Computerstøttet beregning

Størrelse: px
Starte visningen fra side:

Download "Computerstøttet beregning"

Transkript

1 CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/ qvist/teaching/csb-09

2 CSB 2009 p. 2/16 Hvad er CSB? Computerstøttet beregning (på engelsk, Scientific Computing), er: Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter

3 CSB 2009 p. 2/16 Hvad er CSB? Computerstøttet beregning (på engelsk, Scientific Computing), er: Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter Et datalogikursus: Vil vil beskæftige os med algoritmer til løsning af problemerne, analysere algoritmerne (kompleksitet og konvergensrate) og implementere algoritmerne

4 CSB 2009 p. 2/16 Hvad er CSB? Computerstøttet beregning (på engelsk, Scientific Computing), er: Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter Et datalogikursus: Vil vil beskæftige os med algoritmer til løsning af problemerne, analysere algoritmerne (kompleksitet og konvergensrate) og implementere algoritmerne Et fysikkursus: Problemstillingerne vil (bl.a.) være motiveret udfra fysiske fænomener

5 CSB 2009 p. 2/16 Hvad er CSB? Computerstøttet beregning (på engelsk, Scientific Computing), er: Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter Et datalogikursus: Vil vil beskæftige os med algoritmer til løsning af problemerne, analysere algoritmerne (kompleksitet og konvergensrate) og implementere algoritmerne Et fysikkursus: Problemstillingerne vil (bl.a.) være motiveret udfra fysiske fænomener Det handler om algoritmer til beregning af approksimationer til eksakte matematiske objekter og om vurdering af den følgende fejl

6 CSB 2009 p. 3/16 Tværfagligt snit CSB er et hastigt voksende felt indenfor anvendt matematik, som indeholder elementer af Ingeniørvidenskab: Problemerne er hentet fra virkelighedens verden og formuleret i matematisk terminologi (differentialligninger, integralligninger etc. ) Datalogi: Problemerne kan ikke løses eksakt (i modsætning til det I har set på Matematik 1!), så derfor må vi bruge computere til at beregne en numerisk løsning Matematik: Matematikken fortæller os hvordan en numerisk løsning kan beregnes og hvor god den er. Eller måske vigtigere: at det ikke går galt.

7 CSB 2009 p. 4/16 Eks. på CSB Vejrudsigt: Gigantisk dynamisk system. Begyndelsesbetingelserne er kendt (vejret lige nu) og dynamikken er (delvis) fastlagt af systemer af differentialligninger (www.dmi.dk) Simulering af komplekse mekaniske systemer: Ballistik, fjedersystemer, stive legemers bevægelse. Fænomenets fysik er beskrevet udfra Newtons mekanik (www.myphysicslab.com/collision.html) Computerspil og animerede tegnefilm: Physically based modelling. For at lave realistiske animationer modelleres fysiske fænomener og deres interaktion (delvist) ved differentialligninger. CERN

8 CSB 2009 p. 5/16 Fra studieordningen Formålet med CSB er Teori: At de studerende opnår et grundlæggende kendskab til nogle metoder og algoritmer for computerstøttede beregninger... Praktisk:...at de opnår erfaring med anvendelsen af disse metoder og algoritmer på konkrete store beregninger

9 CSB 2009 p. 6/16 Indhold Introduktion til Maple og Matlab Repræsentation af tal i en computer. Afrundingsfejl Løsning af ikke-lineære ligninger Taylors formel og approksimation af funktioner Interpolation Numerisk integration Numerisk løsning af differentialligninger Numerisk lineær algebra Eksempler på store beregninger

10 CSB 2009 p. 7/16 Materialer Peter R. Turner, Guide to Scientific Computing, Macmillan Press 2000 Maple og Matlab. Kan hentes gratis på tnb.aau.dk/edb/software Hjemmeside med spisesedler, eksempler osv.: people.math.aau.dk/~qvist/teaching/csb-09

11 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning

12 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning

13 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig

14 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig Frygt ikke Maple (eller Matlab)

15 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig Frygt ikke Maple (eller Matlab) Imellem to kursusgange: Studer i dybden allerede gennemgået stof og læs kursorisk det nye stof

16 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig Frygt ikke Maple (eller Matlab) Imellem to kursusgange: Studer i dybden allerede gennemgået stof og læs kursorisk det nye stof Feedback: Kommentarer og spørgsmål omkring form og indhold modtages med glæde!

17 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig Frygt ikke Maple (eller Matlab) Imellem to kursusgange: Studer i dybden allerede gennemgået stof og læs kursorisk det nye stof Feedback: Kommentarer og spørgsmål omkring form og indhold modtages med glæde! Eksamen: SE-kursus = eksamen.

18 CSB 2009 p. 9/16 Repræsentation af reelle tal Problem: Repræsentation af et reelt tal på computer. Balancegang mellem præcision og hukommelse.

19 CSB 2009 p. 9/16 Repræsentation af reelle tal Problem: Repræsentation af et reelt tal på computer. Balancegang mellem præcision og hukommelse. Eksempel x = e 5 = 148, Med 4 betydende cifre: x 148, 4 Notation: 148, 4 = +1, =

20 CSB 2009 p. 9/16 Repræsentation af reelle tal Problem: Repræsentation af et reelt tal på computer. Balancegang mellem præcision og hukommelse. Eksempel x = e 5 = 148, Med 4 betydende cifre: x 148, 4 Notation: 148, 4 = +1, = fortegn mantissa base eksponent

21 CSB 2009 p. 10/16 Binær repræsentation Binær repræsentation: x +1, Det vil sige: x = ( ) = 148, = +1, Binær repræsentation benyttes i de fleste computere.

22 CSB 2009 p. 11/16 Generel base Sætning: Givet et grundtal β N,β > 1. Da findes for ethvert reelt tal x en repræsentation x = ±f β E = hvor mantissaen d k β k+e k=0 = d 0 β E + d 1 β 1+E + d 2 β 2+E +, f = d 0,d 1 d 2 d 3..., d k N, 0 d k < β, d 0 0 og eksponenten E Z.

23 CSB 2009 p. 12/16 Flydende tal Givet en base β (eks.: 2, 10, 16,... ) og x > 0, x = f β E mantissa eksponent Repræsentationen kaldes normaliseret hvis 1 f < β Opgave: Angiv den normaliserede flydende decimaltals-repræsentation af og den binære... x = 25 2

24 CSB 2009 p. 13/16 Afrunding af flydende tal Der opereres med fire typer af afrunding. I Maple er det styret af system-variablen Rounding. Type Maple retning symmetrisk Rounding:=nearest afskære Rounding:=0 0 nedrunde Rounding:=-infinity oprunde Rounding:=infinity

25 CSB 2009 p. 14/16 IEEE standard Acceptabel løsning: IEEE-standard for (binær) repræsentation af flydende tal, der benyttes i mange arkitekturer. single-precision: bruger 32 bits per tal double-precision: bruger 64 bits per tal Fordeling: Antal bits Single-precision Double-precision Fortegn 1 1 Eksponent 8 11 Mantissa Bemærk: Det første 1-tal i den normaliserede binære repræsentation er unødvendig at gemme (implicit bit).

26 CSB 2009 p. 15/16 Flydende tal i Maple I Maple håndteres tallene helst eksakt som brøker Med kommandoen evalf(x) konverteres tallet x til et flydende tal, et såkaldt software float. Antal betydende cifre er styret af variablen Digits; basen er 10. Med kommandoen evalhf(x) konverteres tallet x til et flydende tal, et såkaldt hardware float. Repræsentationen afhænger da af maskinens arkitektur. Basen vil typisk være 2.

27 CSB 2009 p. 16/16 Opgaveregning Vi ses igen kl. 15:30.

Noter til Computerstøttet Beregning Taylors formel

Noter til Computerstøttet Beregning Taylors formel Noter til Computerstøttet Beregning Taylors formel Arne Jensen c 23 1 Introduktion I disse noter formulerer og beviser vi Taylors formel. Den spiller en vigtig rolle ved teoretiske overvejelser, og også

Læs mere

Matematisk modellering og numeriske metoder. Lektion 15

Matematisk modellering og numeriske metoder. Lektion 15 Matematisk modellering og numeriske metoder Lektion 15 Morten Grud Rasmussen 1. november, 2013 1 Numerisk analyse [Bogens afsnit 19.1 side 788] 1.1 Grundlæggende numerik Groft sagt handler numerisk analyse

Læs mere

Matematisk modellering og numeriske metoder

Matematisk modellering og numeriske metoder Matematisk modellering og numeriske metoder Morten Grud Rasmussen 14. september 016 1 Numerisk analyse 1.1 Grundlæggende numerik Groft sagt handler numerisk analyse om at bringe matematiske problemer på

Læs mere

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

Fagets IT Introduktion til MATLAB

Fagets IT Introduktion til MATLAB Fagets IT Introduktion til MATLAB Mads G. Christensen mgc@kom.auc.dk Afdeling for Kommunikationsteknologi, Aalborg Universitet. MATLAB 2002 p.1/28 Kursusoversigt 1. Introduktion, matrix-indeksering, -operationer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Claus Simonsen 14MABA61

Læs mere

Rolf Fagerberg. Forår 2012

Rolf Fagerberg. Forår 2012 Forår 2012 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: DM502 og DM503 Timer: 50% forelæsninger, 50% øvelser Forudsætninger: DM502 og DM503 Eksamenform: Skriftlig eksamen: Timer: 50% forelæsninger,

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner Evalueringsrapport Matematik & Datalogi 2. juni 2011 Kontaktpersoner Christian Kudahl - chkud08@student.sdu.dk Maria Buhl Hansen - marih09@student.sdu.dk Indhold Indhold 2 1 Indledning 4 1.1 Matematik-økonomi.......................

Læs mere

Robusthed i geometriske algoritmer

Robusthed i geometriske algoritmer 18. december 2008 Flydende tal Oversigt Teori: Reel RAM reelle tal og uendelig præcision. Data i generel position. O(1) tid pr. basal regneoperation. Praksis: Endelig præcision. Flydende tal afrundingsfejl.

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

Introduktion til DM507

Introduktion til DM507 Introduktion til DM507 Rolf Fagerberg Forår 2017 1 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA Forskningsområde: algoritmer og datastrukturer 2 / 20 Hvem er vi? Underviser: Rolf Fagerberg, IMADA

Læs mere

De Ingeniør-, Natur- og Sundhedsvidenskabelige Fakulteter, AAU. Info-møde INS 240907 tbk@learning.aau.dk

De Ingeniør-, Natur- og Sundhedsvidenskabelige Fakulteter, AAU. Info-møde INS 240907 tbk@learning.aau.dk De Ingeniør-, Natur- og Sundhedsvidenskabelige Fakulteter, AAU 1 Hvorfor en ny karakterskala? Baggrund Væk fra undtagelseskarakteren 13 Færre trin omkring middelkarakteren (7,8,9) Væk fra pr. automatik

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM534 Rolf Fagerberg Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, decimaltal (kommatal)) Bogstaver Computerinstruktion

Læs mere

OPGAVER 1. Approksimerende polynomier. Håndregning

OPGAVER 1. Approksimerende polynomier. Håndregning OPGAVER 1 Opgaver til Uge 4 Store Dag Opgave 1 Approksimerende polynomier. Håndregning a) Find for hver af de følgende funktioner deres approksimerende polynomiumer af første og anden grad med udviklingspunkt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution VUC Vest Uddannelse Fag og niveau Lærer(e) Hold stx Matematik A Claus Simonsen 15MABA61

Læs mere

M2CAL2 Calculus og Indledende Lineær algebra

M2CAL2 Calculus og Indledende Lineær algebra M2CAL2 Calculus og Indledende Lineær algebra Agenda Velkommen Præsentation mig Præsentation af M2CAL2 Kursusbeskrivelse, herunder læringsmål Eksamen Lærebøger Skema/Blackboard Kalender Fildeling En typisk

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3 Det Teknisk-Naturvidenskabelige Basisår 2003-2004 Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik 1 Introduktion E-OPG 3 Dette er den tredje store opgave, som skal danne grundlag

Læs mere

Varmeligningen og cosinuspolynomier.

Varmeligningen og cosinuspolynomier. Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software

Læs mere

Matematik-teknologi 3. semester Projekt introduktion

Matematik-teknologi 3. semester Projekt introduktion Matematik-teknologi 3. semester Projekt introduktion Thomas Arildsen, Arne Jensen, Rafael Wisniewski Version 3 31. august 2015 1 Indledning Dette dokument giver en introduktion til projektmodulet på 3.

Læs mere

Rolf Fagerberg. Forår 2015

Rolf Fagerberg. Forår 2015 Forår 2015 Dagens program 1 2 3 4 5 Underviser:, IMADA Forskningsområde: algoritmer og datastrukturer Deltagere: BA i Datalogi BA i Software Engineering BA i Matematik-Økonomi BA i Anvendt Matematik BA

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0.

Et udtryk på formena n kaldes en potens med grundtal a og eksponent n. Vi vil kun betragte potenser hvor grundtallet er positivt, altså a>0. Konkrete funktioner Potenser Som udgangspunkt er brugen af potenser blot en forkortelse for at gange et tal med sig selv et antal gange. Hvis a Rskriver vi a 2 for a a a 3 for a a a a 4 for a a a a (1).

Læs mere

MM01 (Mat A) Ugeseddel 1

MM01 (Mat A) Ugeseddel 1 Institut for Matematik og Datalogi 2. august 200 Syddansk Universitet, Odense HJM/LL MM0 (Mat A) Ugeseddel Velkommen til kurset MM0 (Matematik A). Forelæsninger: afholdes i to ugentlige timer, onsdag kl.

Læs mere

Studieretningsprojekt i matematik og biologi Lotka-Volterra modellen en beskrivelse af forholdet mellem byttedyr og rovdyr

Studieretningsprojekt i matematik og biologi Lotka-Volterra modellen en beskrivelse af forholdet mellem byttedyr og rovdyr 8. april 2007 Studieretningsprojekt i matematik og biologi Lotka-Volterra modellen en beskrivelse af forholdet mellem byttedyr og rovdyr Skrevet af Flóvin Tór Nygaard Næs og Lise Danelund Introduktion

Læs mere

faglig INfORMATION 2011/2012 bacheloruddannelsen I matematik science.au.dk

faglig INfORMATION 2011/2012 bacheloruddannelsen I matematik science.au.dk faglig INfORMATION 2011/2012 bacheloruddannelsen I matematik science.au.dk 2 BACHELORUDDANNELSEN I MATEMATIK matematik I denne folder kan du læse mere om bacheloruddannelsen i matematik. Her er en beskrivelse

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Modellering MULTI 7 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Læs og skriv matematik Eleven kan kommunikere mundtligt og skriftligt med og om matematik

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

Lineær Algebra, 2015 1. kursusgang

Lineær Algebra, 2015 1. kursusgang Lineær Algebra, 2015 1. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg September 2015 Velkommen til Lineær algebra Kursusholder - Lisbeth Fajstrup. Kontor: Fredrik

Læs mere

Fagmodul i Fysik med ændringer 1. februar 2016

Fagmodul i Fysik med ændringer 1. februar 2016 ROSKILDE UNIVERSITET Studienævnet for Fysik Fagmodul i Fysik med ændringer 1. februar 2016 DATO/REFERENCE JOURNALNUMMER 1. februar 2016 2012-1235 Denne fagmodulbeskrivelse erstatter fagmodulbeskrivelsen

Læs mere

CAS som grundvilkår. Matematik på hf. Marts 2015 Bodil Bruun, fagkonsulent i matematik stx/hf

CAS som grundvilkår. Matematik på hf. Marts 2015 Bodil Bruun, fagkonsulent i matematik stx/hf CAS som grundvilkår Matematik på hf Marts 2015 Bodil Bruun, fagkonsulent i matematik stx/hf At spørge og svare i, med, om matematik At omgås sprog og redskaber i matematik De 8 kompetencer = 2 + 6 kompetencer

Læs mere

Newton-Raphsons metode

Newton-Raphsons metode Newton-Raphsons metode af John V. Petersen Indhold Indledning: Numerisk analyse og Newton-Raphsons metode... 2 Udlede Newtons iterations formel... 2 Sætning 1 Newtons metode... 4 Eksempel 1 konvergens...

Læs mere

Indholdsfortegnelse. Side 1 af 8

Indholdsfortegnelse. Side 1 af 8 Den uddannelsesspecifikke del af studieordningen for bacheloruddannelsen i matematik-økonomi ved Det Natur- og Biovidenskabelige Fakultet, Københavns Universitet 2011 (Rev. 2015) Indholdsfortegnelse 1

Læs mere

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles

Læs mere

Fagmodul i Matematik med ændringer 1. februar 2016

Fagmodul i Matematik med ændringer 1. februar 2016 ROSKILDE UNIVERSITET Studienævnet for Matematik Fagmodul i Matematik med ændringer 1. februar 2016 DATO/REFERENCE JOURNALNUMMER 1. februar 2016 2012-1216 Denne fagmodulbeskrivelse erstatter fagmodulbeskrivelsen

Læs mere

CIVILINGENIØR, CAND. POLYT. I ROBOTTEKNOLOGI Master of Science in Robot System Engineering

CIVILINGENIØR, CAND. POLYT. I ROBOTTEKNOLOGI Master of Science in Robot System Engineering Kapitel 9 Den uddannelsesspecifikke del af studieordningen for uddannelsen til: CIVILINGENIØR, CAND. POLYT. I ROBOTTEKNOLOGI Master of Science in Robot System Engineering Studiestart september 2009, Version

Læs mere

Smuk matematik eller hvorfor vejrudsigten aldrig passer?

Smuk matematik eller hvorfor vejrudsigten aldrig passer? Smuk matematik eller hvorfor vejrudsigten aldrig passer? Indhold 1. Vejrudsigter 2. Solsystemet 3. Lemminger 4. Fraktaler Overordnet handler det hele om kaos. Vejrudsigter Matematikken der beskriver vejret

Læs mere

CIVILINGENIØR, CAND. POLYT. I ROBOTTEKNOLOGI Master of Science in Robot Systems Engineering

CIVILINGENIØR, CAND. POLYT. I ROBOTTEKNOLOGI Master of Science in Robot Systems Engineering Kapitel 9 Den uddannelsesspecifikke del af studieordningen for uddannelsen til: CIVILINGENIØR, CAND. POLYT. I ROBOTTEKNOLOGI Master of Science in Robot Systems Engineering Studieordningen er delt op i

Læs mere

XM @ DTU. License to Thrill

XM @ DTU. License to Thrill XM @ DTU License to Thrill Matematik 1 på DTU S. Markvorsen & P. G. Hjorth Institut for Matematik, Bygning 303S, DTU DK-2800 Kgs. Lyngby 1 1 Matematik 1 I begyndelsen af det tredie årtusind hedder på Danmarks

Læs mere

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb. Termin Aug 10- jun 11 Studieplan Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Aug 10- jun 11 Institution Uddannelse Fag og niveau Lærer(e) Hold Grenaa Tekniske Gymnasium HTX Matematik B1 Klavs Skjold

Læs mere

Matematisk modellering i naturvidenskab (5 ECTS) Kursusplan

Matematisk modellering i naturvidenskab (5 ECTS) Kursusplan Matematisk modellering i naturvidenskab (5 ECTS) Kursusplan Nat.bas., Roskilde Universitet Forår 2015 Kursusansvarlig: Peter Limkilde (peter.limkilde@skolekom.dk). Underviser: Peter Limkilde. Tidspunkt:

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse. Fag:matematik Hold:18 Lærer:ym Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hovedvægten er elevernes forståelse for matematiske begreber.

Læs mere

Differentialkvotient bare en slags hældning

Differentialkvotient bare en slags hældning Differentialkvotient bare en slags hældning Et kort eksperiment som indledning til differentialregning Forfatter: Behrndt Andersen, Texas Instruments, behrndt@ti.com Matematisk område+niveau: Differentialregning

Læs mere

En Maple time med efterfølgende elevgruppe diskussion og refleksionssamtale med lærer.

En Maple time med efterfølgende elevgruppe diskussion og refleksionssamtale med lærer. Bilag 5 En Maple time med efterfølgende elevgruppe diskussion og refleksionssamtale med lærer. Indledning Vi har som led i projektet observeret en del lektioner, med helt eller delvis fokus på Maple-brug.

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM526 Rolf Fagerberg, 2009 Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2008-juni 2011 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik 10.klasse Naturfaglige fag: Matematik, Fysik/kemi Matematik Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss

Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Matematik opgave Projekt afkodning Zehra, Pernille og Remuss Opgave A Sæt de overstående symboler ind i en matematisk sammenhæng der gør dem forståelige. Det kan være som en sætning eller med tal og bogstaver

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Slide 3/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion

Læs mere

Årsplan 9. Klasse Matematik Skoleåret 2015/16

Årsplan 9. Klasse Matematik Skoleåret 2015/16 Årsplan 9 Klasse Matematik Skoleåret 2015/16 Hovedformål Årsplanen for 9 Klasse i Matematik tager udgangspunkt i Forenklede Fællesmål (Undervisningsministeriet) Formålet med undervisningen er, at eleverne

Læs mere

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet

Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Om at løse problemer En opgave-workshop Beregnelighed og kompleksitet Hans Hüttel 27. oktober 2004 Mathematics, you see, is not a spectator sport. To understand mathematics means to be able to do mathematics.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Indholdsfortegnelse. Side 1 af 8

Indholdsfortegnelse. Side 1 af 8 Den uddannelsesspecifikke del af studieordningen for bacheloruddannelsen i matematik-økonomi ved Det Natur- og Biovidenskabelige Fakultet, Københavns Universitet 2011 (Rev. 2016) Indholdsfortegnelse 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2016. Afsluttes: 27/05-2016 Institution Den Jydske Haanværkerskole Uddannelse EUX Fag og niveau Lærer(e)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2017 Institution Erhvervsgymnasiet Grindsted Uddannelse Fag og niveau Lærer(e) Htx Matematik A Anders

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik: TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Bedømmelse og eksamen, 24 nov. 2014, Københavns Universitet. Diskussionsgruppe. Simon Lex Institut for Antropologi 24.11.2014

Bedømmelse og eksamen, 24 nov. 2014, Københavns Universitet. Diskussionsgruppe. Simon Lex Institut for Antropologi 24.11.2014 Bedømmelse og eksamen, 24 nov. 2014, Københavns Universitet Diskussionsgruppe Simon Lex Institut for Antropologi 24.11.2014 Overblik Hvem evaluerer, når eksterne samarbejdspartnere stiller opgaven? Udgangspunkt

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Rolf Fagerberg. Forår 2014

Rolf Fagerberg. Forår 2014 Forår 2014 Mål for i dag Dagens program: 1 2 3 4 5 6 Forudsætninger: Format: Programmering og Diskret matematik I (forelæsninger), TE (øvelser), S (arbejde selv og i studiegrupper) Eksamenform: Skriftlig

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2016 Marie

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2017 Marie

Læs mere

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2 Eulers metode Tom Pedersen //Palle Andersen pa,tom@es.aau.dk Aalborg University Eulers metode p. 1/2 Differentialligninger m(t) H(t) d(h(t)) dt = 0.0125m(t) 0.001772 H(t) hvor m(t) er kendt og H(t) skal

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Den mundtlige dimension og Mundtlig eksamen

Den mundtlige dimension og Mundtlig eksamen Den mundtlige dimension og Mundtlig eksamen Mål med oplægget At få (øget) kendskab til det der forventes af os i forhold til den mundtlige dimension At få inspiration til arbejdet med det mundtlige At

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 2014 Institution Vid Gymnasier Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik A Hasse Rasmussen

Læs mere

MATEMATIK 1A MATEMATISK ANALYSE 12. november 2009 Oversigt nr. 1

MATEMATIK 1A MATEMATISK ANALYSE 12. november 2009 Oversigt nr. 1 MATEMATISK ANALYSE 12. november 2009 Oversigt nr. 1 På hold 3 fortsætter vi med integration i flere variable i uge 47. Man kan med fordel repetere kapitel 13.4 og 13.5 og deri regne sandt/falsk opgaverne

Læs mere

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider.

I fysik er der forskellige skriftlige discipliner, som du kan læse mere om på denne og de følgende sider. Side 1 af 7 Indhold Rapportering rapportskrivning... 1 Løsning af fysikfaglige problemer opgaveregning.... 2 Formidling af fysikfaglig indsigt i form at tekster, præsentationer og lignende... 4 Projektrapporter...

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Lineær Algebra, kursusgang

Lineær Algebra, kursusgang Lineær Algebra, 2014 12. kursusgang Lisbeth Fajstrup Institut for Matematiske Fag Aalborg Universitet LinAlg November 2014 Om miniprojekt 2 Kirchoffs love. Opstil lineære ligningssystemer og løs dem. 0-1-matricer.

Læs mere

Differentialligninger af første orden

Differentialligninger af første orden Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten

Læs mere

Semesterbeskrivelse OID 3. semester.

Semesterbeskrivelse OID 3. semester. Semesterbeskrivelse OID 3. semester. Semesterbeskrivelse Oplysninger om semesteret Skole: Statskundskab Studienævn: Studienævn for Digitalisering Studieordning: Studieordning for Bacheloruddannelsen i

Læs mere

1: Hvilket studium er du optaget på: 2: Hvilke af nedenstående forelæsninger har du deltaget i?

1: Hvilket studium er du optaget på: 2: Hvilke af nedenstående forelæsninger har du deltaget i? 1: Hvilket studium er du optaget på: 2: Hvilke af nedenstående forelæsninger har du deltaget i? 3: Hvis du har deltaget i mindre end halvdelen af kursusgangene bedes du venligst begrunde hvorfor har deltaget

Læs mere

Matematikken i computerens verden computeren i matematikkens tjeneste

Matematikken i computerens verden computeren i matematikkens tjeneste Matematikken i computerens verden computeren i matematikkens tjeneste 189 Af Lektor Bernd Dammann og Professor Per Christian Hansen, DTU Informatik Det engelske ord computer betyder beregner, og computeren

Læs mere

CIVILINGENIØR I VELFÆRDSTEKNOLOGI - bachelordel

CIVILINGENIØR I VELFÆRDSTEKNOLOGI - bachelordel Kapitel 9 Den uddannelsesspecifikke del af studieordningen for uddannelsen CIVILINGENIØR I VELFÆRDSTEKNOLOGI - bachelordel Bachelor of Science in Engineering, Welfare Technology Version 1.0, Studieordningen

Læs mere

Faglig rammebeskrivelse for kandidatuddannelsen i matematik

Faglig rammebeskrivelse for kandidatuddannelsen i matematik Faglig rammebeskrivelse for kandidatuddannelsen i matematik Nærværende rammebeskrivelse er et fagbilag, knyttet til Studieordning for kandidatuddannelsen i matematik. Denne kan ses på Det Naturvidenskabelige

Læs mere

Dat 2/F6S/SW4: Syntaks og semantik En manual for studerende

Dat 2/F6S/SW4: Syntaks og semantik En manual for studerende Dat 2/F6S/SW4: Syntaks og semantik En manual for studerende Hans Hüttel Foråret 2010 Indhold Indhold 1 1 Om denne manual 1 2 Om kursets indhold 2 2.1 Hvilke emner rummer kurset?.................. 2 2.2

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Ansøgning om godkendelse af kandidatuddannelse i escience

Ansøgning om godkendelse af kandidatuddannelse i escience KØBENHAVNS UNIVERSITET Ansøgning om godkendelse af kandidatuddannelse i escience Hidtil er videnskabelig indsigt fortrinsvis opnået enten gennem opstilling af teorier eller gennem observationer i naturen

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

Kort orientering om DiploMat1 01906

Kort orientering om DiploMat1 01906 Kort orientering om 01906 Efterår 2008 I Kursets 13 uger forløber normalt efter følgende skema Tidspunkt Aktivitet Mandag kl. 8.00-8.30 Forelæsning Mandag kl. 8.40-9.10 Forelæsning Mandag kl. 9.30-12.00

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Marie

Læs mere

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen S.&P. DIFFERENTIALLIGNINGER 2. februar 2006 Oversigt nr. 1 I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen [EP] Elementary differential equations with boundary

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2014/ Januar 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik

Læs mere

Simulering I. Don t panic! * Morten Dam Jørgensen. * Large friendly letters

Simulering I. Don t panic! * Morten Dam Jørgensen. * Large friendly letters Simulering I Don t panic! * Morten Dam Jørgensen * Large friendly letters Oversigt Hvad I skal tage med fra denne forelæsning Hvad er simulering Fra model til simulering Numerisk løsning af differentialligninger

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2011-juni 2014 Institution Sukkertoppen/Københavns tekniske skole Uddannelse Fag og niveau Lærer(e)

Læs mere