0 λ2 λn λ k = c 1 v 1 + c 2 v c n v n 1 λ 1 λ 1 När k är stort har A k x 0 (nästan) samma riktning som egenvektorn v 1. Kom ihåg att om v är en egenvektor så är cv en egenvektor. Därför kan vi säga att x k = A k x 0 närmar sig den egenvektor som motsvarar det egenvärde med största absolutbelopp. Carmen Arévalo Egenvärden och egenvektorer / 16

20 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Potensmetoden Potensmetoden är en iterativ metod för att beräkna en egenvektor. Antag att A är en diagonaliserbar n n matris med reella egenvärden och λ 1 > λ 2 λ 3 λ n. Antag att v 1, v 2,..., v n är en bas av egenvektorer som svarar mot λ 1, λ 2,..., λ n. Startvektorn x 0 kan skrivas som x 0 = c 1 v 1 + c 2 v c n v n. Kom ihåg att Ax = λx A k x = λ k x. A k x 0 = λ k 1v 1 + c 2 λ k 2v c n λ k nv n A k ( ) x k ( ) k 0 λ2 λn λ k = c 1 v 1 + c 2 v c n v n 1 λ 1 λ 1 När k är stort har A k x 0 (nästan) samma riktning som egenvektorn v 1. Kom ihåg att om v är en egenvektor så är cv en egenvektor. Därför kan vi säga att x k = A k x 0 närmar sig den egenvektor som motsvarar det egenvärde med största absolutbelopp. Carmen Arévalo Egenvärden och egenvektorer / 16

21 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Normalisering av potensmetoden För att hindra vektorerna att bli för stora, normaliserar vi under varje steg: Givet matrisen A, gissa x 0 och iterera y n+1 = Ax n x n+1 = y n+1 / y n+1 2 fortsätt tills x n+1 x n 2 < tol där tol är ett litet tal vi väljer. A=rand(n,n) v=rand(n,1) % dif=1; tol=1e-6; for k=1:20 % eller while dif>tol y=v; v=a*y; v=v/norm(v) % dif=norm(y-v); end Carmen Arévalo Egenvärden och egenvektorer / 16

22 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Rayleighkvot Om vi har en egenvektor v kan vi beräkna det motsvarande egenvärdet: Av = λx v T Av = λv T v λ = v T Av v T v v T Av v T v kallas för Rayleighkvot Carmen Arévalo Egenvärden och egenvektorer / 16

23 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Invers iteration Om A är inverterbar, Ax = λx A 1 x = (1/λ)x Vi kan beräkna egenvektorn svarande mot egenvärdet med det minsta absolutbeloppet med iterationen x n+1 = A 1 x n. Carmen Arévalo Egenvärden och egenvektorer / 16

24 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Invers iteration Om A är inverterbar, Ax = λx A 1 x = (1/λ)x Vi kan beräkna egenvektorn svarande mot egenvärdet med det minsta absolutbeloppet med iterationen x n+1 = A 1 x n. Carmen Arévalo Egenvärden och egenvektorer / 16

25 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Skiftade potensmetoden Vi vet att om Av = λv så är λ s ett egenvärde till matrisen A si svarande mot samma egenvektor v. Genom att använda invers iteration för A si kan vi beräkna andra egenvärdena än det med största absolutbelopp. Oavsätt vilken metod vi använder, beräknas egenvärdet med Rayleighkvoten. ( ) 9 5 Till exempel, potensmetoden med A = ger λ = 10, men om vi tar s = 1 och använder den skiftade inversiterationen får vi λ 2 = 4. Carmen Arévalo Egenvärden och egenvektorer / 16

26 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Skiftade potensmetoden Vi vet att om Av = λv så är λ s ett egenvärde till matrisen A si svarande mot samma egenvektor v. Genom att använda invers iteration för A si kan vi beräkna andra egenvärdena än det med största absolutbelopp. Oavsätt vilken metod vi använder, beräknas egenvärdet med Rayleighkvoten. ( ) 9 5 Till exempel, potensmetoden med A = ger λ = 10, men om vi tar s = 1 och använder den skiftade inversiterationen får vi λ 2 = 4. Carmen Arévalo Egenvärden och egenvektorer / 16

27 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Karakteristiska polynomet Potensmetoden Invers iteration Skiftade potensmetoden Vi vet att om Av = λv så är λ s ett egenvärde till matrisen A si svarande mot samma egenvektor v. Genom att använda invers iteration för A si kan vi beräkna andra egenvärdena än det med största absolutbelopp. Oavsätt vilken metod vi använder, beräknas egenvärdet med Rayleighkvoten. ( ) 9 5 Till exempel, potensmetoden med A = ger λ = 10, men om vi tar s = 1 och använder den skiftade inversiterationen får vi λ 2 = 4. Carmen Arévalo Egenvärden och egenvektorer / 16

28 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Egenvärden och egenvektorer i MATLAB Diagonalisering I MATLAB kan vi använda kommandot eig: [V,D]=eig(A) ger matris V vars kolonner är egenvektorerna och diagonalmatris D med egenvärdena på diagonalen. >> A=[9 5;1 5] A = >> [V,D]=eig(A) V = D = Obs ordningen! Carmen Arévalo Egenvärden och egenvektorer / 16

29 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Diagonalisering i MATLAB Diagonalisering [V,D]=eig(A) ger V och D med V 1 AV = D Man kan få komplexa tal i V och D: A = >> [V,D]=eig(A) V = i i D = i i Carmen Arévalo Egenvärden och egenvektorer / 16

30 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer Icke diagonaliserbar matriser i MATLAB Diagonalisering Om rank(v ) n betyder det att A är inte diagonaliserbar: A = >> [V,D]=eig(A) V = D = >> rank(v) ans= 1 Carmen Arévalo Egenvärden och egenvektorer / 16

31 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer i enhetscirkeln Enhetsvektorer x (blå) och deras transformationer Ax (röd). De Carmen Arévalo Egenvärden och egenvektorer / 16 A=rand(2); t=linspace(0, 2*pi); axis equal; hold x=cos(t); y=sin(t); plot(x,y); for i=linspace(0,2*pi,17) x=cos(i); y=sin(i); z=a*[x;y]; plot([0;x],[0;y]) plot([0;z(1)],[0;z(2)], r ), pause end

32 Outline Introduction Egenvärden & egenvektorer I MATLAB Visualisering Egenvärden och egenvektorer i enhetscirkeln Enhetsvektorer x (blå) och deras transformationer Ax (röd). De transformerade vektorer bildar en ellips Carmen Arévalo Egenvärden och egenvektorer / 16

Egenværdier og egenvektorer

Egenværdier og egenvektorer 1 Egenværdier og egenvektorer 2 Definition Lad A være en n n matrix. En vektor v R n, v 0, kaldes en egenvektor for A, hvis der findes en skalar λ således Av = λv Skalaren λ kaldes en tilhørende egenværdi.

Læs mere

Lineær algebra: Egenværdier, egenvektorer, diagonalisering

Lineær algebra: Egenværdier, egenvektorer, diagonalisering Lineær algebra: Egenværdier, egenvektorer, diagonalisering Institut for Matematiske Fag Aalborg Universitet 2011 Egenvektorer og egenværdier Mål: Forståelse af afbildningen x Ax fra R n R n for en n n-matrix

Læs mere

Diagonalisering. Definition (diagonaliserbar)

Diagonalisering. Definition (diagonaliserbar) 1 Diagonalisering 2 Definition (diagonaliserbar) Lad A være en n n-matrix. A siges at være diagonaliserbar hvis A er similær med en diagonal matrix, dvs. A = PDP 1, hvor D er en n n diagonal matrix og

Læs mere

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer

DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016

Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 2016 Besvarelser til Lineær Algebra med Anvendelser Ordinær Eksamen 206 Mikkel Findinge http://findinge.com/ Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan.

Læs mere

Ekstremum for funktion af flere variable

Ekstremum for funktion af flere variable Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017 Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018

Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018

Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018 Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Reeksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg Telefon: 7359

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg Telefon: 7359 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg Telefon: 7359 0482 Eksamen i MA1201 Lineær algebra og geometri Onsdag

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Symmetriske og ortogonale matricer Uge 7

Symmetriske og ortogonale matricer Uge 7 Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji

Læs mere

Anvendt Lineær Algebra

Anvendt Lineær Algebra Anvendt Lineær Algebra Kursusgang 4 Anita Abildgaard Sillasen Institut for Matematiske Fag AAS (I17) Anvendt Lineær Algebra 1 / 32 Vægtet mindste kvadraters metode For et lineært ligningssystem (af m ligninger

Læs mere

Symmetriske og ortogonale matricer Uge 6

Symmetriske og ortogonale matricer Uge 6 Symmetriske og ortogonale matricer Uge 6 Preben Alsholm Efterår 2010 1 Symmetriske og ortogonale matricer 1.1 Skalarprodukt og Cauchy-Schwarz ulighed Skalarprodukt og Cauchy-Schwarz ulighed Det sædvanlige

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum)

Københavns Universitet, Det naturvidenskabelige Fakultet. Forelæsningsnote 8. (NB: Noten er ikke en del af pensum) Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Forelæsningsnote 8 NB: Noten er ikke en del af pensum Eksempel på brug af egenværdier og egenvektorer Måske er det stadig

Læs mere

Symmetriske matricer

Symmetriske matricer Symmetriske matricer Preben Alsholm 17. november 008 1 Symmetriske matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = a ij kaldes symmetrisk, hvis aij = a ji for alle i og j. Altså hvis A

Læs mere

Besvarelser til Lineær Algebra Reeksamen August 2016

Besvarelser til Lineær Algebra Reeksamen August 2016 Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve.

Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid). Tangenthældninger langs en kurve. Differentialligninger Hvad beskriver en differentialligning? Hvordan noget ændrer sig (oftest over tid) Tangenthældninger langs en kurve x Retningsfelter x x(t) sin(π t) + x / π cos(π t) Jeppe Revall Frisvad

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Maj 016 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt består af 10 nummererede sider med ialt

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

Lineær Algebra eksamen, noter

Lineær Algebra eksamen, noter Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,

Læs mere

Reeksamen i Lineær Algebra

Reeksamen i Lineær Algebra Reeksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet. februar 8 Dette eksamenssæt består af 9 nummererede sider med afkrydsningsopgaver.

Læs mere

LiA 5 Side 0. Lineær algebra Kursusgang 5

LiA 5 Side 0. Lineær algebra Kursusgang 5 LiA 5 Side 0 Lineær algebra Kursusgang 5 LiA 5 Side 1 Ved bestemmelse af mindste kvadraters løsning til (store) ligningssystemer vil man gerne anvende en metode der opfylder to krav: antallet af regneoperationer

Læs mere

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016

Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder

Sylvesters kriterium. Nej, ikke mit kriterium. Sætning 9. Rasmus Sylvester Bryder Sætning 9 Sylvesters kriterium Nej, ikke mit kriterium Rasmus Sylvester Bryder Inspireret af en statistikers manglende råd om hvornår en kvadratisk matrix er positivt definit uden at skulle ud i at bestemme

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Mat10 eksamensspørgsmål

Mat10 eksamensspørgsmål Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002

Læs mere

(Prøve)eksamen i Lineær Algebra

(Prøve)eksamen i Lineær Algebra (Prøve)eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Nærværende eksamenssæt bestaår af 9 nummererede sider med ialt 15 opgaver.

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske tekst på bagsiden, hvis du følger den danske version af prøven. Eksamen i Lineær Algebra Første

Læs mere

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet

Eksamen i Lineær Algebra. Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet Eksamen i Lineær Algebra Første Studieår ved Det Tekniske Fakultet for IT og Design samt Det Ingeniør- og Naturvidenskabelige Fakultet 4. januar 9 kl. 9:-: Dette eksamenssæt består af 8 nummererede sider

Læs mere

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver!

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver! LINEÆR ALGEBRA 28. januar 2005 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003; i store træk bliver det kapitel 1 3 og 5.1 5.3. Som

Læs mere

Guövik 3:1 GUÖ 3:1 2014-05-26. rudnicki / agergaard / cand. arch

Guövik 3:1 GUÖ 3:1 2014-05-26. rudnicki / agergaard / cand. arch Guövik 3:1 Förslaget till Guövik 3:1 består av tre hustyper som placeras runt om Guöviksplatåns centrum. Husen följer landskapets topologi och den på plankartan inritade lokalvägen. Husen placeras så att

Læs mere

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra

To find the English version of the exam, please read from the other end! Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

Oversigt [LA] 10, 11; [S] 9.3

Oversigt [LA] 10, 11; [S] 9.3 Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

DesignMat Uge 4 Systemer af lineære differentialligninger I

DesignMat Uge 4 Systemer af lineære differentialligninger I DesignMat Uge Systemer af lineære differentialligninger I Preben Alsholm Efterår 008 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden I Lineært differentialligningssystem

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Noter til Lineær Algebra

Noter til Lineær Algebra Noter til Lineær Algebra Eksamensnoter til LinAlg Martin Sparre, www.logx.dk, August 2007, Version π8 9450. INDHOLD 2 Indhold 0. Om disse noter.......................... 3 Abstrakte vektorrum 4. Definition

Læs mere

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013

LinAlg 2013 Q3. Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 LinAlg 2013 Q3 Tobias Brixen Mark Gottenborg Peder Detlefsen Troels Thorsen Mads Buch 2013 1 Lineær algebra Dispositioner - Dispo 0 2013 Contents 1 Løsninger, og MKL, af lineære ligningssystemer 3 2 Vektorrum

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave

Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005

Læs mere

Ekstremumsbestemmelse

Ekstremumsbestemmelse Ekstremumsbestemmelse Preben Alsholm 24. november 2008 1 Ekstremumsbestemmelse 1.1 Ekstremum for funktion af én variabel: Definitioner Ekstremum for funktion af én variabel: Definitioner Punktet a kaldes

Læs mere

FIRST LEGO League. Borlänge 2012

FIRST LEGO League. Borlänge 2012 FIRST LEGO League Borlänge 2012 Presentasjon av laget Sundbornsligan Vi kommer fra Sundborn Snittalderen på våre deltakere er 10 år Laget består av 5 jenter og 7 gutter. Vi representerer Sundbornsskolan

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag

Læs mere

Bash-scriptning. Linuxadministration I 1DV417

Bash-scriptning. Linuxadministration I 1DV417 Bash-scriptning Linuxadministration I 1DV417 1 Script bash csh ksh 2 Exekvering av script bash exsimple #!/bin/bash 3 Specialtecken/substitution Specialtecken: Citattecken ( ), grav accent (`), akut accent

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

Referat af projektkoordineringsmøde den 25. januar 2007 på Miljøcenter Århus

Referat af projektkoordineringsmøde den 25. januar 2007 på Miljøcenter Århus Referat af projektkoordineringsmøde den 25. januar 2007 på Miljøcenter Århus Til stede: Henrik Skovgård, Irene Wiborg og Uffe Jørgensen (referent) 1. Godkendelse af referat Godkendt. 2. Task 1.1. Har Henrik

Læs mere

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)

Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02) SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet 6. juni, 26. Kl. 9-3. Nærværende eksamenssæt består af nummererede sider med ialt 5 opgaver. Alle opgaver er multiple

Læs mere

Egenværdier og egenvektorer

Egenværdier og egenvektorer enote 9 enote 9 Egenværdier og egenvektorer Denne note indfører begreberne egenværdier og egenvektorer for lineære afbildninger i vilkårlige generelle vektorrum og går derefter i dybden med egenværdier

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på modsatte side hvis du følger denne danske version af prøven. Eksamen i Lineær Algebra

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [DL] 1, 2 Her skal du lære om Separable ligninger Logistisk ligning og eksponentiel vækst 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens

Læs mere

Oversigt Matematik Alfa 1, August 2002

Oversigt Matematik Alfa 1, August 2002 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Ett osynligt kontrakt mellan elever och lärare

Ett osynligt kontrakt mellan elever och lärare Ett osynligt kontrakt mellan elever och lärare Morten Blomhøj Här behandlas hur ett didaktiskt kontrakt utvecklas och vilka konsekvenser detta har för arbetet i en klass. Sedan följer en redogörelse för

Læs mere

Model 77737. Brugsanvisning Bruksanvisning

Model 77737. Brugsanvisning Bruksanvisning Model 77737 Brugsanvisning Bruksanvisning HÅNLIPPER Introduktion For at du kan få mest mulig glæde af din nye håndklipper, beder vi dig gennemlæse denne brugsanvisning og de vedlagte sikkerhedsforskrifter,

Læs mere

Papir, glas, støbejern, elge og vandmølle

Papir, glas, støbejern, elge og vandmølle Papir, glas, støbejern, elge og vandmølle Alebo info@alebo.se http://www.alebo.se 180 km 2h 55 min Starts: Alebo Pensionat, Södra vägen, Unnaryd, Sweden Ends: Södra vägen 53, Unnaryd, Sweden Start Point:

Læs mere

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver!

Sandt/falsk-opgave: Diskuter opgave 23 side 12 i gruppen, men husk at begrunde jeres svar, som teksten før opgave 23 kræver! LINEÆR ALGEBRA 30. januar 2004 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, 3. udgave Addison Wesley 2003; i store træk bliver det kapitel 1 3 og 5.1 5.3. Som

Læs mere

Brug byen / Använd staden

Brug byen / Använd staden Brug byen / Använd staden Lærervejledning og introduktion. Analyse af bygninger og byrum for 3.-5.klasse. Undervisningsmaterialet indeholder en introduktion til at arbejde med arkitektur i undervisningen

Læs mere

VÄGLEDNING/VEJLEDNING/VEILEDNING. Måla ansikten Mal ansigter

VÄGLEDNING/VEJLEDNING/VEILEDNING. Måla ansikten Mal ansigter VÄGLEDNING/VEJLEDNING/VEILEDNING Måla ansikten Mal ansigter 600309 Måla ansikten Mal ansigter SE Du kan enkelt måla ansikten på vaddkulor, träkulor och knappformar med pennor eller pensel och hobbyfärger.

Læs mere

INTERNATIONALISER DIN UDDANNELSE I DANMARK ELLER I SVERIGE BYGG DIN EGEN BRO TILL DEN GLOBALA ARBETSMARKNADEN

INTERNATIONALISER DIN UDDANNELSE I DANMARK ELLER I SVERIGE BYGG DIN EGEN BRO TILL DEN GLOBALA ARBETSMARKNADEN INTERNATIONALISER DIN UDDANNELSE I DANMARK ELLER I SVERIGE BYGG DIN EGEN BRO TILL DEN GLOBALA ARBETSMARKNADEN Roskilde Universitet Varför är det en bra idé? Om du åker på utbyte till Malmö University kan

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Fredag

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Panduro Hobbys FÄRGSKOLA FARVE/FARGESKOLE

Panduro Hobbys FÄRGSKOLA FARVE/FARGESKOLE Panduro Hobbys FÄRGSKOLA FARVE/FARGESKOLE 602053 SE Information om färgskolan Färgskolan är en introduktion till färgernas spännande värld. Den innehåller en kortfattad beskrivning av vad färg är, hur

Læs mere

Oversigt Matematik Alfa 1, Januar 2003

Oversigt Matematik Alfa 1, Januar 2003 Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 2. september 2008 Oversigt nr. 1

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 2. september 2008 Oversigt nr. 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 2. september 2008 Oversigt nr. 1 I PE-kurset i skal vi bruge [A] Sheldon Axler: Linear algebra done right, 2nd ed., Springer. [AB] K. G. Andersson og L.-C. Böiers:

Læs mere

Calculus Uge

Calculus Uge Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Lineær Algebra F08, MØ

Lineær Algebra F08, MØ Lineær Algebra F08, MØ Vejledende besvarelser af udvalgte opgaver fra Ugeseddel 3 og 4 Ansvarsfraskrivelse: Den følgende vejledning er kun vejledende. Opgaverne kommer i vilkårlig rækkefølge. Visse steder

Læs mere

Køkken/brevvægt. Manual

Køkken/brevvægt. Manual Køkken/brevvægt Manual FUNKTIONER 1. Angiver mængden af vand og mælk 2. To vægt enhedssystemer: g og lb:oz 3. To volumen enhedssystemer ml og fl'oz 4. Lavt batteri / overbelastning indikation 5. Med høj

Læs mere

Lineær Algebra Dispositioner

Lineær Algebra Dispositioner Lineær Algebra Dispositioner Michael Lind Mortensen, 20071202, DAT4 12. august 2008 Indhold 1 Løsning og mindste kvadraters løsninger af lineære ligningssystemer 4 1.1 Disposition............................

Læs mere

Lineær algebra Kursusgang 6

Lineær algebra Kursusgang 6 Lineær algebra Kursusgang 6 Mindste kvadraters metode og Cholesky dekomposition Vi ønsker at finde en mindste kvadraters løsning til det (inkonsistente) ligningssystem hvor A er en m n matrix. Ax = b,

Læs mere

POD Probability of Detection

POD Probability of Detection POD Probability of Detection FOP 2012-03-26 Magnus Larsson Vad är POD? Probability of detection Sannolikhet att hitta defekt Hur små defekter kan vi hitta? Hur snabbt kan en människa springa 100m? Usain

Læs mere

Delebilisme som alternativ til privatbilismen

Delebilisme som alternativ til privatbilismen Delebilisme som alternativ til privatbilismen Privatbilismens naturlov? Der er mange, der forbinder stigningen i bilejerskabet, som en naturlov, der hænger sammen med et samfund i vækst. Denne tese er

Læs mere

FIRST LEGO League. Horsens Torstedskolen-6a-3. Lagdeltakere:

FIRST LEGO League. Horsens Torstedskolen-6a-3. Lagdeltakere: FIRST LEGO League Horsens 2012 Presentasjon av laget Torstedskolen-6a-3 Vi kommer fra Horsens Snittalderen på våre deltakere er 1 år Laget består av 0 jenter og 0 gutter. Vi representerer Torstedskolen

Læs mere

Index. Logotyp 03. Färg 07. Typografi 09. Grafiska element 11. Fotografi 13. Video 15

Index. Logotyp 03. Färg 07. Typografi 09. Grafiska element 11. Fotografi 13. Video 15 Grafisk manual Index Logotyp 03 Färg 07 Typografi 09 Grafiska element 11 Fotografi 13 Video 15 Grafisk form Ruben Fjellner Produktion Enklast Logotyp Logotypen spelar en viktig roll i USR:s kommunikation.

Læs mere

Ligningssystemer - nogle konklusioner efter miniprojektet

Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax

Læs mere

at børnerettighedsperspektivet integreres systematisk i ministerrådets virksomhed, på justits- og menneskerettighedsområderne

at børnerettighedsperspektivet integreres systematisk i ministerrådets virksomhed, på justits- og menneskerettighedsområderne BETÄNKANDE ÖVER MEDLEMSFÖRSLAG s betänkande över om att förstärka barnrättsperspektivet i det nordiska samarbetet 1. Udvalgets forslag föreslår att Nordisk Råd rekommanderer Nordisk Ministerråd, at børnerettighedsperspektivet

Læs mere

Bra design har alltid handlat om tidlösa produkter som har en känsla av kvalitet.

Bra design har alltid handlat om tidlösa produkter som har en känsla av kvalitet. MARC NEWSON FOR Bra design har alltid handlat om tidlösa produkter som har en känsla av kvalitet. Godt design har altid handlet om tidsløse produkter... som har en følelse af kvalitet. MARC NEWSON SMEG-INTE

Læs mere

Biologisk model: Epidemi

Biologisk model: Epidemi C1.2 C.7 Se forklaring i Appendiks A 1, si. 9 Biologisk model: Epidemi af John V. Petersen 1. Biologisk model: Epidemi... si. 1 A. Appendiks A 1. Ligninger si. 1, forklaring... si. 9 A 2. Egenvektorer

Læs mere

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley;

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; LINEÆR ALGEBRA 2. februar 2007 Oversigt nr. 1 I kurset i skal vi bruge D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; man kan også anvende Third Edition (men ej anden

Læs mere

Eksamen i Lineær Algebra

Eksamen i Lineær Algebra Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Tirsdag den 8 januar, Kl 9- Nærværende eksamenssæt består af 8 nummererede sider

Læs mere

600207 Tips & Idéer. Smycken av metall- och wiretråd Smykker af metal- og wiretråd/smykker av metall- og wiretråd

600207 Tips & Idéer. Smycken av metall- och wiretråd Smykker af metal- og wiretråd/smykker av metall- og wiretråd 600207 Tips & Idéer Smycken av metall- och wiretråd Smykker af metal- og wiretråd/smykker av metall- og wiretråd SV Stelt halsband med pärlor, 38 cm 150 cm lackerad koppartråd eller silvertråd 925, diam.

Læs mere

Du kan även få vattenpassen i 120+, och 180+ som har sina fördelar både vid golvläggning och vid tak läggning.

Du kan även få vattenpassen i 120+, och 180+ som har sina fördelar både vid golvläggning och vid tak läggning. True blue är 100 % korrekt, bubblan är mycket tydligare än normalt. Själva vattenpasset är byggd i kraftig aluminiumprofil och har stora handtag så att den passar bra i handen. Det har genomförts tester

Læs mere

DesignMat Egenværdier og Egenvektorer

DesignMat Egenværdier og Egenvektorer DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).

Læs mere

Futura Z Gateway B E TJ E N I N G S V E J L E D N I N G W W W. N E O T H E R M. D K

Futura Z Gateway B E TJ E N I N G S V E J L E D N I N G W W W. N E O T H E R M. D K Introduktion Introduktion/Introduktion Universal Gateway er nøgleproduktet til Salus Smart Home-systemet. Det giver dig mulighed for at få trådløs kontrol over alt tilsluttet udstyr, bare ved hjælp af

Læs mere

12.5-18 MPT 12.5-20 MPT 325 / 70-18 AS Inpressningsdjup. Bredd maskin / vänd Bredde maskine / drejet mm. Offset

12.5-18 MPT 12.5-20 MPT 325 / 70-18 AS Inpressningsdjup. Bredd maskin / vänd Bredde maskine / drejet mm. Offset 12.5-18 MPT 12.5-20 MPT 325 / 70-18 AS e e e 1140 (Axel / aksel K75) 1140 (Axel / aksel K90) 1160 (Axel / aksel K80, T80) 1160 (Axel / aksel T94) 1240 CX35 LP (Axel / aksel K80, T80) (Axel / aksel K90)

Læs mere

Introduktion. 5 års ombytningsgaranti

Introduktion. 5 års ombytningsgaranti Limpistol Limpistol Introduktion For at du kan få mest mulig glæde af dit nye værktøj, beder vi dig gennemlæse denne brugsanvisning og de vedlagte sikkerhedsforskrifter, før du tager det i brug. Vi anbefaler

Læs mere

FIRST LEGO League. Västerås Superseniorerna. Lagdeltakere:

FIRST LEGO League. Västerås Superseniorerna. Lagdeltakere: FIRST LEGO League Västerås 2012 Presentasjon av laget Superseniorerna Vi kommer fra Hallstahammar Snittalderen på våre deltakere er 1 år Laget består av 0 jenter og 0 gutter. Vi representerer Lindboskolan

Læs mere

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley;

D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; LINEÆR ALGEBRA 1. februar 2008 Oversigt nr. 1 I kurset Lineær Algebra skal vi bruge D. C. Lay: Linear algebra and its applications, Third Edition Update, Addison Wesley; man kan også anvende Third Edition

Læs mere

LinAlgDat 2014/2015 Google s page rank

LinAlgDat 2014/2015 Google s page rank LinAlgDat 4/5 Google s page rank Resumé Vi viser hvordan lineære ligninger naturligt optræder i forbindelse med en simpel udgave af Google s algoritme for at vise de mest interessante links først i en

Læs mere

Lineær algebra 1. kursusgang

Lineær algebra 1. kursusgang Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra

Læs mere

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 1. september 2009 Oversigt nr. 1

MATEMATIK 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 1. september 2009 Oversigt nr. 1 LINEÆR ALGEBRA OG DYNAMISKE SYSTEMER 1. september 2009 Oversigt nr. 1 I PE-kurset i skal vi bruge [A] Sheldon Axler: Linear algebra done right, 2nd ed., Springer. [P] Lawrence Perko: Differential equations

Læs mere

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0.

Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0. Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

FIRST LEGO League. Horsens 2012

FIRST LEGO League. Horsens 2012 FIRST LEGO League Horsens 2012 Presentasjon av laget Extremeteam Vi kommer fra Horsens Snittalderen på våre deltakere er 12 år Laget består av 4 jenter og 4 gutter. Vi representerer Hattingskolen Type

Læs mere

FIRST LEGO League. Horsens 2012

FIRST LEGO League. Horsens 2012 FIRST LEGO League Horsens 2012 Presentasjon av laget Team Grande Vi kommer fra Horsens Snittalderen på våre deltakere er 12 år Laget består av 4 jenter og 4 gutter. Vi representerer Torstedskolen Type

Læs mere

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.

Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2. Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums

Læs mere

Krafthylsor/Krafttopper

Krafthylsor/Krafttopper Kraft Tecos krafthylsor tillverkas i krom-vanadium-mobydenstål. Kvalitetsstandarden motsvarar normerna för GGG- W660A och DIN 3121/3129 när det gäller hårdhet, funktion och vridmoment. Tecos krafttoppeer

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere