Computerstøttet beregning

Størrelse: px
Starte visningen fra side:

Download "Computerstøttet beregning"

Transkript

1 CSB 2009 p. 1/16 Computerstøttet beregning Lektion 1. Introduktion Martin Qvist Det Ingeniør-, Natur-, og Sundhedsvidenskabelige Basisår, Aalborg Universitet, 3. februar 2009 people.math.aau.dk/ qvist/teaching/csb-09

2 CSB 2009 p. 2/16 Hvad er CSB? Computerstøttet beregning (på engelsk, Scientific Computing), er: Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter

3 CSB 2009 p. 2/16 Hvad er CSB? Computerstøttet beregning (på engelsk, Scientific Computing), er: Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter Et datalogikursus: Vil vil beskæftige os med algoritmer til løsning af problemerne, analysere algoritmerne (kompleksitet og konvergensrate) og implementere algoritmerne

4 CSB 2009 p. 2/16 Hvad er CSB? Computerstøttet beregning (på engelsk, Scientific Computing), er: Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter Et datalogikursus: Vil vil beskæftige os med algoritmer til løsning af problemerne, analysere algoritmerne (kompleksitet og konvergensrate) og implementere algoritmerne Et fysikkursus: Problemstillingerne vil (bl.a.) være motiveret udfra fysiske fænomener

5 CSB 2009 p. 2/16 Hvad er CSB? Computerstøttet beregning (på engelsk, Scientific Computing), er: Et matematikkursus: Vi arbejder med matematiske problemer, matematiske begreber og giver matematiske argumenter Et datalogikursus: Vil vil beskæftige os med algoritmer til løsning af problemerne, analysere algoritmerne (kompleksitet og konvergensrate) og implementere algoritmerne Et fysikkursus: Problemstillingerne vil (bl.a.) være motiveret udfra fysiske fænomener Det handler om algoritmer til beregning af approksimationer til eksakte matematiske objekter og om vurdering af den følgende fejl

6 CSB 2009 p. 3/16 Tværfagligt snit CSB er et hastigt voksende felt indenfor anvendt matematik, som indeholder elementer af Ingeniørvidenskab: Problemerne er hentet fra virkelighedens verden og formuleret i matematisk terminologi (differentialligninger, integralligninger etc. ) Datalogi: Problemerne kan ikke løses eksakt (i modsætning til det I har set på Matematik 1!), så derfor må vi bruge computere til at beregne en numerisk løsning Matematik: Matematikken fortæller os hvordan en numerisk løsning kan beregnes og hvor god den er. Eller måske vigtigere: at det ikke går galt.

7 CSB 2009 p. 4/16 Eks. på CSB Vejrudsigt: Gigantisk dynamisk system. Begyndelsesbetingelserne er kendt (vejret lige nu) og dynamikken er (delvis) fastlagt af systemer af differentialligninger (www.dmi.dk) Simulering af komplekse mekaniske systemer: Ballistik, fjedersystemer, stive legemers bevægelse. Fænomenets fysik er beskrevet udfra Newtons mekanik (www.myphysicslab.com/collision.html) Computerspil og animerede tegnefilm: Physically based modelling. For at lave realistiske animationer modelleres fysiske fænomener og deres interaktion (delvist) ved differentialligninger. CERN

8 CSB 2009 p. 5/16 Fra studieordningen Formålet med CSB er Teori: At de studerende opnår et grundlæggende kendskab til nogle metoder og algoritmer for computerstøttede beregninger... Praktisk:...at de opnår erfaring med anvendelsen af disse metoder og algoritmer på konkrete store beregninger

9 CSB 2009 p. 6/16 Indhold Introduktion til Maple og Matlab Repræsentation af tal i en computer. Afrundingsfejl Løsning af ikke-lineære ligninger Taylors formel og approksimation af funktioner Interpolation Numerisk integration Numerisk løsning af differentialligninger Numerisk lineær algebra Eksempler på store beregninger

10 CSB 2009 p. 7/16 Materialer Peter R. Turner, Guide to Scientific Computing, Macmillan Press 2000 Maple og Matlab. Kan hentes gratis på tnb.aau.dk/edb/software Hjemmeside med spisesedler, eksempler osv.: people.math.aau.dk/~qvist/teaching/csb-09

11 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning

12 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning

13 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig

14 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig Frygt ikke Maple (eller Matlab)

15 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig Frygt ikke Maple (eller Matlab) Imellem to kursusgange: Studer i dybden allerede gennemgået stof og læs kursorisk det nye stof

16 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig Frygt ikke Maple (eller Matlab) Imellem to kursusgange: Studer i dybden allerede gennemgået stof og læs kursorisk det nye stof Feedback: Kommentarer og spørgsmål omkring form og indhold modtages med glæde!

17 CSB 2009 p. 8/16 Form og forventninger Samme form som i andre matematikkurser: Repetition - Opgaveregning - Forelæsning Hvordan du kommer igennem kurset: Arbejd seriøst under opgaveregning Spørg hjælpelæreren og mig Frygt ikke Maple (eller Matlab) Imellem to kursusgange: Studer i dybden allerede gennemgået stof og læs kursorisk det nye stof Feedback: Kommentarer og spørgsmål omkring form og indhold modtages med glæde! Eksamen: SE-kursus = eksamen.

18 CSB 2009 p. 9/16 Repræsentation af reelle tal Problem: Repræsentation af et reelt tal på computer. Balancegang mellem præcision og hukommelse.

19 CSB 2009 p. 9/16 Repræsentation af reelle tal Problem: Repræsentation af et reelt tal på computer. Balancegang mellem præcision og hukommelse. Eksempel x = e 5 = 148, Med 4 betydende cifre: x 148, 4 Notation: 148, 4 = +1, =

20 CSB 2009 p. 9/16 Repræsentation af reelle tal Problem: Repræsentation af et reelt tal på computer. Balancegang mellem præcision og hukommelse. Eksempel x = e 5 = 148, Med 4 betydende cifre: x 148, 4 Notation: 148, 4 = +1, = fortegn mantissa base eksponent

21 CSB 2009 p. 10/16 Binær repræsentation Binær repræsentation: x +1, Det vil sige: x = ( ) = 148, = +1, Binær repræsentation benyttes i de fleste computere.

22 CSB 2009 p. 11/16 Generel base Sætning: Givet et grundtal β N,β > 1. Da findes for ethvert reelt tal x en repræsentation x = ±f β E = hvor mantissaen d k β k+e k=0 = d 0 β E + d 1 β 1+E + d 2 β 2+E +, f = d 0,d 1 d 2 d 3..., d k N, 0 d k < β, d 0 0 og eksponenten E Z.

23 CSB 2009 p. 12/16 Flydende tal Givet en base β (eks.: 2, 10, 16,... ) og x > 0, x = f β E mantissa eksponent Repræsentationen kaldes normaliseret hvis 1 f < β Opgave: Angiv den normaliserede flydende decimaltals-repræsentation af og den binære... x = 25 2

24 CSB 2009 p. 13/16 Afrunding af flydende tal Der opereres med fire typer af afrunding. I Maple er det styret af system-variablen Rounding. Type Maple retning symmetrisk Rounding:=nearest afskære Rounding:=0 0 nedrunde Rounding:=-infinity oprunde Rounding:=infinity

25 CSB 2009 p. 14/16 IEEE standard Acceptabel løsning: IEEE-standard for (binær) repræsentation af flydende tal, der benyttes i mange arkitekturer. single-precision: bruger 32 bits per tal double-precision: bruger 64 bits per tal Fordeling: Antal bits Single-precision Double-precision Fortegn 1 1 Eksponent 8 11 Mantissa Bemærk: Det første 1-tal i den normaliserede binære repræsentation er unødvendig at gemme (implicit bit).

26 CSB 2009 p. 15/16 Flydende tal i Maple I Maple håndteres tallene helst eksakt som brøker Med kommandoen evalf(x) konverteres tallet x til et flydende tal, et såkaldt software float. Antal betydende cifre er styret af variablen Digits; basen er 10. Med kommandoen evalhf(x) konverteres tallet x til et flydende tal, et såkaldt hardware float. Repræsentationen afhænger da af maskinens arkitektur. Basen vil typisk være 2.

27 CSB 2009 p. 16/16 Opgaveregning Vi ses igen kl. 15:30.

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen

Programmering. Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Programmering Det rent og skært nødvendige, det elementært nødvendige! Morten Dam Jørgensen Oversigt Undervisningen Hvad er programmering Hvordan er et program organiseret? Programmering og fysik Nobelprisen

Læs mere

Læringsmål Faglige aktiviteter Emne Tema Materialer

Læringsmål Faglige aktiviteter Emne Tema Materialer Uge 33-48 Målsætningen med undervisningen er at eleverne individuelt udvikler deres matematiske kunnen,opnår en viden indsigt i matematik kens verden således at de kan gennemføre folkeskolens afsluttende

Læs mere

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner

IMADAs Fagråd. Evalueringsrapport. Matematik & Datalogi. 2. juni 2011. Kontaktpersoner Evalueringsrapport Matematik & Datalogi 2. juni 2011 Kontaktpersoner Christian Kudahl - chkud08@student.sdu.dk Maria Buhl Hansen - marih09@student.sdu.dk Indhold Indhold 2 1 Indledning 4 1.1 Matematik-økonomi.......................

Læs mere

MM01 (Mat A) Ugeseddel 1

MM01 (Mat A) Ugeseddel 1 Institut for Matematik og Datalogi 2. august 200 Syddansk Universitet, Odense HJM/LL MM0 (Mat A) Ugeseddel Velkommen til kurset MM0 (Matematik A). Forelæsninger: afholdes i to ugentlige timer, onsdag kl.

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performanc. Læringsmål Faglige aktiviteter. Emne Tema Materialer. ITinddragelse. Fag:matematik Hold:18 Lærer:ym Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 33-37 Hovedvægten er elevernes forståelse for matematiske begreber.

Læs mere

Repræsentation af tal

Repræsentation af tal Repræsentation af tal DM526 Rolf Fagerberg, 2009 Bitmønstre 01101011 0001100101011011... Bitmønstre skal fortolkes for at have en betydning: Tal (heltal, kommatal) Bogstaver Computerinstruktion (program)

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

De Ingeniør-, Natur- og Sundhedsvidenskabelige Fakulteter, AAU. Info-møde INS 240907 tbk@learning.aau.dk

De Ingeniør-, Natur- og Sundhedsvidenskabelige Fakulteter, AAU. Info-møde INS 240907 tbk@learning.aau.dk De Ingeniør-, Natur- og Sundhedsvidenskabelige Fakulteter, AAU 1 Hvorfor en ny karakterskala? Baggrund Væk fra undtagelseskarakteren 13 Færre trin omkring middelkarakteren (7,8,9) Væk fra pr. automatik

Læs mere

CIVILINGENIØR, CAND. POLYT. I ROBOTTEKNOLOGI Master of Science in Robot System Engineering

CIVILINGENIØR, CAND. POLYT. I ROBOTTEKNOLOGI Master of Science in Robot System Engineering Kapitel 9 Den uddannelsesspecifikke del af studieordningen for uddannelsen til: CIVILINGENIØR, CAND. POLYT. I ROBOTTEKNOLOGI Master of Science in Robot System Engineering Studiestart september 2009, Version

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin maj-juni 2015 Institution Uddannelse Fag og niveau Lærer Hold Marie Kruses Skole Stx Matematik B til A Mads Hoy Sørensen 3s og 3b Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni, 2013 HTX Vibenhus

Læs mere

Differentialligninger af første orden

Differentialligninger af første orden Differentialligninger af første orden Preben Alsholm Februar 2006 Basale begreber. Eksistens og entydighed. En differentialligning af første orden er en ligning, der sammenknytter differentialkvotienten

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Grundlæggende Matematik

Grundlæggende Matematik Grundlæggende Matematik Hayati Balo, AAMS August 2012 1. Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske

Læs mere

Fag- og indholdsplan 9. kl.:

Fag- og indholdsplan 9. kl.: Fag- og indholdsplan 9. kl.: Indholdsområder: Tal og algebra: Tal - regneregler og formler Størrelser måling, beregning og sammenligning. Matematiske udtryk Algebra - teoretiske sammenhænge absolut og

Læs mere

Matema10k. Matematik for gymnasiet. Bind 3 A-niveau. af Thomas Jensen, Claus Jessen og Morten Overgård Nielsen

Matema10k. Matematik for gymnasiet. Bind 3 A-niveau. af Thomas Jensen, Claus Jessen og Morten Overgård Nielsen Matema10k Matematik for gymnasiet Bind 3 A-niveau af Thomas Jensen, Claus Jessen og Morten Overgård Nielsen 4 Thomas Jensen, Claus Jessen og Morten Overgård Nielsen Matema10k Matematik for stx. Bind 3.

Læs mere

Appendiks 6: Universet som en matematisk struktur

Appendiks 6: Universet som en matematisk struktur Appendiks 6: Universet som en matematisk struktur En matematisk struktur er et meget abstrakt dyr, der kan defineres på følgende måde: En mængde, S, af elementer {s 1, s 2,,s n }, mellem hvilke der findes

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Vestegnens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Jack

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg HF

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet

Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet Note omkring RSA kryptering. Gert Læssøe Mikkelsen Datalogisk institut Aarhus Universitet 3. april 2009 1 Kryptering med offentlige nøgler Indtil midt i 1970 erne troede næsten alle, der beskæftigede sig

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

APPENDIX A INTRODUKTION TIL DERIVE

APPENDIX A INTRODUKTION TIL DERIVE APPENDIX A INTRODUKTION TIL DERIVE z x y z=exp( x^2 0.5y^2) CAS er en fællesbetegnelse for matematikprogrammer, som foruden numeriske beregninger også kan regne med symboler og formler. Det betyder: Computer

Læs mere

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33

Indhold. Bind 1. 1 Eksperimentel geometri 3. 2 Areal 33 Indhold Bind 1 del I: Eksperimenterende geometri og måling 1 Eksperimentel geometri 3 Hvorfor eksperimenterende undersøgelse? 4 Eksperimentel undersøgelse: På opdagelse med sømbrættet 6 Geometriske konstruktioner

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling

Om brugen af matematiske tegn og objekter i en god matematisk fremstilling Om brugen af matematiske tegn og objekter i en god matematisk fremstilling af Petur Birgir Petersen Et særpræg ved matematik som videnskab er den udstrakte brug af symboler. Det er vigtigt at symbolerne

Læs mere

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik:

TW 2011/12. Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag. Formål for faget matematik: TW 2011/12 Fag: Matematik Klasse: 9. Mandag, Tirsdag, fredag Formål for faget matematik: Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Matematik C Nst 16A Oversigt

Læs mere

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk

Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole Engvej 153, 2300 København S. Tlf.: 32598002 www.o-i-s.dk ois@mail.sonofon.dk Øresunds Internationale Skole læseplan for matematik. Formål for faget matematik Formålet med

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Eksamensopgaver i matematik

Eksamensopgaver i matematik Eksamensopgaver i matematik med TI-Nspire CAS ver. 2.0 Udarbejdet af: Brian M.V. Olesen Marts 2010 Indholdsfortegnelse Indledning...1 Bedømmelse af besvarelse...2 Eksempel 1 Lineære sammenhænge...3 Eksempel

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Google Pagerank Hvordan man finder en nål i en høstak

Google Pagerank Hvordan man finder en nål i en høstak Google Pagerank Hvordan man finder en nål i en høstak Georg Mohr, 4. marts 2008 Kim Knudsen kim@math.aau.dk Institut for Matematiske Fag Aalborg Universitet http://www.math.aau.dk/ kim/georgmohr2008.pdf

Læs mere

1 X, Y, Z: Bekendt/Ubekendt - Naturvidenskabelige dage 8. februar og 1. marts 2012 i 3. og 4. lektion

1 X, Y, Z: Bekendt/Ubekendt - Naturvidenskabelige dage 8. februar og 1. marts 2012 i 3. og 4. lektion 1 X, Y, Z: Bekendt/Ubekendt - Naturvidenskabelige dage 8. februar og 1. marts 2012 i 3. og 4. lektion ONSDAG d. 8. februar og torsdag d. 1. marts er 3. og 4. lektion afsat til valgaktiviteter under overskriften

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Evalueringsrapport 2013

Evalueringsrapport 2013 University of southern Denmark IMADA Fagråd Evalueringsrapport 2013 Udarbejdet af: Bo Lindhøj Simon Greve Referenter: Morten Agger Katrine Stæhr Indledning Traditionen tro har IMADA Fagråd, i forbindelse

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Numerisk løsning af differentialligninger

Numerisk løsning af differentialligninger KU-LIFE; Matemati og modeller 009 Numeris løsning af differentialligninger Thomas Vils Pedersen 1 Numerise metoder Ved numeris analyse forstås tilnærmet, talmæssig løsning af problemer, som ie, eller un

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Årsplan for matematik 10. klassetrin. 2012 2013 v. CJU

Årsplan for matematik 10. klassetrin. 2012 2013 v. CJU Årsplan for matematik 10. klassetrin 2012 2013 v. CJU Når dette skoleår er omme, så er det målet, at undervisningen har bidraget til, at formålet for faget er opfyldt: Formålet med undervisningen er, at

Læs mere

Et CAS program til Word.

Et CAS program til Word. Et CAS program til Word. 1 WordMat WordMat er et CAS-program (computer algebra system) som man kan downloade gratis fra hjemmesiden www.eduap.com/wordmat/. Programmet fungerer kun i Word 2007 og 2010.

Læs mere

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser

Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014. Stamoplysninger til brug ved prøver til gymnasiale uddannelser Undervisningsbeskrivelse for MATEMATIK C, 1. 2. semester 2013-2014 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber

Iteration af et endomorft kryptosystem. Substitutions-permutations-net (SPN) og inversion. Eksklusiv disjunktion og dens egenskaber Produktsystemer, substitutions-permutations-net samt lineær og differentiel kryptoanalyse Kryptologi, fredag den 10. februar 2006 Nils Andersen (Stinson 3., afsnit 2.7 3.4 samt side 95) Produkt af kryptosystemer

Læs mere

Rentesregning: Lektion A2. Intern rente, Flere rentetilskrivninger, Excel. Introduktion. Peter Ove Christensen. Forår 2012

Rentesregning: Lektion A2. Intern rente, Flere rentetilskrivninger, Excel. Introduktion. Peter Ove Christensen. Forår 2012 Rentesregning: Lektion A2, Flere rentetilskrivninger, Excel Peter Ove Christensen Forår 2012 1 / 26 Definition Hvilken rentesats giver vores betalingsrække en ønsket værdi? Denne rentesats kaldes for den

Læs mere

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

{ } { } {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )} Stokastisk eksperiment Et stokastisk eksperiment er et eksperiment, hvor vi fornuftigvis ikke på forhånd kan have en formodning om resultatet af eksperimentet. Til gengæld kan vi prøve at sige noget om,

Læs mere

Baggrundsnote om logiske operatorer

Baggrundsnote om logiske operatorer Baggrundsnote om logiske operatorer Man kan regne på udsagn ligesom man kan regne på tal. Regneoperationerne kaldes da logiske operatorer. De tre vigtigste logiske operatorer er NOT, AND og. Den første

Læs mere

Bilag 1a. Cpr.nr. Ikke. Samlet indstilling uddannelsesparat. uddannelsesparat

Bilag 1a. Cpr.nr. Ikke. Samlet indstilling uddannelsesparat. uddannelsesparat 1 Bilag 1a Dansk: den obligatoriske optagelsesprøve Prøvegrundlag: en tekst af max 1 normalsides omfang. Teksttyperne kan være prosa, lyrik eller sagprosa. Læse sikkert og hurtigt med forståelse og indlevelse

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2012. Institution ZBC Næstved. Uddannelse Hhx. Fag og niveau Matematik C. Lærer(e) Hold Lars Westermann

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

Medialogi- og Ingeniøruddannelserne

Medialogi- og Ingeniøruddannelserne Medialogi- og Ingeniøruddannelserne Aalborg Universitet Esbjerg Hvad er en Medialog eller Ingeniør? En problemløser En opfinder En teoretisk praktiker Uddannelser ved AAU-Esbjerg AAU-Esbjerg Medialogi

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer Regneregler og Algebra. Læringsmål Faglige aktiviteter Fag: Matematik Hold: 26 Lærer: Harriet Tipsmark Undervisningsmål 9/10 klasse Læringsmål Faglige aktiviteter 33-35 Målet for undervisningen er, at eleverne tilegner sig gode matematiske færdigheder og at

Læs mere

Repetition og eksamensforberedelse.

Repetition og eksamensforberedelse. Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) maj-juni 2014 skoleår 13/14 Herning HF og VUC Hf Matematik C

Læs mere

Simulering af dynamiske systemer

Simulering af dynamiske systemer 04-04-01/SG Simulering af dynamiske systemer 1 Simulering af dynamiske systemer - er ikke længere forbeholdt eksperter Søren Gundtoft er ansat som lektor ved Ingeniørhøjskolen i Århus men er for tiden

Læs mere

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005

Anvendt litteratur : Mat C v. Bregendal, Nitschky Schmidt og Vestergård, Systime 2005 Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin juni 2011 Institution Campus Bornholm Uddannelse Fag og niveau Lærer Hold Hhx Matematik C Peter Seide 1AB

Læs mere

Numerisk Fysik. Emner

Numerisk Fysik. Emner Numerisk Fysik Emner 1 Vektorer, 2D plot, fit i hånden 2 Arrays, lineære fit, koordinat-transformationer 3 Funktioner, minima, integration, ikke-lineære fit 4 Små-simuleringer 5 1. ordens differentialligninger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Mathias Turac 01-12-2008

Mathias Turac 01-12-2008 ROSKILDE TEKNISKE GYMNASIUM Eksponentiel Tværfagligt tema Matematik og informationsteknologi Mathias Turac 01-12-2008 Indhold 1.Opgaveanalyse... 3 1.1.indledning... 3 1.2.De konkrete krav til opgaven...

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hf2 Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Lise A.

Læs mere

Emne Tema Materialer

Emne Tema Materialer 32 36 Uge 35 Fag: Matematik Hold: 20 Lærer: Trine Koustrup Undervisningsmål 9. klasse Læringsmål Faglige aktiviteter Emne Tema Materialer Målsætningen med undervisningen er at eleverne udvikler deres kunnen,opnår

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

Mini-formelsamling. Matematik 1

Mini-formelsamling. Matematik 1 Indholdsfortegnelse 1 Diverse nyttige regneregler... 1 1.1 Regneregler for brøker... 1 1.2 Potensregneregler... 1 1.3 Kvadratsætninger... 2 1.4 (Nogle) Rod-regneregler... 2 1.5 Den naturlige logaritme...

Læs mere

Brugen af IT i matematik. Helsingør Gymnasium. og DTU. Mig selv. Hvilken slags IT bruger jeg? Hvad skal læreren være opmærksom på?

Brugen af IT i matematik. Helsingør Gymnasium. og DTU. Mig selv. Hvilken slags IT bruger jeg? Hvad skal læreren være opmærksom på? Brugen af IT i matematik på Helsingør Gymnasium og DTU 1½ times foredrag og demo på ScienceCenter i Sorø ved LMFK-årsmødet d. 29. oktober 2010. Steen Toft Jørgensen steen-toft.dk Mig selv Underviser i

Læs mere

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER

ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER ØVEHÆFTE FOR MATEMATIK C FORMLER OG LIGNINGER INDHOLDSFORTEGNELSE 0. FORMELSAMLING TIL FORMLER OG LIGNINGER... 2 Tal, regneoperationer og ligninger... 2 Ligning med + - / hvor x optræder 1 gang... 3 IT-programmer

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin sommer 15 Institution VUC-vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C Kofi Mensah 1maC05

Læs mere

14.30 Afrunding af dagens arbejde med fastsættelse af næste skridt

14.30 Afrunding af dagens arbejde med fastsættelse af næste skridt 800 Introduktion til dagen, herunder præsentation POPBL er projektorganiseret og problembaseret læring Brug af POPBL i folkeskolens afgangsklasser Eksempel på projekt fra Friskolen 10.00 Udarbejdelse af

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

UPV og obligatorisk optagelsesprøve

UPV og obligatorisk optagelsesprøve Region Hovedstaden optageområde Nordsjælland UPV og obligatorisk optagelsesprøve En beskrivelse af form og indhold rektorerne 2015 1 Optagelsesprøve og vurdering af uddannelsesparathed 2015 Region Hovedstaden

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Mat C Trine Eliasen

Læs mere

Bedømmelse og eksamen, 24 nov. 2014, Københavns Universitet. Diskussionsgruppe. Simon Lex Institut for Antropologi 24.11.2014

Bedømmelse og eksamen, 24 nov. 2014, Københavns Universitet. Diskussionsgruppe. Simon Lex Institut for Antropologi 24.11.2014 Bedømmelse og eksamen, 24 nov. 2014, Københavns Universitet Diskussionsgruppe Simon Lex Institut for Antropologi 24.11.2014 Overblik Hvem evaluerer, når eksterne samarbejdspartnere stiller opgaven? Udgangspunkt

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015, skoleåret 14/15 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC hf enkeltfag

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Årstid/årstal Institution Uddannelse Hf/hfe/hhx/htx/st x/gsk/gif/fagpakke/hf+ Fag og niveau Fagbetegnelsen

Læs mere

Programmering, algoritmik og matematik en nødvendig sammenblanding?

Programmering, algoritmik og matematik en nødvendig sammenblanding? Programmering, algoritmik og matematik en nødvendig sammenblanding? Oplæg til IDA møde, 29. november 2004 Martin Zachariasen DIKU 1 Egen baggrund B.Sc. i datalogi 1989; Kandidat i datalogi 1995; Ph.D.

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Matematik. Læseplan og formål:

Matematik. Læseplan og formål: Matematik Læseplan og formål: Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv og naturforhold.

Læs mere

DIKUs Undervisningsudvalg. Vedr.: 41. møde den 1. november 2012. Sagsbehandler: Lisa Ibenfeldt Schultz

DIKUs Undervisningsudvalg. Vedr.: 41. møde den 1. november 2012. Sagsbehandler: Lisa Ibenfeldt Schultz D A T A L O G I S K I N S T I T U T K Ø B E N H A V N S U N I V E R S I T ET DIKUs Undervisningsudvalg R E F E R A T 28. NOVEMBER 2012 Vedr.: 41. møde den 1. november 2012 DATALOGISK INSTITUT Sagsbehandler:

Læs mere

Læseplan for matematik på Aalborg Friskole

Læseplan for matematik på Aalborg Friskole Læseplan for matematik på Aalborg Friskole LÆSEPLAN FOR MATEMATIK PÅ AALBORG FRISKOLE 1 1. FORLØB 1.-3. KLASSETRIN 2 ARBEJDET MED TAL OG ALGEBRA 2 ARBEJDET MED GEOMETRI 2 MATEMATIK I ANVENDELSE 3 KOMMUNIKATION

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2014 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Trine Eliasen

Læs mere

Noter til elementær numerisk regning

Noter til elementær numerisk regning Noter til elementær numerisk regning Dieter Britz Kemisk Institut, Aarhus Universitet 19 juli 2010 Foreord Dette hæfte er vokset fra noter oprindeligt skrevet af forskellige forfattere til kurset DatA,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2015 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg stx

Læs mere

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) Kaos og fraktaler i dynamiske systemer Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) UNF Matematik Camp 2010 Oversigt tre simple eksempler på klassiske fraktaler deterministiske

Læs mere