Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan

Størrelse: px
Starte visningen fra side:

Download "Reaktionskinetik - 1 Baggrund. lineære og ikke-lineære differentialligninger. Køreplan"

Transkript

1 Reaktionskinetik - lineære og ikke-lineære differentialligninger Køreplan 1 Baggrund På 2. eller 4. semester møder kemi/bioteknologi studerende faget Indledende Fysisk Kemi (26201/26202). Her behandles nogle af de almene teorier/principper som beskriver egenskaber og opførsel af kemiske og biologiske systemer. Dette kræver ofte matematiske metoder, der går udover, hvad der er behandlet i gymnasiet. Som en illustration betragtes her nogle elementer af området reaktionskinetik, dvs. den kvantitative behandling af den tidslige udvikling i molekylers reaktionshastigheder og koncentrationer. Typisk ønsker man efter, at en kemisk reaktion er sat igang - som funktion af tiden - at fastlægge koncentrationerne af de involverede molekyler. Koncentrationerne er generelt fastlagt af et koblet system af (ikke-lineære) differentialligninger. I dette projekt fastlægges/studeres analytiske og numeriske løsninger for nogle vigtige reaktionsmekanismer. Chymotrypsin er et enzym af serin-protease gruppen. Disse enzymer spalter peptidbindinger. Matematik side 1

2 2 Lineære differentialligninger Vi betragter følgende reaktionsmekanisme, som involverer de 3 molekyler A, B, og C: A B C (1) Antallet af X molekyler per volumenenhed, til en given tid t, betegnes [X]. Bemærk, at koncentrationen [X] er en funktion af tiden (man kunne skrive [X](t), men man vælger typisk den enkle notation hvor tidsafhængigheden udelades). Alle omdannelserne er såkale 1. ordens reaktioner, dvs. hastigheden d[x]/ knyttet til en given omdannelse af molekyle X er proportional med koncentrationen [X] (som er et ikke-negativt reelt tal). Omdannelserne fra A til B, fra B til A, fra B til C, og fra C til B er karakteriseret ved de 4 hastighedskonstanter k 1, k 1, k 2, og k 2. Hastighedskonstanterne er positive reelle størrelser. De tidsafhængige koncentrationer [A], [B], og [C] er bestemt af differentialligningssystemet eller på matrix-form d d[a] = k 1 [A] + k 1 [B] d[b] = k 1 [A] k 1 [B] k 2 [B] + k 2 [C] d[c] = k 2 [B] k 2 [C] [A] [B] [C] = k 1 k 1 0 k 1 (k 1 + k 2 ) k 2 0 k 2 k 2 [A] [B] [C] (2) (3) Dette er et system af 1. ordens lineære differentialligninger, som skal løses med et givet sæt af start-betingelser. Her betegner vi koncentrationer til tiden t = 0 som [A] 0, [B] 0, og [C] 0. Det første man kan interessere sig for, er om der eksisterer hvad man kalder for stationære løsninger (på engelsk steady-state løsninger). Dette betyder en løsning, hvor alle de tidsafledede er nul (for alle tider). Opgave 1. Vis, at der er (ikke trivielle 1 ) stationære løsninger, og undersøg for disse tilfælde sammenhængen (forholdene) mellem koncentrationerne. Vi betragter i det følgende kun den specielle situation, hvor omdannelsen fra C til B ikke forekommer. Vi kan formelt eliminere en omdannelse ved at sætte den tilhørende hastighedskonstant lig 0, dvs. k 2 = Specialtilfældet k 1 = 0 Vi betragter først specialtilfældet, hvor k 1 = 0. Opgave 2. Overvej koblingerne mellem de forskellige koncentrationer i dette tilfælde, opskriv dernæst løsningerne for de 3 koncentrationer. 1 En triviel stationær løsning er nul-løsningen, som ikke er særlig spændende Matematik side 2

3 2.2 Specialtilfældet k 2 = 0 Vi betragter nu specialtilfældet, hvor k 2 = 0. Opgave 3. Vis ud fra (2), at det totale antal molekyler af A og B er bevaret, dvs. at der gælder, at [A] + [B] = [A] 0 + [B] 0. Giv også en fysisk forklaring. Opgave 4. Opskriv løsningerne for de 2 koncentrationer, [A], [B] i specialtilfældet hvor k 2 = Generelle egenskaber Vi betragter nu den generelle situation, hvor alle hastighedskonstanter (bortset fra k 2 ) er forskellige fra 0. Det vil sige, at vi betragter systemet: [A] k d 1 k 1 0 [A] [B] = k 1 (k 1 + k 2 ) 0 [B] (4) [C] 0 k 2 0 [C] Opgave 5. Find egenværdierne til koefficientmatricen i systemet (4). Undersøg herved om der kan forekomme periodisk oscillerende koncentrationer. Og hvad betyder det, at der er en egenværdi der er nul? Overvej også opførslen af enhver løsning for t. Opgave 6. Bestem den generelle løsning til ligning (4), for tilfældet [B] 0 = [C] 0 = 0. Vis, at denne løsning reducerer til løsningen i opgave 2, når k 1 = 0. Opgave 7. Hvad er dimensionsløse variable og hvorfor indfører vi dem? Opgave 8. Indfør dimensionsløse variable. x = [A]/[A] 0, y = [B]/[A] 0, z = [C]/[A] 0, τ = k 1 t. Opskriv det til (4) svarende system. Oversæt løsningen fra opgave 6. Bestem løsningen for tilfældet λ 2 = λ 1. Opgave 9. Plot for det dimensionsløse system koncentrationerne som funktion af tiden τ for følgende situationer: k 1 = 0, og k 2 = k 1 ; k 1 = 0, k 2 = 25k 1 ; k 2 = 25k 1, og k 1 = k 1. 3 Ikke-lineære differentialligninger Vi betragter følgende mekanisme: E + S ES E + P (5) som bl.a. er prototype-mekanismen for en enzym-katalyseret omdannelse af et substrat (S) til et produkt (P), med enzymet (E). Hastighedskonstanterne betegnes henhldsvis κ 1, k 1, og k 2, og Matematik side 3

4 koncentrationerne er bestemt af d[p] = k 2 [ES] d[s] = κ 1 [E][S] + k 1 [ES] d[es] = κ 1 [E][S] k 1 [ES] k 2 [ES] d[e] = κ 1 [E][S] + k 2 [ES] + k 1 [ES] idet omdannelserne er 1. ordens reaktioner pånær reaktionen mellem E og S, som er en 2. ordens reaktion, hvor hastigheden er proportional med produktet af koncentrationerne. Bemærk at differentiallignings-systemet nu indeholder ikke-lineære led. Start-betingelserne er i det følgende: [E] 0 og [S] 0 er givne, og [ES] 0 = 0 = [P] 0. Opgave 10. Vis, at systemet (6) betyder, at der gælder, at (6) [E] + [ES] = [E] 0 + [ES] 0, [S] + [ES] + [P] = [S] 0 + [ES] 0 + [P] 0. (7) Her urykker den første ligning, at det totale antal enzymmolekyler er bevaret. Opgave 11. Vis, at (7) sammen med de givne begyndelsesbetingelser betyder at problemet kan forenkles til at betragte løsningen til de to følgende koblede (og ikke-linære) differentialligninger: hvor k 10 = κ 1 [E] 0 og K M = (k 1 + k 2 )/κ 1. d[s] = k 10 [S] + κ 1 ([S] + k 1 /κ 1 )[ES], d[es] = k 10 [S] κ 1 ([S] + K M )[ES], (8) Matematik side 4

5 Indfør de dimensionsløse variable u = k 2 t, x = [S] [S] 0 og y = [ES] [S] 0. Opgave 12. Vis at ligningssystemet (8) i disse variable antager formen dx = αx + βy + δxy, du dy = αx γy δxy, du x(0) = 1, y(0) = 0 (9) Uryk konstanterne α, β, γ og δ ved de i opgaveteksten definerede konstanter. Opgave 13. Findes der (ikke trivielle) stationære løsninger til ligningssystemet (9)? Opgave 14. Undersøg om Maple kan finde en generel analytisk løsning til ligningssystemet (9). 4 Linearisering Da en eksakt løsning af (8) og (9) ikke er mulig, må man gribe til approximationer eller numeriske løsningsmetoder. Vi vil først forsøge en approximation af (8) med et lineært differentialligningssystem, og vi må derfor overveje det ikke-lineære led δxy nærmere. Når u går mod + vil både x og y gå mod 0, og δxy vil derfor være meget mindre end de andre led. Man får således den ønskede linearisering ved at bortkaste δxy. Dette kan ikke lade sig gøre for små værdier af u. Da x(0) = 1, kan δxy i dette tilfælde være af samme størrelsesorden som βy og γy. Derimod vil δ(x 1)y være lille og kunne bortkastes. Opgave 15. Opstil det lineære differentialligningssystem som man får ved at negligere størrelserne δ(x 1)y. Uryk først egenværdierne λ 1 og λ 2 ved α, β, γ og δ, og opskriv den fuldstændige løsning. Bestem derefter, urykt ved λ 1 og λ 2 den løsning der opfylder (9). Find, urykt ved λ 1 og λ 2, den værdi u 0 for hvilken y(u) antager sin maksimale værdi. Opgave 16. Som opgave 15, idet man nu negligerer δ xy. Egenværdierne i dette tilfælde benævnes µ 1 og µ 2. Opgave 17. Overvej om man kan få en anvendelig approximation for u [0, + [ ved at kombinere de to lineariseringer fra opgave 15 og opgave 16 (besvares kvalitativt, ikke kvantitativt). 5 Beregninger med data Fordøjelsesenzymet chymotrypsin nedbryder proteiner ved at spalte peptidbindingerne mellem de enkelte aminosyrer. For et bestemt protein (substrat) har man fundet følgende konstanter: κ 1 = 0.15M 1 s 1, k 2 = 0.051s 1, og K M = 0.44M. Opgave 18. For [S] 0 = 10 2 M og [E] 0 = 10 3 M beregnes α,β,γ,δ. For de to tilfælde i opg. 15 og opg. 16 beregnes egenværdierne, og graferne for x(u) og y(u) tegnes. Matematik side 5

6 Opgave 19. Løs ligningssystemet (9) for de i opgave 18 beregnede værdier af α,β,γ,δ ved hjælp af dsolve med option numeric. Plot x(u) og y(u). Sammenlign resultatet med den approximative løsning fra forrige opgave. 6 Variationer Opgave 20. Indfør en ny variabel z ved at sætte y(u) = αz(u). Opstil differentialligninger og begyndelsesbetingelser for x og z. Løs systemet numerisk med samme koefficienter som i opgave 19, og plot x(u) og z(u). Opgave 21. Prøv at gentage regningerne når begyndelseskoncentrationen [E] 0 gøres 10, hhv 100, hhv 500 gange mindre. Opgave 22. I (9) sættes dy/du = 0. Uryk derefter y ved x og indsæt dette uryk i den første ligning. Løs derefter systemet ved at separere de variable x og u. Matematik side 6

Temaøvelse i differentialligninger Biokemiske Svingninger

Temaøvelse i differentialligninger Biokemiske Svingninger Temaøvelse i differentialligninger Biokemiske Svingninger Rev. 12. november 2009 I denne temaøvelse studerer vi en simpel model for gærglykolyse. Vi starter i Del 1 med at beskrive modellen. Denne model

Læs mere

Oplægget henvender sig primært til specielt interesserede 3g elever med matematik A og kemi A.

Oplægget henvender sig primært til specielt interesserede 3g elever med matematik A og kemi A. OPLÆG TIL STUDIERETNINGSPROJEKT I MATEMATIK-KEMI OM OSCILLERENDE REAKTIONER OG MATEMATISKE MODELLER Indledning De fleste kemiske reaktioner forløber uproblematisk inil der opnås kemisk ligevægt, eksempelvis

Læs mere

Opholdstidsfordeling i Kemiske Reaktorer

Opholdstidsfordeling i Kemiske Reaktorer Opholdstidsfordeling i Kemiske Reaktorer Køreplan 01005 Matematik 1 - FORÅR 2005 Introduktion Strømningsmønsteret i kemiske reaktorer modelleres ofte gennem to ydertilfælde, Ideal stempelstrømning, hvor

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system

Læs mere

Fra spild til penge brug enzymer

Fra spild til penge brug enzymer Fra spild til penge brug enzymer Køreplan 01005 Matematik 1 - FORÅR 2010 Denne projektplan er udarbejdet af Per Karlsson og Kim Knudsen, DTU Matematik, i samarbejde med Jørgen Risum, DTU Food. 1 Introduktion

Læs mere

Reaktionskinetik

Reaktionskinetik [PJ] Kemi.dfw Reaktionskinetik Kemi A-niveau Vi starter med at repetere siderne 38-4 i Kemi Nulte ordens kemisk reaktion Det kunne fx være den enzymkatalyseret proces: A + E -> B + E Vi følger hvordan

Læs mere

Baggrundsmateriale til Minigame 7 side 1 A + B C + D

Baggrundsmateriale til Minigame 7 side 1 A + B C + D Baggrundsmateriale til Minigame 7 side 1 Indhold Kernestof... 1 Supplerende stof... 1 1. Differentialligninger (Baggrundsmateriale til Minigame 3)... 1 2. Reaktionsorden (Nulte-, første- og andenordensreaktioner)...

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

Diffusionsbegrænset reaktionskinetik

Diffusionsbegrænset reaktionskinetik Diffusionsbegrænset reaktionskinetik Bimolekylære reaktioner Ved en bimolekylær elementarreaktion afhænger hastigheden såvel af den hyppighed (frekvens), hvormed reaktantmolekylerne kolliderer, som af

Læs mere

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17

Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Stabilitet af kølet tankreaktor

Stabilitet af kølet tankreaktor Stabilitet af kølet tankreaktor Vi betragter en velomrørt tankreaktor, i hvilken den exoterme reaktion B skal gennemføres. Tankreaktorens volumen er V m 3 ), og reaktanten tilføres i en opløsning med den

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

2. del. Reaktionskinetik

2. del. Reaktionskinetik 2. del. Reaktionskinetik Kapitel 10. Matematisk beskrivelse af reaktionshastighed 10.1. Reaktionshastighed En kemisk reaktions hastighed kan afhænge af flere forskellige faktorer, hvoraf de vigtigste er!

Læs mere

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3

Det Teknisk-Naturvidenskabelige Basisår Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik E-OPG 3 Det Teknisk-Naturvidenskabelige Basisår 2003-2004 Computerstøttet Beregning Naturvidenskab - Datalogi/Software/Matematik 1 Introduktion E-OPG 3 Dette er den tredje store opgave, som skal danne grundlag

Læs mere

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis

Læs mere

Besvarelser til de to blokke opgaver på Ugeseddel 7

Besvarelser til de to blokke opgaver på Ugeseddel 7 Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,

Læs mere

Lektion 13 Homogene lineære differentialligningssystemer

Lektion 13 Homogene lineære differentialligningssystemer Lektion 13 Lineære differentialligningssystemer Homogene lineære differentialligningssystemer med konstante koefficienter Inhomogene systemer To-kammer modeller Lotka Volterra (ikke lineært) 1 To-kammer

Læs mere

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er

Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave

Læs mere

Lineære 1. ordens differentialligningssystemer

Lineære 1. ordens differentialligningssystemer enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære

Læs mere

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2

Eulers metode. Tom Pedersen //Palle Andersen. Aalborg University. Eulers metode p. 1/2 Eulers metode Tom Pedersen //Palle Andersen pa,tom@es.aau.dk Aalborg University Eulers metode p. 1/2 Differentialligninger m(t) H(t) d(h(t)) dt = 0.0125m(t) 0.001772 H(t) hvor m(t) er kendt og H(t) skal

Læs mere

Koblede differentialligninger.

Koblede differentialligninger. 2. 3. 4. Koblede differentialligninger. En udvidelse af Newtons afkølingslov løst numerisk ved hjælp af integralkurver. Sidste gang så vi på, hvordan vi kunne opstille og løse en model for afkølingen af

Læs mere

Kursusgang 3 Matrixalgebra Repetition

Kursusgang 3 Matrixalgebra Repetition Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem

Læs mere

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen

I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen S.&P. DIFFERENTIALLIGNINGER 2. februar 2006 Oversigt nr. 1 I kurset Samhørende og partielle differentialligninger vil vi i foråret 2006 benytte bogen [EP] Elementary differential equations with boundary

Læs mere

Studienummer: MeDIS Exam 2015. Husk at opgive studienummer ikke navn og cpr.nr. på alle ark, der skal medtages i bedømmelsen

Studienummer: MeDIS Exam 2015. Husk at opgive studienummer ikke navn og cpr.nr. på alle ark, der skal medtages i bedømmelsen MeDIS Exam 2015 Titel på kursus: Uddannelse: Semester: Videregående biokemi og medicinudvikling Bachelor i Medis 5. semester Eksamensdato: 26-01-2015 Tid: kl. 09.00-11.00 Bedømmelsesform 7-trin Vigtige

Læs mere

Dosering af anæstesistoffer

Dosering af anæstesistoffer Dosering af anæstesistoffer Køreplan 01005 Matematik 1 - FORÅR 2005 1 Formål Formålet med opgaven er at undersøge hvordan man kan opnå kendskab til koncentrationen af anæstesistoffer i vævet på en person

Læs mere

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker

Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Fordybelsesprojekt Matematik 2, forår 2005 Potensrækker Arne Jensen 7. 11. marts 2005 1 Indledning I forbindelse med kurset i Reelle og Komplekse Funktioner afholdes et fordybelsesprojekt med et omfang

Læs mere

BASE. Besvarelse til individuel skriftlig test

BASE. Besvarelse til individuel skriftlig test BASE Besvarelse til individuel skriftlig test Tirsdag d. 21. marts 2006 Tinne Hoff Kjeldsen Bitten Plesner 1 Opgave 1 Vandet i en pool med et volumen på 10.000 gallon indeholder 0,01% klor. Til tiden t

Læs mere

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010

2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik

Læs mere

Differentialligninger med TI Nspire CAS version 3.1

Differentialligninger med TI Nspire CAS version 3.1 Differentialligninger med TI Nspire CAS version 3.1 Der er tilføjet en ny graftype til Graf værkstedet kaldet Diff lign. Denne nye graftype er en implementering af differentialligningerne som vi kender

Læs mere

Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer

Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer Spontan biologisk mønsterdannelse på basis af reaktions-diffusions mekanismer: Turing strukturer Axel Hunding Spontan dannelse af komplekse strukturer i biologien kan synes at stride mod sund fornuft (og

Læs mere

Lineære 2. ordens differentialligninger med konstante koefficienter

Lineære 2. ordens differentialligninger med konstante koefficienter enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.

Læs mere

Analytisk plangeometri 1

Analytisk plangeometri 1 1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt

Læs mere

Teoretiske Øvelser Mandag den 13. september 2010

Teoretiske Øvelser Mandag den 13. september 2010 Hans Kjeldsen hans@phys.au.dk 6. september 00 eoretiske Øvelser Mandag den 3. september 00 Computerøvelse nr. 3 Ligning (6.8) og (6.9) på side 83 i Lecture Notes angiver betingelserne for at konvektion

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet Forberedelsesmateriale frs-matn/a-270420 Onsdag den 27. april 20 Forberedelsesmateriale til stx-a-net MATEMATIK Der skal afsættes

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 4 Københavns Universitet, Det naturvidenskabelige Fakultet Lineær Algebra LinAlg Afleveringsopgave 4 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte forsider

Læs mere

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet

x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0). EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne

Læs mere

DesignMat Lineære differentialligninger I

DesignMat Lineære differentialligninger I DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En

Læs mere

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006

Et eksempel på en todimensional normalfordeling Anders Milhøj September 2006 Et eksempel på en todimensional normalfordeling Anders Milhøj September 006 I dette notat gennemgås et eksempel, der illustrerer den todimensionale normalfordelings egenskaber. Notatet lægger sig op af

Læs mere

Matematisk modellering og numeriske metoder. Lektion 6

Matematisk modellering og numeriske metoder. Lektion 6 Matematisk modellering og numeriske metoder Lektion 6 Morten Grud Rasmussen 24. september, 2013 1 Forcerede oscillationer [Bogens afsnit 2.8, side 85] 1.1 Et forstyrret masse-fjeder-system I udledningen

Læs mere

Rikke Lund, 3.f Studieretningsprojekt 21/ Reaktionskinetik

Rikke Lund, 3.f Studieretningsprojekt 21/ Reaktionskinetik Rikke Lund,.f Studieretningsprojekt / Abstract Reaktionskinetik This paper examines the subject reaction kinetics and the factors that can affect the speed of the reaction. We investigate how the reaction

Læs mere

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier

1 Vektorrum. MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier MATEMATIK 3 LINEÆR ALGEBRA 6. oktober 2016 Miniprojekt: Lineær algebra på polynomier Grupperne forventes at regne en mængde af opgaver, som tilsammen dækker 100 point. De små opgaver giver hver 5 point,

Læs mere

Projekt: Logistisk vækst med/uden høst

Projekt: Logistisk vækst med/uden høst Projekt: Logistisk vækst med/uden høst I dette projekt skal vi arbejde med differentialligninger, specielt med logistisk vækst og med en udvidelse, hvor der indgår høst. Den eksponentielle vækst (type:

Læs mere

DesignMat Uge 5 Systemer af lineære differentialligninger II

DesignMat Uge 5 Systemer af lineære differentialligninger II DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem

Læs mere

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013

Heisenbergs usikkerhedsrelationer. Abstrakt. Hvorfor? Funktionsrum. Nils Byrial Andersen Institut for Matematik. Matematiklærerdag 2013 Heisenbergs usikkerhedsrelationer Nils Byrial Andersen Institut for Matematik Matematiklærerdag 013 1 / 17 Abstrakt Heisenbergs usikkerhedsrelationer udtrykker at man ikke på samme tid både kan bestemme

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

Note om Laplace-transformationen

Note om Laplace-transformationen Note om Laplace-transformationen Den harmoniske oscillator omskrevet til et ligningssystem I dette opgavesæt benyttes laplacetransformationen til at løse koblede differentialligninger. Fordelen ved at

Læs mere

Workshop i differentialligninger

Workshop i differentialligninger Workshop i differentialligninger Indholdsfortegnelse Eksempler på eksamensopgaver side 1 Opgave 1 7: side 1 Projekter: side 3 8. Isokliner side 3 9. Logistisk vækst med jagt/fiskeri side 4 10. Romeo og

Læs mere

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A

Matematik A. Studentereksamen. Tirsdag den 27. maj 2014 kl Digital eksamensopgave med adgang til internettet. 2stx141-MATn/A Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 2stx141-MATn/A-27052014 Tirsdag den 27. maj 2014 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler

Læs mere

Matematisk modellering og numeriske metoder. Lektion 5

Matematisk modellering og numeriske metoder. Lektion 5 Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at

Læs mere

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at

GEOMETRI-TØ, UGE 3. og resultatet følger fra [P] Proposition 2.3.1, der siger, at GEOMETRI-TØ, UGE 3 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad γ : (α, β) R 2 være en regulær kurve i planen.

Læs mere

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG

Matematik A. Studentereksamen. Skriftlig prøve (5 timer) Fredag den. december kl... STX MAA LQGG Matematik A Studentereksamen Skriftlig prøve (5 timer) STX MAA 581710_STX093-MAA.indd 1 LQGG Fredag den. december kl... 03/11/09 10:53:00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består

Læs mere

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet

Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning

Læs mere

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19

Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Nøgleord og begreber Eksistens og entydighed Elementære funktioner Eksponential af matrix Retningsfelt Eulers metode Hastighedsfelt for system Eulers metode for

Læs mere

[BESØGSSERVICE INSTITUT FOR MOLEKYLÆRBIOLOGI OG GENETIK, AU]

[BESØGSSERVICE INSTITUT FOR MOLEKYLÆRBIOLOGI OG GENETIK, AU] Enzymkinetik INTRODUKTION Enzymer er biologiske katalysatorer i alle levende organismer som er essentielle for liv. Selektivt og effektivt katalyserer enzymerne kemiske reaktioner som ellers ikke ville

Læs mere

Test Canvas: Eksamen i BMB502 Januar 2012

Test Canvas: Eksamen i BMB502 Januar 2012 BMB502, Enzymer og membraner, efterår 11. f Tests, Surveys and Pools Tests Test Canvas : Eksamen i BMB502 Januar 2012 Edit Mode is: Test Canvas: Eksamen i BMB502 Januar 2012 Create Reuse Upload s Settings

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

Lineær Algebra. Lars Hesselholt og Nathalie Wahl

Lineær Algebra. Lars Hesselholt og Nathalie Wahl Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,

Læs mere

Om første og anden fundamentalform

Om første og anden fundamentalform Geometri, foråret 2005 Jørgen Larsen 9. marts 2005 Om første og anden fundamentalform 1 Tangentrummet; første fundamentalform Vi betragter en flade S parametriseret med σ. Lad P = σu 0, v 0 være et punkt

Læs mere

Matematisk modellering og numeriske metoder. Lektion 11

Matematisk modellering og numeriske metoder. Lektion 11 Matematisk modellering og numeriske metoder Lektion 11 Morten Grud Rasmussen 5. november 2016 1 Partielle differentialligninger 1.1 Udledning af varmeligningen Vi vil nu på samme måde som med bølgeligningen

Læs mere

Lineære ligningssystemer og Gauss-elimination

Lineære ligningssystemer og Gauss-elimination Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g

Læs mere

2 Den lineære bølgeligning

2 Den lineære bølgeligning Sidse Damgaard Årskortnummer 20062443 1 Indledning I denne opgave skal vi se på den numeriske løsning af den ikke-lineære bølgeligning. Den ikke-lineære bølgeligning beskriver longitudinale trykbølger

Læs mere

Matematik-teknologi 3. semester Projekt introduktion

Matematik-teknologi 3. semester Projekt introduktion Matematik-teknologi 3. semester Projekt introduktion Thomas Arildsen, Arne Jensen, Rafael Wisniewski Version 3 31. august 2015 1 Indledning Dette dokument giver en introduktion til projektmodulet på 3.

Læs mere

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.

Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er

Læs mere

Tidligere Eksamensopgaver MM505 Lineær Algebra

Tidligere Eksamensopgaver MM505 Lineær Algebra Institut for Matematik og Datalogi Syddansk Universitet Tidligere Eksamensopgaver MM55 Lineær Algebra Indhold Typisk forside.................. 2 Juni 27.................... 3 Oktober 27..................

Læs mere

Hjernens glukoseomsætning

Hjernens glukoseomsætning Hjernens glukoseomsætning Køreplan 01005 Matematik 1 - FORÅR 2005 Indhold 1. Introduktion 2. Teori 3. Matematisk model 4. Teoretiske overvejelser 5. Behandling af måledata 6. Bestemmelse af modelparametrene

Læs mere

1. Beregn begyndelseskoncentrationerne af og i alle forsøgene.

1. Beregn begyndelseskoncentrationerne af og i alle forsøgene. Efterbehandling 1: 1. Beregn begyndelseskoncentrationerne af og i alle forsøgene. Reaktion: Følgende formel anvendes: Symbolernes betydning ses i teoridelen. Beregning af serie 1. Vi starter med at finde

Læs mere

Prøveeksamen A i Lineær Algebra

Prøveeksamen A i Lineær Algebra Prøveeksamen A i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Der må gøres brug af bøger, noter mv Der må ikke benyttes lommeregner,

Læs mere

Matematik A. Studentereksamen

Matematik A. Studentereksamen Matematik A Studentereksamen stx103-mat/a-101010 Fredag den 10. december 010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger enote 11 1 enote 11 Lineære differentialligningers karakter og lineære 1. ordens differentialligninger I denne note introduceres lineære differentialligninger, som er en speciel (og bekvem) form for differentialligninger.

Læs mere

DesignMat Lineære ligningssystemer og Gauss-elimination

DesignMat Lineære ligningssystemer og Gauss-elimination DesignMat Lineære ligningssystemer og Gauss-elimination Preben Alsholm Uge Forår 010 1 Lineære ligningssystemer og Gauss-elimination 11 Om talrummet R n Om talsæt bestående af n tal R n er blot mængden

Læs mere

Konstruktion af Splines

Konstruktion af Splines Konstruktion af Splines Svend Daugaard Pedersen 29 maj 2011 Indhold 1 Hvad er en spline? 1 2 Matematisk behandling af en spline 1 3 Den naturlige spline 2 4 Andre splines 4 5 Tilpasset spline 4 6 Afslutning

Læs mere

Anvendt BioKemi: MM2. Anvendt BioKemi: Struktur. 1) MM2- Opsummering. Aminosyrer og proteiner som buffere

Anvendt BioKemi: MM2. Anvendt BioKemi: Struktur. 1) MM2- Opsummering. Aminosyrer og proteiner som buffere Anvendt BioKemi: Struktur 1) MM1 Intro: Terminologi, Enheder Math/ biokemi : Kemiske ligninger, syre, baser, buffer Små / Store molekyler: Aminosyre, proteiner 2) MM2 Anvendelse: blod som et kemisk system

Læs mere

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15

Numeriske metoder. Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn. Side 1 af 15 Numeriske metoder Af: Alexander Bergendorff, Frederik Lundby Trebbien Rasmussen og Jonas Degn Side 1 af 15 Indholdsfortegnelse Matematik forklaring... 3 Lineær regression... 3 Numerisk differentiation...

Læs mere

Abstract:... 1. Indledning til opgaven... 3. Introduktion til emnet... 4. Katalase generelt:... 6. Enzymers strukturelle opbygning...

Abstract:... 1. Indledning til opgaven... 3. Introduktion til emnet... 4. Katalase generelt:... 6. Enzymers strukturelle opbygning... Abstract: This study has been made to describe enzymes, especially their kinetics and structures, and is based on the enzyme catalase. The kinetics has been explained by the Michaelis-Menten-equation and

Læs mere

Udledning af Keplers love

Udledning af Keplers love Udledning af Keplers love Kristian Jerslev 8. december 009 Resumé Her præsenteres en udledning af Keplers tre love ud fra Newtonsk tyngdekraft. Begyndende med en analyse af et to-legeme problem vil jeg

Læs mere

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål Hvad vi mangler fra onsdag Momenter som deskriptive størrelser Sandsynlighedsmål er komplicerede objekter de tildeler numeriske værdier til alle hændelser i en σ-algebra. Vi har behov for simplere, deskriptive

Læs mere

Generelle kommentarer omkring løsning af fysikopgaver

Generelle kommentarer omkring løsning af fysikopgaver Generelle kommentarer omkring løsning af fysikopgaver Det skal tydeligt fremgå af besvarelsen hvilken tankegang, der ligger bag løsningen. Dvs. fyldestgørende og præcis forklaring, men samtidig så kort

Læs mere

Boligmodellens tilpasningstid til en stationær tilstand

Boligmodellens tilpasningstid til en stationær tilstand Danmarks Statistik MODELGRUPPEN Arbejdspapir* Lena Larsen 10. april 1997 Boligmodellens tilpasningstid til en stationær tilstand Resumé: Papiret tager sit udgangspunkt i de multiplikator eksperimenter,

Læs mere

Matematik A. Højere teknisk eksamen

Matematik A. Højere teknisk eksamen Matematik A Højere teknisk eksamen Matematik A 215 Prøvens varighed er 5 timer. Alle hjælpemidler er tilladte. Opgavebesvarelsen skal afleveres renskrevet, det er tilladt at skrive med blyant. Notatpapir

Læs mere

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med Repetition: Varians af linear kombination Landmålingens fejlteori Lektion 5 Fejlforplantning - rw@math.aau.dk Antag X 1, X,..., X n er uafhængige stokastiske variable, og Y er en linearkombination af X

Læs mere

(Prøve)Eksamen i Calculus

(Prøve)Eksamen i Calculus (Prøve)Eksamen i Calculus Sæt 1, april 2011 Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet og Det Sundhedsvidenskabelige Fakultet Nærværende (prøve)eksamenssæt består af 7 nummererede sider

Læs mere

matematik-økonomi-studerende

matematik-økonomi-studerende matematik-økonomi-studerende Første studieår Introduktion til matematiske metoder i økonomi Skriftlig prøveeksamen december 2012 med korte svar Dato: selvvalgt Tidspunkt: varighed 4 timer Tilladte hjælpemidler:

Læs mere

Eulers equidimensionale differentialligning

Eulers equidimensionale differentialligning Eulers equidimensionale differentialligning Projektbesvarelse for MM501, udformet af Hans J. Munkholm Differentialligningen September-oktober 2009 For at kunne referere let og elegant gentages differentialligningen

Læs mere

Matematik A. Højere handelseksamen

Matematik A. Højere handelseksamen Matematik A Højere handelseksamen hhx131-mat/a-705013 Mandag den 7. maj 013 kl. 9.00-14.00 Matematik A Prøven består af to delprøver. Delprøven uden hjælpemidler består af opgave 1 til 5 med i alt 5 spørgsmål.

Læs mere

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J.

Diffusionsligningen. Fællesprojekt for FY520 og MM502. Marts Hans J. Munkholm og Paolo Sibani. Besvarelse fra Hans J. Diffusionsligningen Fællesprojekt for FY50 og MM50 Marts 009 Hans J. Munkholm og Paolo Sibani Besvarelse fra Hans J. Munkholm 1 (a) Lad [x, x + x] være et lille delinterval af [a, b]. Den masse, der er

Læs mere

MM501/MM503 forelæsningsslides

MM501/MM503 forelæsningsslides MM501/MM503 forelæsningsslides uge 50, 2009 Produceret af Hans J. Munkholm 1 Separabel 1. ordens differentialligning En generel 1. ordens differentialligning har formen dx Eksempler = et udtryk, der indeholder

Læs mere

Vejledende besvarelse på august 2009-sættet 2. december 2009

Vejledende besvarelse på august 2009-sættet 2. december 2009 Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet frs111-matn/a-405011 Tirsdag den 4. maj 011 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Varmeligningen og cosinuspolynomier.

Varmeligningen og cosinuspolynomier. Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2012 Københavns

Læs mere

Modulpakke 3: Lineære Ligningssystemer

Modulpakke 3: Lineære Ligningssystemer Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:

Læs mere

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje.

Maple. Skærmbilledet. Vi starter med at se lidt nærmere på opstartsbilledet i Maple. Værktøjslinje til indtastningsområdet. Menulinje. Maple Dette kapitel giver en kort introduktion til hvordan Maple 12 kan benyttes til at løse mange af de opgaver, som man bliver mødt med i matematiktimerne på HHX. Skærmbilledet Vi starter med at se lidt

Læs mere

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2004

Fononiske Båndgab. Køreplan Matematik 1 - FORÅR 2004 Fononiske Båndgab Køreplan 01005 Matematik 1 - FORÅR 2004 1 Baggrund Bølgeudbredelse i materialer og medier (som f.eks. luft) er et fænomen, der kendes af alle og som observeres i forskellige former i

Læs mere

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 3 Københavns Universitet, Det naturvidenskabelige Fakultet 1 Lineær Algebra (LinAlg) Afleveringsopgave 3 Eventuelle besvarelser laves i grupper af 2-3 personer og afleveres i to eksemplarer med 3 udfyldte

Læs mere

Vejledning til bedømmelse af eksamensopgaver i matematik

Vejledning til bedømmelse af eksamensopgaver i matematik Vejledning til bedømmelse af eksamensopgaver i matematik I Læreplanen for Matematik stx A og Matematik stx B er der i afsnit 4.3 angivet en række bedømmelseskriterier, som alle lægges til grund for vurderingen

Læs mere

Prøveeksamen MR1 januar 2008

Prøveeksamen MR1 januar 2008 Skriftlig eksamen Matematik 1A Prøveeksamen MR1 januar 2008 Tilladte hjælpemidler Alle sædvanlige hjælpemidler er tilladt (lærebøger, notater, osv.), og også elektroniske hjælpemidler som lommeregner og

Læs mere

Den todimensionale normalfordeling

Den todimensionale normalfordeling Den todimensionale normalfordeling Definition En todimensional stokastisk variabel X Y siges at være todimensional normalfordelt med parametrene µ µ og når den simultane tæthedsfunktion for X Y kan skrives

Læs mere