Betonelement-Foreningen, september 2013

Størrelse: px
Starte visningen fra side:

Download "Betonelement-Foreningen, september 2013"

Transkript

1 BEF Bulletin no. 3 Betonelementbyggeriers robusthed Udarbejdet af: Jesper Frøbert Jensen ALECTIA A/S Betonelement-Foreningen, september 2013 Page 1

2 Forord Indledning Metoder til sikring af robusthed Metode A Metode B Dokumentation Lodret bærende bygningsdele Eksempel på robusthedsanalyse af lodret bærende nøglelementer Robuste armeringsprincipper for vægelementer Snitkraftomlejring ved lokale svigt i vægkonstruktioner Samlinger i lodret bærende systemer Fastholdelser af søjler Fastholdelser af vægge Bærende etagekryds Eksempel på robusthedsanalyse af nøglesamling i søjle-/bjælkekonstruktion Vandret bærende bygningsdele Sædvanlige elementdæk Større vandret bærende elementer Eksempel på robusthedsanalyse af nøgledetalje ved bjælkevederlag Eksempel på robusthedsanalyse af nøgledetaljer i selvbærende vægskive Stabiliserende hovedsystemer Sammenhæng i dækskiver Sammenhæng i vægskiver Krav til samlingernes duktilitet i stabiliserende hovedsystemer Eksempler på sammenbygningsløsninger i det stabiliserende hovedsystem Bilag 1: Følsomhedsanalyse, lodret bærende nøgleelementer Bilag 2: Robuste principper for armering i betonelementvægge Page 2

3 Forord Der har gennem adskillige år eksisteret normkrav til bygningskonstruktioners robusthed ved byggeri i Danmark. Alligevel er der til dato ikke udviklet en almen god praksis på dette område, hverken hvad angår krav til løsninger eller til dokumentation. Betonelement-Foreningen har derfor taget initiativ til nærværende bulletin, der dels sætter sammenhæng mellem kravene til robusthed og de øvrige krav til konstruktionernes udformning, dels sætter dokumentation af robusthed ind i samme rammer som gælder for statisk dokumentation i nutidigt dansk byggeri. Samtidig demonstreres i bulletinen, at den projekterendes valg af principper for håndtering af kravene til robusthed kan have betydelige konsekvenser for både elementproduktion, byggepladsforhold og dokumentation. Afvigelser fra de anbefalede hovedprincipper i denne bulletin vil derfor ofte kunne medføre betydelige ekstra omkostninger, uden opnåelse af nogen form for kvalitetsforbedring i det færdige byggeri. Bulletinen introducerer indledningsvis nogle mere almene principper for håndtering af robusthedsbegrebet, som med fordel vil kunne finde anvendelse inden for alle typer bygningskonstruktioner. Derfor håber Betonelement-Foreningen, at bulletinen vil finde bred anvendelse i dansk byggeri, og inviterer samtidig brugere til at fremkomme med kommentarer og forslag til forbedringer. Betonelement-Foreningen September, Page 3

4 1. Indledning Anneks E i DS/EN 1990 DK NA: anfører, at en konstruktion er robust når: A. de sikkerhedsmæssigt afgørende dele af konstruktionen kun er lidt følsomme overfor utilsigtede påvirkninger eller defekter, eller B. der ikke sker omfattende svigt af konstruktionen, hvis en begrænset del af konstruktionen svigter. For en ordens skyld skal det noteres, at normmæssigt foreskreven dimensionering for ulykkespåvirkninger som brand, jordskælv og påkørsel drejer sig om eksplicitte forhold på linje med dimensionering i anvendelses- og brudgrænsetilstand. Det er en underliggende forudsætning for den efterfølgende behandling af robusthedsbegrebet, at konstruktionerne er dimensioneret i overensstemmelse normernes direkte krav på disse områder. Det er for robustheden en væsentlig forudsætning, at den projekterende har taget hensyn til, hvorvidt normernes direkte foreskrevne påvirkninger er fyldestgørende for dimensioneringen af de aktuelle konstruktioner. I det efterfølgende angives rammer for metoder og løsninger, der for de væsentligste konstruktionsdele på enkel måde kan sikre en passende robusthed under ovennævnte forudsætninger. Konstruktionsdele omfattet heraf kan være: - Lodret bærende bygningsdele (vægge og søjler) - Samlingsløsninger i det lodret bærende system - Vandret bærende bygningsdele (dæk og bjælker) - Stabiliserende hovedsystem (dækskiver og stabiliserende vægskiver) - Samlingsløsninger i det stabiliserende hovedsystem Vendingen passende robusthed er her valgt bevidst for at understrege, at sikring af konstruktionernes robusthed ikke er et spørgsmål om at tilvejebringe modstandsevne overfor vilkårligt store, utilsigtede påvirkninger eller fejl af enhver tænkelig eller utænkelig art. Noget sådant ville føre til et overforbrug af ressourcer ude af trit med normernes balance mellem krav til sikkerhedsniveau og ansvar for bæredygtighed. Page 4

5 2 Metoder til sikring af robusthed 2.1 Metode A Ved brug af indledningens metode A forudsættes konstruktionens nøgleelementer identificeret af den bygværksprojekterende som et særligt afsnit i projektgrundlaget. For disse elementer sikres robustheden i praksis normalt ved enten: indførelse af ekstra sikkerhed på nøgleelementer ved at partialkoefficienterne på materialerne øges med en faktor 1,2 eller: eftervisning af at nøgleelementer kun er lidt følsomme over for utilsigtede påvirkninger og defekter som eksempelvis: - uforudsete lastvirkninger - utilsigtede afvigelser mellem konstruktionens faktiske virkemåde og de anvendte beregningsmodeller - utilsigtede afvigelser mellem det udførte projekt og projektmaterialet - uforudsete geometriske imperfektioner - uforudsete sætninger - uforudset nedbrydning Af disse metoder er anvendelsen af forøgede partialkoefficienter umiddelbart den enkleste at anvende. Metoden kan dog ikke stå alene, blandt andet fordi samlinger og elementdetaljer ikke håndteres fyldestgørende ad denne vej. Men der kan også være tale om, at elementets følsomhed overfor defekter eller utilsigtede påvirkninger kan være relativt store, så der yderligere bør tages særligt hensyn hertil. En praktisk fremkommelig metode til håndtering af disse forhold kan være udførelse af en kombineret sikkerheds- og robusthedsanalyse af særlig vigtige konstruktionsdele. Disse analyser udstrækkes med denne metode til at omfatte: Nøgleelementer Nøglesamlinger mellem elementer Nøgledetaljer inde i elementer Det anbefales, at det er den bygværksansvarlige der udpeger nøgleelementer og nøglesamlinger; medens nøgledetaljer inde i elementer udpeges af den ansvarlige for den statiske dokumentation for det pågældende konstruktionsafsnit. Metodens idé er, at konstruktionsdelen i brudgrænsetilstanden først dimensioneres under anvendelse af forøgende partialkoefficienter på materialestyrkerne. Dernæst udføres en analyse, hvor partialkoefficienterne nedsættes til de sædvanlige værdier i brudgrænsetilstanden; men hvor Page 5

6 det successivt undersøges, hvor store variationer, der kan foretages i en række udvalgte parametre uden bæreevneoverskridelse. Disse udvalgte parametre vælges, så de modsvarer de utilsigtede påvirkninger eller defekter, der har relevans for den aktuelle konstruktionsdel. Bemærk, at de foreslåede analyser under Metode A således alle henføres til den almindelige brudgrænsetilstand. Det er så den projekterendes opgave at vurdere hvorvidt de variationer, der således kan optages, ligger på et rimeligt niveau. Hvis følsomheden over for nogle af disse variationer er særlig stor, må der iværksættes supplerende sikkerhedsmæssige tiltag. Eksempelvis enten: at sikre en forøgelse af konstruktionsdelens modstandsevne så der kan optages variationer på et rimeligt niveau, eller: at det via særlige konstruktive sikringer, toleranceangivelser eller inspektionskrav direkte sikres at de pågældende variationer holdes inden for de nødvendige grænser. For så vidt angår forhold ved bygningsdele produceret under CE-mærkning, bør metoden med særlige toleranceangivelser og inspektionskrav ikke anvendes, medmindre det er leverandørens eget valg. Det skyldes, at særlige krav på dette område kan være yderst vanskelige at forene med et kvalitetsstyringssystem underlagt en kontrolordning. For mange almindeligt forekommende konstruktionsdele vil der kunne udarbejdes fælles brancheanvisninger med analyser som ovenfor beskrevet og med tilhørende forslag til supplerende sikkerhedsmæssige tiltag, så de projekterende i vid udstrækning vil kunne henføre hertil i det enkelte projekt. 2.2 Metode B Indledningens metode B omtales ofte under betegnelsen bortfald af bærende konstruktionsdele. Ved denne metode er tanken at udføre hovedkonstruktionerne således, at der i tilfælde af et lokalt svigt kan dannes en alternativ snitkraftfordeling, hvor belastningerne på den svigtende konstruktionsdel optages af andre konstruktionsdele. Den alternative snitkraftfordeling kan dokumenteres i form af en rent plastisk model for kraftforløbet hen over og omkring den svigtende konstruktionsdel. Det kan eksempelvis ske ved at opstille en gittermodel i de intakte dele af konstruktionen, der kan holdes i ligevægt bl.a. ved udnyttelse af særlig sammenhængsarmering ilagt i dæk- og vægkonstruktioner. Bæreevnevurdering i denne tilstand sker på basis af belastninger og materialestyrker svarende til ulykkestilfælde. Page 6

7 2.3 Dokumentation Principperne for den statiske dokumentation forudsættes at følge SBI-anvisning 223: Dokumentation af bærende konstruktioner. Dette betyder, at den bygværksansvarlige skal fastlægge de fornødne tiltag til sikring af bygningens robusthed i A1 - Projektgrundlag. For så vidt angår nøgleelementer, nøglesamlinger og nøgledetaljer er det forudsætningen, at disse identificeres i Projektgrundlaget, og at der i B1 - Statisk Projekteringsrapport stilles særskilte krav til dokumentation samt projekt- og udførelseskontrol for disse konstruktionsdele. Det gør i denne sammenhæng ingen forskel, at en del af disse afklaringer ligger relativt sent i procesforløbet, idet SBI-anvisning 223 netop tager som forudsætning, at dokumenterne i den statiske dokumentation løbende tilpasses afklaringer og ændringer i takt med udviklingen på byggesagen. I nedenstående, forenklede diagram vedrørende processerne for den statiske dokumentation er med rød skrift vist, hvorledes de særlige aktiviteter vedrørende sikkerheds- og robusthedsanalyse kan indpasses i et sædvanligt projektforløb. Diagrammet illustrerer også de nævnte tilbagekoblinger for opdatering af tidligere dele af den statiske dokumentation. Designkrav og organisering Sikkerhedsanalyse Konstruktionsopgaver Konstruktionsdesign Supplerende sikkerhedstiltag Udførelse Systemniveau System System System Elementniveau Elementer Elementer Elementer Detaljeniveau Detaljer Detaljer Detaljer Samlingsniveau Samlinger Samlinger Samlinger Statisk dokumentation Statisk dokumentation Statisk dokumentation Statisk dokumentation Statisk dokumentation Projektgrundlag Bygværksberegninger Ad projektgrundlag: Ad projektgrundlag Ad kontrolrapport - lastnedføringer - krav til særanalyser: - robusthedsredegørelse - rapporter, særtilsyn - hovedstabilitet nøgleelementer Projekteringsrapport - samlinger nøgledetaljer Ad bygværksberegninger nøglesamlinger - særanalyser, system Konstruktionsafsnitsberegn. - særanalyser, samlinger - bygningsdele Ad projekteringsrapport: - bygningsdelsdetaljer - særkontrolkrav, projektering Ad konstruktionsafsnitsberegn. - særtilsynskrav, udførelse - særanalyser, bygningsdele Kontrolrapport - særanalyser, detaljer Ad kontrolrapport - særkontroller, bygværk - særkontroller, konstruktionsafsnit Page 7

8 3. Lodret bærende bygningsdele Lodret bærende bygningsdele, så som søjler eller vægelementer med store lastvirkninger, vil i mange tilfælde udgøre et system af statisk bestemte enkeltelementer, hvor omfordeling af belastninger i tilfælde af svigt i konstruktionsdele sjældent vil kunne eftervises. Disse elementer klassificeres derfor ofte som nøgleelementer og robustheden håndteres via indledningens model A, se eksemplet i afsnit 3.1. Kravene svarende til model B kan derimod ofte argumenteres at være opfyldt for mindre, lodret bærende bygningsdele, eksempelvis ved at betragte mulighederne for ændret forløb af lastnedføringen i væg- eller facadeelementer i tilfælde af svigt i en dør- eller vinduesstolpe. Se afsnit Eksempel på robusthedsanalyse af lodret bærende nøglelementer I Bilag 1.1 og 1.2 er der vedlagt resultater fra en robusthedsanalyse, hvor der for et slankt element (en 180 mm væg) og et kraftigere element (en 540 mm søjle) er foretaget en undersøgelse af effekten af en række utilsigtede påvirkninger, som modsvarer den øgede modstandsevne elementerne opnår ved at øge partialkoefficienterne på materialerne med faktoren 1,2. Sammenligningen er for hver af de to elementtyper er foretaget ved tage udgangspunkt i 3 repræsentative lasttilfælde, hvor elementets regningsmæssige bæreevne i brudstadiet netop er udtømt, når partialkoefficienterne på materialerne er øget med faktoren 1,2. Det vil for betonelementer sige g c = 1,68 for beton og g s = 1,44 for armering. Dernæst er partialkoefficienterne ændret til de sædvanlige værdier, g c = 1,4 for beton og g s = 1,2 for armering, hvorefter det er undersøgt, hvor stor en ændring af hver enkelt af de udvalgte parametre der skal til, før den regningsmæssige bæreevne nu med disse partialkoefficienter atter er udtømt. Resultatet er resumeret i nedenstående tabel. Variation i parameter 180 mm væg h = 180 mm Y8/150 i b.s. f ck = 35 MPa 540 mm søjle h = 540 mm 3Y20 i b.s. f ck = 40 MPa Ekstra tværlast ækvivalent med vandret kraft DH DH ~ 0,5% af N Ed DH ~ 3% af N Ed virkende midt på element (DH = 0,5 w L s) Forøgelse af excentriciteter med De De ~ 5 mm (De/h ~ 0,028) De ~ 35 mm (De/h ~ 0,065) Reduktion af elementtykkelse med Dh Dh ~ 8 mm Dh ~ 50 mm Normallaster og momenter øget med Dp Dp ~ 16% Dp ~ 20% Reduktion af betonstyrken med Df ck Df ck ~ 17% af f ck Df ck ~ 17% af f ck Reduktion af armeringsstyrken med Df yk Df yk > 30% af f yk Df yk > 30% af f yk Reduktion af lodret armering med DA s DA s > 30% af A s DA s > 30% af A s Page 8

9 Tabellen viser umiddelbart, at søjlen med det relativt beskedne slankhedsforhold via dimensioneringen med forhøjede partialkoefficienter opnår en god robusthed overfor de undersøgte utilsigtede påvirkninger og defekter. For den slankere væg med mere udprægede 2. ordens effekter på grund af udbøjningerne ses derimod en noget større følsomhed overfor variationer i parametrene DH, De og Dh. Dette giver anledning til at notere nogle principielle forhold, når metoden med øgede partialkoefficienter tages i anvendelse for lodret bærende nøgleelementer: a. Øgede partialkoefficienter kan i hovedtræk kun kompensere for begrænsede afvigelser i materialestyrker og i de lastvirkninger, der i forvejen er indeholdt i dimensioneringsmodellen. b. For elementer med begrænsede slankhedsforhold vil øgede partialkoefficienter på materialerne også med rimelighed kunne antages at kompensere for begrænsede afvigelser i tværsnitsdimensioner og excentriciteter. c. For elementer med større slankhedsforhold, hvor 2. ordens effekter er af væsentlig betydning for bæreevnen, vil øgede partialkoefficienter på materialerne kun i meget beskedent omfang kunne antages at kompensere for afvigelser i tværsnitsdimensioner og excentriciteter. I det aktuelle vægeksempel leder analysen især til overvejelser om at kunne optage større excentriciteter og tværlastpåvirkninger, end hvad dimensionering med øgede partialkoefficienter alene giver grundlag for. Som nævnt i afsnit 2.1 frarådes det de projekterende at søge en løsning ved at stramme krav til tolerancer og inspektionskrav til betonelementer. I bilag 1.3 og 1.4 er derfor set på forholdene, dels når betonstyrke og armeringsmængde øges en smule ekstra, dels når elementets tykkelse øges en smule. Jævnfør nedenstående tabel opnås med begge alternativer en fornuftig reduktion af følsomheden overfor variationer i de valgte parametre. Udgangsløsning Alternativ 1 Alternativ 2 Variation i parameter 180 mm væg h = 180 mm Y8/150 i b.s. f ck = 35 MPa 180 mm væg h = 180 mm Y10/150 i b.s. f ck = 40 MPa 200 mm væg h = 200 mm Y8/150 i b.s. f ck = 35 MPa Ekstra tværlast ækvivalent med vandret kraft DH DH ~ 0,5% af N Ed DH ~ 0,9% af N Ed DH ~ 1,6% af N Ed virkende midt på element (DH = 0,5 w L s) Forøgelse af excentriciteter med De De ~ 5 mm (De/h ~ 0,028) De ~ 11 mm (De/h ~ 0,061) De ~ 15 mm (De/h ~ 0,075) Reduktion af elementtykkelse med Dh Dh ~ 8 mm Dh ~ 15 mm Dh ~ 17 mm For den bygværksansvarlige, der ikke selv dimensionerer de lodret bærende betonelementer, tegner der sig herved en enkel mulighed ved at foreskrive, at disse nøgleelementer i brudstadiet skal dimensioneres for de faktisk forekommende regningsmæssige belastninger under anvendelse Page 9

10 af forhøjede partialkoefficienter på materialestyrkerne og skal desuden dimensioneres for de samme belastninger med et momenttillæg på DM = De N Ed, men nu under anvendelse af sædvanlige partialkoefficienter på materialestyrkerne. På baggrund af den ovenfor gennemgåede analyse kan foreslås at benytte værdien De = 0,05 h som et alment, supplerende robusthedskrav for disse elementtyper. På den sikre side kan den projekterende her nøjes med én beregning ved at medtage momenttillægget DM sammen med faktisk forekommende regningsmæssige belastninger under dimensioneringen med forhøjede partialkoefficienter. Henvisning til dokumentationen i nærværende bulletin vil i mange konkrete projekter være tilstrækkelig baggrund til at benytte ovenstående anbefalinger ved behandling af robusthedskravene. Det er i almindelighed ikke nødvendigt at gennemføre projektspecifikke variationsstudier for typiske bygningselementer, hvor sådanne i forvejen er tilgængelige. Til ovenstående resultater skal bemærkes, at etagekrydsenes lodrette bæreevne afhængig af udformningen kan være meget følsom overfor valget af vægtykkelse. Se mere i afsnit Robuste armeringsprincipper for vægelementer Af ressourcemæssige hensyn er det væsentligt, at den projekterende differentierer sine særlige krav til armeringsløsninger i vægelementer svarende til det nødvendige og tilstrækkelige i det enkelte tilfælde. Netop særlige krav til vægelementers armeringsdesign har meget stor betydning for både ressourceforbrug og arbejdsmiljø hos elementleverandøren. Uhensigtsmæssige armeringsløsninger er derfor både dyrere og mere kritiske for kvaliteten, end løsninger der er tilpasset produktionen. I Bilag 2 til nærværende bulletin er derfor præsenteret en række principper for armeringsløsninger til vægelementer, som vil kunne dække langt de fleste tilfælde: Type A1 Transportarmerede vægelementer: Udviklet til simple vægelementer påvirket af moderate lodrette og vandrette belastninger. Type A2 Middelsvært armerede vægelementer: Udviklet til simple vægelementer påvirket af større lodrette og vandrette belastninger. Type A3 Skivearmerede, homogene vægelementer: En udbygning af Type A2 til anvendelse i hårdt påvirkede, stabiliserende systemer eller i andre tilfælde, hvor der skal overføres store skivekræfter indbyrdes mellem vægelementer i det konstruktive system. Page 10

11 Type A4 Svært armerede vægelementer: Udviklet til mere komplicerede vægelementer, hvor der skal være større udsparinger for vinduer og døre etc., samtidig med vægelementerne indgår i konstruktive systemer med store og/eller komplekse lastvirkninger. Det sidste kan eksempelvis handle om selvbærende vægelementer dimensioneret efter stringermetoden, eventuelt samtidig med at der skal overføres store skivekræfter mellem vægelementer svarende til det under Type A3 nævnte. Produktionsomkostningerne afhænger af den valgte type, med Type A1 som den billigste model og med stigende omkostninger op til Type A4. Til gengæld er der ikke særlige vanskeligheder med at håndtere flere forskellige af disse vægtyper på den enkelte byggesag. Afvigelse fra principperne i de beskrevne typer bør derimod kun ske efter særlig aftale med elementleverandøren, eftersom afvigelser både kan være stærkt fordyrende og kan medføre væsentlige produktionsmæssige eller geometriske problemer, hvilket yderligere medfører øget risiko for fejl. 3.3 Snitkraftomlejring ved lokale svigt i vægkonstruktioner I konstruktioner med bærende vægge kan der enkelt skabes god sikkerhed mod overordnet kollaps som følge af lokale svigt, fordi vægkonstruktionen ved skivevirkning kan føre belastningerne uden om det lokale svigt som illustreret på nedenstående figur. Figuren viser et eksempel, hvordan lastnedføringen i en vægskive kan tilpasse sig, hvis en dørsøjle nederst mister sin bæreevne. Last fra højereliggende etager Last fra etagen Reaktion på underliggende etage Page 11

12 Lastnedføringen er på figuren symboliseret via tryktrajektorier, der som vist kan danne et ligevægtssystem, der trækker lasten uden om det skadede område. Løsningen fordrer, at der er ilagt vandret armering i etagekrydsene, med mindre vægskiven udgøres af ét sammenhængende element i hver etage. Aktiveringen af armering i etagekrydsene kræver, at der sikres forskydningsforbindelse mellem overside af vægelementer og etagekrydsudstøbningen. Denne forskydningsforbindelse vil sædvanligvis være sikret, når EC2 s krav til vandret fastholdelse af vægtoppen til etagedækket er opfyldt, se afsnit 4.2. På samme måde vil den fornødne vandrette armering i etagekrydset svarende til EC2 s krav om sammenhæng i dækskiverne almindeligvis være tilstrækkelig til, at vægskiver på den viste måde kan danne bro hen over et lokalt skadet område. Se afsnit 6.1. Som vist på vægudsnittet i den ene etage er det nødvendigt at anordne særlig bjælkearmering i dør- eller vinduesoverliggere for systemet også kan virke i vægge med udsparinger for døre og vinduer. Bjælkearmeringen skal bl.a. sikre, at last fra dækket i den enkelte etage kan trækkes hen over døren eller vinduet, væk fra zonen over det skadede område. Traditionelt anses en bjælkearmering, der sikrer at overliggere kan overføre en karakteristisk forskydningskraft af størrelsen 60 kn samt både positive og negative karakteristiske momenter af størrelsen 60 knm, for at være passende i høj konsekvensklasse. I normal konsekvensklasse foreslås halvt så store værdier. Den anviste bjælkearmering har ikke kun til formål at overføre lokal last fra dæk, men også at skabe mulighed for en rammevirkning i vægelementer med døre og vinduer, så vandrette kræfter i dækskiverne opstået på grund af lokale brud helt andre steder i konstruktionen kan føres ned gennem bygningen i et ulykkestilfælde. Også den alment krævede lodrette og vandrette sammenhængsarmering har væsentlig betydning for konstruktionens mulighed for at etablere alternative bæresystemer hen over lokale svigt. Som vist på figuren nedenfor kan den lodrette sammenhængsarmering hjælpe til at optage belastningen fra et dækfelt, der oprindelig er regnet understøttet over et skadet vægfelt, idet der kan være gode muligheder for, at den øverste del af den skadede væg stadig kan medvirke til at lede reaktionen fra dækket hen til ophængningsarmeringen. På illustrationen vist nedenfor er demonstreret et eksempel på en sådan kraftomlejring, hvor det lokale systems ligevægt blandt andet sikres ved at kræfterne H og C via dækskiverne føres ud til bygningens øvrige vægskiver, der således aktiveres til optagelse af det væltende moment hidrørende fra de lodrette lasters omlejring omkring det skadede felt. Fornødne kræfter af denne art, H og C, kan almindeligvis antages ført rundt i dækskiverne, når kravene til dækskiven refereret i afsnit 6.1 opfyldes. Page 12

13 H C Vedrørende de lodrette trækforbindelser omtalt ovenfor henvises til principperne bekrevet under Type A3 i Bilag 2. Page 13

14 4. Samlinger i lodret bærende systemer Samlingsløsningerne i det lodret bærende system skal både sikre effektiv fastholdelse af de lodret bærende dele og sikre at de lodrette kræfter med fornøden sikkerhed kan overføres mellem bygningsdelene. EC2 foreskriver direkte krav om fastholdelse af randsøjler og -vægge til dækskiven. I høj konsekvensklasse er dette i Danmark fastlagt til fastholdelse overfor vandrette kræfter af størrelsen 160 kn for søjler og 30 kn/m for vægge gældende for både top og bund af elementerne. I normal konsekvensklasse gælder krav om fastholdelse overfor vandrette kræfter af størrelsen 80 kn for søjler og 15 kn/m for vægge, men kun gældende for top af elementerne Hvor konstruktionen ikke direkte er dimensioneret for bortfald af et søjle- eller et vægelement bør det i høj konsekvensklasse anbefales, at der altid etableres mekanisk fastholdelse til dækskiven, også for indeliggende søjle- og vægelementer. Begrundelsen herfor er, at dynamiske effekter under eksempelvis jordskælv eller brand kan medføre, at normalkraften virkende i støbeskellet i elementernes bund kortvarigt kan neutraliseres, så der kan ske en vandret forskydning af et lodret bærende element, fordi friktionsmodstanden i støbeskellene samtidig forsvinder. Derfor anbefales for byggerier i høj konsekvensklasse, at der i alle lodret bærende væg- og søjleelementer etableres gennemgående trækforbindelser, så den fornødne friktionsmodstand kan opretholdes i både top og bund af elementerne. Dette gælder således også for nøgleelementer, hvor den lodrette trækforbindelse ikke indgår i et brosystem, der i ulykkestilfælde spænder hen over et beskadiget område som beskrevet i EC2, punkt (1). For byggerier i normal konsekvensklasse er der i Danmark som nævnt kun krav om vandrette fastholdelser af randsøjler og -vægge mellem elementtop og dækskive. Hermed er lodrette trækforbindelser i normal konsekvensklasse normalt kun nødvendige, hvor de indgår i et brosystem, der i et ulykkestilfælde forudsættes at spænde hen over et beskadiget område. Dette skyldes, at fastholdelse af søjle- og vægtoppe til dækskiven som regel uden vanskelighed kan sikres på enklere måde som beskrevet i det følgende. 4.1 Fastholdelser af søjler I høj konsekvensklasse kan den lodrette sammenhæng mellem søjler sikres ved hjælp af indstøbte lodrette armeringsjern afsluttet med armeringskoblere ved søjletoppen suppleret på byggepladsen med armeringsjern monteret i armeringskoblerne og ført en god forankringslængde op i den ovenstående søjle, idet der heri indstøbes korrugerede rør i den nederste del. Etablering af sådan lodret sammenhængsarmering i alle søjler svarende til optagelse af en trækkraft på mindst 320 kn vil muliggøre, at der bund af søjlerne kan sikres en fastholdelse overfor vandret forskydning på 0,5 320 = 160 kn/m i de vandrette støbeskel lige over dækniveau. Page 14

15 Søjletoppe på indeliggende søjler vil almindeligvis være omkranset af dækskiven, så yderligere tiltag for fastgørelse til dækskiven er unødvendig. Randsøjler må derimod fastholdes særskilt til dækskiven, hvilket eksempelvis kan sikres med særlige gevindstål ført gennem søjletoppen fra en ankerplade på ydersiden og en god forankringslængde ind i dækskiven i fuger mellem dækelementerne. For at sikre udførelsen heraf kan toppen af alle søjler i en højde svarende til dæktykkelsen ofte med fordel udføres som pladsstøbt. Se illustration i afsnit Fastholdelser af vægge I høj konsekvensklasse kan etablering af lodret sammenhængsarmering i alle lodret bærende vægge svarende til optagelse af en trækkraft på mindst 60 kn/m muliggøre, at der i bund af væggene kan sikres en fastholdelse overfor vandret forskydning på 0,5 60 = 30 kn/m i de vandrette støbeskel lige over og lige under dækket. Den lodrette sammenhæng mellem vægelementer kan sikres ved hjælp af lodrette armeringsjern ført en halv etagehøjde ned i underliggende konstruktion og en halv etagehøjde op i det aktuelle vægelement, idet der hertil indstøbes korrugerede rør i vægelementerne. Til brug for fastholdelse af de bærende vægge til dækskiverne anbefales det både i høj og i normal konsekvensklasse at placere opragende dorne eller bøjler i toppen af hvert vægelement for at muliggøre den fornødne fastholdelse til dækskiven. For indeliggende vægge vil ovennævnte tiltag sædvanligvis være tilstrækkelige. Ved dækskiver af huldæk vil de vandrette U-bøjler, der indgår i forskrifterne vedrørende huldæks brandmodstandsevne, normalt være tilstrækkelige til også at sikre randvæggenes vandrette fastholdelse sammen med ovennævnte dorne eller bøjler i toppen af vægelementerne. I dækløsninger med overbeton skal blot sikres en tilsvarende forankring af overbetonens armering i etagekrydset. 4.3 Bærende etagekryds Her skal peges på, at det for disse konstruktionstyper i høj grad er den projekterendes omhu med de konstruktive samlinger, der er afgørende for sikkerheden mod svigt. Det anbefales generelt, at den bygværksprojekterende i projektgrundlaget identificerer de særligt vigtige samlinger på linje med nøgleelementer. Dette kan ske ved at supplere listen over nøgleelementer med en liste over nøglesamlinger inden for hvert konstruktionsafsnit, og hvor der af den ansvarlige for det enkelte konstruktionsafsnit kræves en særskilt robusthedsanalyse af disse nøglesamlinger i den statiske dokumentation for konstruktionsafsnittet. Resultatet af disse Page 15

16 analyser bør føre til, at der stilles særlige krav om forholdsregler til kontrol af udførelsen, hvor denne er særlig afgørende for konstruktionens sikkerhed. Se eksempelvis det nedenfor viste etagekryds i en søjle-/bjælkekonstruktion. 4.4 Eksempel på robusthedsanalyse af nøglesamling i søjle-/bjælkekonstruktion. I det viste etagekryds skal først og fremmest bemærkes, at søjletoppen er smallere end søjleskaftet nedenfor bjælkevederlagene. Analysen af etagekrydset skal derfor under alle omstændigheder omfatte en særskilt undersøgelse af, at søjletoppen har tilstrækkelig styrke til at kunne overføre den samlede lodrette last fra de ovenliggende etager. Dette kan for denne søjletype ofte vise sig at være afgørende for den fornødne betonstyrke. Den viste samling er designet med den øverste del af søjletoppen pladsstøbt af hensyn til anordning af lodret og vandret sammenhængsarmering som nævnt i afsnit 4.1. Denne pladsstøbte del af etagekrydset skal udføres med mindst samme betonstyrke som lastnedføringen kræver af den præfabrikerede del af søjletoppen. Det skal understreges, at huldækelementerne ved søjlen skal udføres med udsparinger omkring søjletoppen, dels så søjlehovedet i etagekrydset bliver fuldt udstøbt, dels så huldækkene ikke udsættes for tvangskræfter på grund af en indspænding i vederlagszonen. Endelig skal betonen i den ovenstående søjle også kunne optage det koncentrerede tryk i bunden, hvilket kan blive dimensionerende for denne søjles betonstyrke. Udførelsesmæssigt er det især kritisk, at den pladsstøbte del af søjletoppen udføres med den korrekte betontype, eftersom den betontype i de nedre etager typisk skal være stærkere end den fugebeton, der generelt anvendes til sammenstøbning af etagedækkene. Page 16

17 Er nederste søjle et nøgleelement gælder det samme for den pladsstøbte del af søjletoppen, der i så fald designes med partialkoefficienten på betonen øget med faktor 1,2. I dette tilfælde kan en sådan faktor modsvare, at konstruktionen kan opretholde normalt sikkerhedsniveau, selv om det effektive trykareal i søjletoppen reduceres med ca. 16%, hvilket er et rimeligt niveau med henblik på at kompensere for reduktion af trykarealet inden for rammerne af relativt store tolerancer. Alternativt kunne det ud fra samme betragtning tolereres, at betonstyrken i den pladsstøbte del af søjletoppen isoleret set reduceres med ca. 16%. Men her er den største risiko ikke, at der sker grove fejl i sammensætningen af den foreskrevne beton. Langt større risiko er, at der til denne udstøbning, hvor der måske kræves en betonstyrke f ck = 45 MPa, i stedet udføres med samme beton som anvendt i de omkringliggende dækfuger, hvor der måske er krævet en betonstyrke på f ck = 25 MPa. Alene derfor skal der kræves ekstra fokus på samlingen under udførelsen. Men også armeringen i søjletoppen og den foreskrevne sammenhængsarmering i etagekrydset jf. bl.a. afsnit 4.1 skal udføres meget omhyggeligt efter projektet. For den aktuelle samlingsløsning leder robusthedsanalysen derfor umiddelbart til krav om 100% kontrol omfattende: - vandrette placeringsmål for elementets søjletop - etagekrydsets armering før støbning med fotodokumentation - anvendt betontype - ovenstående søjles placeringsmål sammen med krav om brug af særlig indfarvet beton til den pladsstøbte søjletop. Page 17

18 5. Vandret bærende bygningsdele 5.1 Sædvanlige elementdæk Elementerne i huldæk og mindre ribbedæk med overbeton har almindeligvis en så begrænset størrelse at de ikke falder inden for, hvad der klassificeres som afgørende dele af konstruktionen. I langt de fleste tilfælde vil der kunne argumenteres for at der for disse elementer kun er beskeden følsomhed overfor utilsigtede påvirkninger eller defekter, eksempelvis ved at betragte mulighederne for bæring af et svigtende dækelement via tværfordeling til naboelementerne. 5.2 Større vandret bærende elementer De større vandret bærende bygningsdele, så som hovedbjælker, selvbærende vægskiver, portalbjælker etc. vil almindeligvis være statisk bestemte enkeltelementer, hvor omfordeling af belastninger i tilfælde af svigt i konstruktionsdele sjældent vil kunne eftervises. For disse elementer sikres robustheden derfor oftest via indledningens model A. På linje med det nævnte i forbindelse med etagekryds skal her peges på, at det for disse konstruktionstyper i høj grad er den projekterendes omhu med de konstruktive detaljer, der er afgørende for sikkerheden mod svigt. Her kan eksempelvis nævnes vederlagsdetaljer eller forankringsdetaljer for armeringen i de enkelte elementer, hvor der typisk ikke kan kompenseres for fejlagtige udformninger ved at øge partialkoefficienterne på materialerne. Derfor bør armeringsløsningen i konstruktivt afgørende detaljer altid analyseres via en gittermodel, se eksemplet i afsnit 5.3. Disse forhold gælder ikke kun for de vandret bærende elementer, der direkte er identificeret som nøgleelementer. Det anbefales generelt, at den ansvarlige for det pågældende konstruktionsafsnits statiske dokumentation identificerer de særligt vigtige elementdetaljer i form af en liste over nøgledetaljer inden for konstruktionsafsnittet. Udgangspunktet er, at det er producenten der har erfaringen med elementdetaljerne og dermed véd, hvor der er behov for særlig fokus. Det forudsættes at nøgledetaljerne behandles med særlig omhu i den statiske dokumentation for konstruktionsafsnittet, og at der foretages dokumenteret kontrol af beregninger og tegninger for disse nøgledetaljer. 5.3 Eksempel på robusthedsanalyse af nøgledetalje ved bjælkevederlag Nedenstående eksempel viser forholdene i en bjælkeende med et såkaldt sadelhak over vederlaget. Ud over den samlede lodrette reaktion, V, bør der ved en sådan løsning altid tages hensyn til, at der på grund af dilatationsbevægelser og lejefriktion også vil opstå en vandret last, H, der kan have væsentlig betydning for vederlagets bæreevne. Page 18

19 2 C 1 1 Q 1 T 1 C 2 T 2 V Q 2 3 H V Vinklerne Q1 og Q2 på figuren afhænger af de aktuelle forhold; men herefter gælder følgende noter alment: Ad 1 : Vederlagsarmeringen skal forankres for kraften T 1 = H + V cotq 1 Ad 2 : Ophængningsbøjlerne skal kunne optage den fulde lodrette last, V Ad 3 : Bjælkens hovedarmering skal for enden lokalt forankres for kraften T 2 = V cotq 2 Med denne form for analyser skal den projekterende dokumentere, at samlingen er dimensioneret for alle relevante lastvirkninger samt at armeringen er placeret korrekt, så der kan etableres et lokalt kraftsystem i ligevægt. Hvis dette ikke opfyldes, hjælper øgede partialkoefficienter på materialerne ikke. Almindeligt forekommende afvigelser i geometrien kan med rimelighed i sådan en detalje kompenseres ved at øge partialkoefficienterne på materialerne med faktor 1,2. Hvis eksempelvis den vandrette armering (re. T 1 ) ligger højere end tilstræbt eller at ophængningsarmeringen er placeret med tyngdepunktet lidt længere fra vederlaget en tilstræbt vil cotq 1 øges i forhold til den teoretiske værdi og dermed forøges kraften T 1 svarende til ovenstående formel. Den forøgede partialkoeffient på materialerne vil i dette tilfælde, både for så vidt angår armeringens egen optagelse af T 1 og forankringen heraf over vederlaget, betyde at det normale krav til sikkerhedsniveau på disse punkter er opfyldt selv for ganske store variationer i cotq 1. Hvis eksempelvis der er tilstræbt cotq 1 = 1 i en beregning med partialkoefficienterne på materialerne øget med faktor 1,2, så vil det normale sikkerhedsniveau være opretholdt selv ved en afvigelse i armeringsplaceringen svarende til, at cotq 1 varierer mellem 1,2 og 1,3 afhængig af størrelsen H/V. Løsningen er således ganske robust overfor afvigelser i armeringsplaceringen. Page 19

20 Derimod er løsningen meget følsom overfor fejl i retning af eksempelvis forkerte armeringsdimensioner, antallet af vandrette U-bøjler til optagelse af T 1, antallet af ophængningsbøjler til optagelse af V eller forankringen af hovedarmeringen til optagelse af T 2. En enkel løsning kan dermed være at tilvejebringe en supplerende sikring af nøgledetaljens robusthed ved at indlægge et par ekstra skråjern, formet som vist på figuren nedenfor. Hermed kan der som vist på figuren for en meget beskeden omkostning tilvejebringes alternative kraftveje, på en måde, så den samlede løsnings følsomhed overfor defekter reduceres markant. Skråjern Ved produktion af CE-mærkede betonelementer, der foregår under kontrolmæssigt betryggende forhold, vil der med en sådan løsning ikke være behov for at iværksætte særskilt inspektion under udførelsen. For typiske elementdetaljer vil producenten med fordel kunne udarbejde dokumentationsblade for robusthedsanalyser af denne art, så der blot kan henvises hertil i de enkelte projekter. 5.4 Eksempel på robusthedsanalyse af nøgledetaljer i selvbærende vægskive De nedenstående opstalter viser et vægelement, der fungerer som en selvbærende vægskive mellem to understøtninger. Opstalt A: Stringersystem Opstalt B: Gitteranalogi Page 20

Betonelement-Foreningen, 2. udgave, august 2014

Betonelement-Foreningen, 2. udgave, august 2014 BEF Bulletin no. 3 Betonelementbyggeriers robusthed Udarbejdet af: Jesper Frøbert Jensen ALECTIA A/S Betonelement-Foreningen, 2. udgave, august 2014 Page 1 Forord... 3 1. Indledning... 4 2 Metoder til

Læs mere

Projekteringsprincipper for Betonelementer

Projekteringsprincipper for Betonelementer CRH Concrete Vestergade 25 DK-4130 Viby Sjælland T. + 45 7010 3510 F. +45 7637 7001 info@crhconcrete.dk www.crhconcrete.dk Projekteringsprincipper for Betonelementer Dato: 08.09.2014 Udarbejdet af: TMA

Læs mere

JFJ tonelementbyggeri.

JFJ tonelementbyggeri. Notat Sag Udvikling Konstruktioner Projektnr.. 17681 Projekt BEF-PCSTATIK Dato 2009-03-03 Emne Krav til duktilitet fremtidig praksis for be- Initialer JFJ tonelementbyggeri. Indledning Overordnet set omfatter

Læs mere

5 SKIVESTATIK 1. 5.1 Dækskiver 2 5.1.1 Homogen huldækskive 4 5.1.2 Huldækskive beregnet ved stringermetoden 8 5.1.2.1 Eksempel 15

5 SKIVESTATIK 1. 5.1 Dækskiver 2 5.1.1 Homogen huldækskive 4 5.1.2 Huldækskive beregnet ved stringermetoden 8 5.1.2.1 Eksempel 15 5 Skivestatik 5 SKIVESTATIK 1 5.1 Dækskiver 2 5.1.1 Homogen huldækskive 4 5.1.2 Huldækskive beregnet ved stringermetoden 8 5.1.2.1 Eksempel 15 5.2 Vægskiver 21 5.2.1 Vægopstalter 22 5.2.2 Enkeltelementers

Læs mere

Projekteringsanvisning for Ytong porebetondæk og dæk/væg samlinger

Projekteringsanvisning for Ytong porebetondæk og dæk/væg samlinger Projekteringsanvisning for Ytong porebetondæk og dæk/væg samlinger 2012 10 10 SBI og Teknologisk Institut 1 Indhold 1 Indledning... 3 2 Definitioner... 3 3 Normforhold. Robusthed... 3 4. Forudsætninger...

Læs mere

TUNGE SKILLEVÆGGE PÅ FLERE LAG TRYKFAST ISOLERING. Input Betondæk Her angives tykkelsen på dækket samt den aktuelle karakteristiske trykstyrke.

TUNGE SKILLEVÆGGE PÅ FLERE LAG TRYKFAST ISOLERING. Input Betondæk Her angives tykkelsen på dækket samt den aktuelle karakteristiske trykstyrke. pdc/jnk/sol TUNGE SKILLEVÆGGE PÅ FLERE LAG TRYKFAST ISOLERING Indledning Teknologisk Institut, byggeri har for Plastindustrien i Danmark udført dette projekt vedrørende bestemmelse af bæreevne for tunge

Læs mere

Armeringsstål Klasse A eller klasse B? Bjarne Chr. Jensen Side 1. Armeringsstål Klasse A eller klasse B?

Armeringsstål Klasse A eller klasse B? Bjarne Chr. Jensen Side 1. Armeringsstål Klasse A eller klasse B? Bjarne Chr. Jensen Side 1 Armeringsstål Klasse A eller klasse B? Bjarne Chr. Jensen 13. august 2007 Bjarne Chr. Jensen Side 2 Introduktion Nærværende lille notat er blevet til på initiativ af direktør

Læs mere

10 DETAILSTATIK 1. 10 Detailstatik

10 DETAILSTATIK 1. 10 Detailstatik 10 Detailstatik 10 DETAILSTATIK 1 10.1 Detailberegning ved gitteranalogien 3 10.1.1 Gitterløsninger med lukkede bøjler 7 10.1.2 Gitterløsninger med U-bøjler 11 10.1.3 Gitterløsninger med sædvanlig forankring

Læs mere

Transportarmerede betonelementvægge. Deformationsforhold og svigttype. 13. marts 2012 ALECTIA A/S

Transportarmerede betonelementvægge. Deformationsforhold og svigttype. 13. marts 2012 ALECTIA A/S B E T O N E L E M E N T F O R E N I N G E N Transportarmerede betonelementvægge Deformationsforhold og svigttype 13. marts 2012 Teknikerbyen 34 2830 Virum Denmark Tlf.: +45 88 19 10 00 Fax: +45 88 19 10

Læs mere

Nyt generaliseret beregningsmodul efter EC2 til vægge, søjler og bjælker. Juni 2012.

Nyt generaliseret beregningsmodul efter EC2 til vægge, søjler og bjælker. Juni 2012. Nyt generaliseret beregningsmodul efter EC2 til vægge, søjler og bjælker. Juni 2012. Betonelement-Foreningen tilbyder nu på hjemmesiden et nyt beregningsmodul til fri afbenyttelse. Modulet er et effektivt

Læs mere

BEF Bulletin No 2 August 2013

BEF Bulletin No 2 August 2013 Betonelement- Foreningen BEF Bulletin No 2 August 2013 Wirebokse i elementsamlinger Rev. B, 2013-08-22 Udarbejdet af Civilingeniør Ph.D. Lars Z. Hansen ALECTIA A/S i samarbejde med Betonelement- Foreningen

Læs mere

TUNGE SKILLEVÆGGE PÅ TRYKFAST ISOLERING BEREGNINGSMODELLER

TUNGE SKILLEVÆGGE PÅ TRYKFAST ISOLERING BEREGNINGSMODELLER pdc/sol TUNGE SKILLEVÆGGE PÅ TRYKFAST ISOLERING BEREGNINGSMODELLER Indledning Teknologisk Institut, byggeri har for EPS sektionen under Plastindustrien udført dette projekt vedrørende anvendelse af trykfast

Læs mere

Dimensionering af samling

Dimensionering af samling Bilag A Dimensionering af samling I det efterfølgende afsnit redegøres for dimensioneringen af en lodret støbeskelssamling mellem to betonelementer i tværvæggen. På nedenstående gur ses, hvorledes tværvæggene

Læs mere

BEF Bulletin no. 4. Huldæk og brand. Betonelement-Foreningen, september 2013. Udarbejdet af: Jesper Frøbert Jensen ALECTIA A/S. Betonelementforeningen

BEF Bulletin no. 4. Huldæk og brand. Betonelement-Foreningen, september 2013. Udarbejdet af: Jesper Frøbert Jensen ALECTIA A/S. Betonelementforeningen Middel temperaturstigning i ovn (Celsius) Tid (minutter) 0 20 40 60 80 100 120 140 160 1000 900 SP-3 800 700 600 500 400 300 SP-1 200 SP-2 100 0 BEF Bulletin no. 4 Udarbejdet af: Jesper Frøbert Jensen

Læs mere

Betonelement a s leverer og monterer efter aftale på byggepladsen. Angående montage se Betonelement a s' leverandørbrugsanvisning.

Betonelement a s leverer og monterer efter aftale på byggepladsen. Angående montage se Betonelement a s' leverandørbrugsanvisning. Bærende rammer i levende byggeri Generelt Huldæk anvendes som etageadskillelse og tagdæk i bolig-, erhvervs- og industribyggeri. Huldæk kan også anvendes som vægelementer. Betonelement a s producerer forspændte

Læs mere

Eftervisning af bygningens stabilitet

Eftervisning af bygningens stabilitet Bilag A Eftervisning af bygningens stabilitet I det følgende afsnit eftervises, hvorvidt bygningens bærende konstruktioner har tilstrækkelig stabilitet til at optage de laster, der påvirker bygningen.

Læs mere

DS/EN 1993-1-1 DK NA:2010

DS/EN 1993-1-1 DK NA:2010 Nationalt Anneks til Eurocode 3: Stålkonstruktioner Del 1-1: Generelle regler samt regler for bygningskonstruktioner Forord Dette nationale anneks (NA) er en sammenskrivning af EN 1993-1-1 DK NA:2007 og

Læs mere

DS/EN 1520 DK NA:2011

DS/EN 1520 DK NA:2011 Nationalt anneks til DS/EN 1520:2011 Præfabrikerede armerede elementer af letbeton med lette tilslag og åben struktur med bærende eller ikke bærende armering Forord Dette nationale anneks (NA) knytter

Læs mere

Nærværende anvisning er pr 28. august foreløbig, idet afsnittet om varsling er under bearbejdning

Nærværende anvisning er pr 28. august foreløbig, idet afsnittet om varsling er under bearbejdning Nærværende anvisning er pr 28. august foreløbig, idet afsnittet om varsling er under bearbejdning AUGUST 2008 Anvisning for montageafstivning af lodretstående betonelementer alene for vindlast. BEMÆRK:

Læs mere

Schöck Isokorb type KS

Schöck Isokorb type KS Schöck Isokorb type 20 1VV 1 Schöck Isokorb type Indhold Side Tilslutningsskitser 13-135 Dimensioner 136-137 Bæreevnetabel 138 Bemærkninger 139 Beregningseksempel/bemærkninger 10 Konstruktionsovervejelser:

Læs mere

11/3/2002. Statik og bygningskonstruktion Program lektion Søjlen. Søjlen. Søjlen Pause

11/3/2002. Statik og bygningskonstruktion Program lektion Søjlen. Søjlen. Søjlen Pause Statik og bygningskonstruktion Program lektion 10 8.30-9.15 9.15 9.30 Pause 9.30 10.15 af bygningskonstruktioner 10.15 10.45 Pause 10.45 1.00 Opgaveregning Kursusholder Poul Henning Kirkegaard, institut

Læs mere

Rapport Baggrund. 2 Formål. 3 Resumé. Fordeling:

Rapport Baggrund. 2 Formål. 3 Resumé. Fordeling: Rapport 02 Kunde Favrskov Kommune Projektnr. 1023294-001 Projekt Rønbækhallen Dato 2016-11-29 Emne Tagkollaps Initialer PRH Fordeling: 1 Baggrund Natten mellem den 5. og 6. november 2016 er to stålrammer

Læs mere

Elementsamlinger med Pfeifer-boxe Beregningseksempler

Elementsamlinger med Pfeifer-boxe Beregningseksempler M. P. Nielsen Thomas Hansen Lars Z. Hansen Elementsamlinger med Pfeifer-boxe Beregningseksempler DANMARKS TEKNISKE UNIVERSITET Rapport BYG DTU R-113 005 ISSN 1601-917 ISBN 87-7877-180-3 Forord Nærværende

Læs mere

Bilag 6. Vejledning REDEGØRELSE FOR DEN STATISKE DOKUMENTATION

Bilag 6. Vejledning REDEGØRELSE FOR DEN STATISKE DOKUMENTATION Bilag 6 Vejledning REDEGØRELSE FOR DEN STATISKE DOKUMENTATION INDLEDNING Redegørelsen for den statiske dokumentation består af: En statisk projekteringsrapport Projektgrundlag Statiske beregninger Dokumentation

Læs mere

DS/EN 15512 DK NA:2011

DS/EN 15512 DK NA:2011 DS/EN 15512 DK NA:2011 Nationalt anneks til Stationære opbevaringssystemer af stål Justerbare pallereolsystemer Principper for dimensionering. Forord Dette nationale anneks (NA) er det første danske NA

Læs mere

Vejledning. Anvendelse af korrugerede rør i vægge. Dato: 21.08.2013 Udarbejdet af: TMA Kontrolleret af: Revision: LRE 2 Revisionsdato: 20.01.

Vejledning. Anvendelse af korrugerede rør i vægge. Dato: 21.08.2013 Udarbejdet af: TMA Kontrolleret af: Revision: LRE 2 Revisionsdato: 20.01. Vestergade 25 DK-4130 Viby Sjælland Vejledning T. + 45 7010 3510 F. +45 7637 7001 info@crhconcrete.dk www.crhconcrete.dk i vægge Dato: 21.08.2013 Udarbejdet af: TMA Kontrolleret af: Revision: LRE 2 Revisionsdato:

Læs mere

Murskive. En stabiliserende muret væg har dimensionerne: H: 2,8 m. L: 3,5 m. t: 108 mm. og er påvirket af en vandret og lodret last på.

Murskive. En stabiliserende muret væg har dimensionerne: H: 2,8 m. L: 3,5 m. t: 108 mm. og er påvirket af en vandret og lodret last på. Murskive En stabiliserende muret væg har dimensionerne: H: 2,8 m L: 3,5 m t: 108 mm og er påvirket af en vandret og lodret last på P v: 22 kn P L: 0 kn Figur 1. Illustration af stabiliserende skive 1 Bemærk,

Læs mere

Statisk analyse. Projekt: Skolen i bymidten Semesterprojekt: 7B - E2013 Dokument: Statisk analyse Dato: 16-07-2014

Statisk analyse. Projekt: Skolen i bymidten Semesterprojekt: 7B - E2013 Dokument: Statisk analyse Dato: 16-07-2014 2014 Statisk analyse Statisk Redegørelse: Marienlyst alle 2 3000 Helsingør Beskrivelse af projekteret bygning. Hovedsystem: Bygningens statiske hovedsystem udgøres af et skivesystem bestående af dæk og

Læs mere

4 HOVEDSTABILITET 1. 4.1 Generelt 2

4 HOVEDSTABILITET 1. 4.1 Generelt 2 4 HOVEDSTABILITET 4 HOVEDSTABILITET 1 4.1 Generelt 2 4.2 Vandret lastfordeling 4 4.2.1.1 Eksempel - Hal efter kassesystemet 7 4.2.2 Lokale vindkræfter 10 4.2.2.1 Eksempel Hal efter skeletsystemet 11 4.2.2.2

Læs mere

NemStatik. Stabilitet - Programdokumentation. Anvendte betegnelser. Beregningsmodel. Make IT simple

NemStatik. Stabilitet - Programdokumentation. Anvendte betegnelser. Beregningsmodel. Make IT simple Stabilitet - Programdokumentation Anvendte betegnelser Vægskive Et rektangulært vægstykke/vægelement i den enkelte etage, som indgår i det lodret bærende og stabiliserende system af vægge N Ed M Ed e l

Læs mere

11 TVANGSDEFORMATIONER 1

11 TVANGSDEFORMATIONER 1 11 TVANGSDEFORMATIONER 11 TVANGSDEFORMATIONER 1 11.1 Tvangsdeformationer 2 11.1.1 Luftfugtighedens betydning 2 11.1.2 Temperaturens betydning 3 11.1.3 Lastens betydning 4 11.1.3.1 Eksempel Fuge i indervæg

Læs mere

A. Konstruktionsdokumentation Initialer : MOHI A2.1 Statiske beregninger - Konstruktionsafsnit Fag : BÆR. KONST. Dato : 08-06-2012 Side : 1 af 141

A. Konstruktionsdokumentation Initialer : MOHI A2.1 Statiske beregninger - Konstruktionsafsnit Fag : BÆR. KONST. Dato : 08-06-2012 Side : 1 af 141 Side : 1 af 141 Indhold A2.2 Statiske beregninger Konstruktionsafsnit 2 1. Dimensionering af bjælke-forbindelsesgangen. 2 1.1 Dimensionering af bjælke i modulline G3 i Tagkonstruktionen. 2 1.2 Dimensionering

Læs mere

Et vindue har lysningsvidden 3,252 m. Lasten fra den overliggende etage er 12.1 kn/m.

Et vindue har lysningsvidden 3,252 m. Lasten fra den overliggende etage er 12.1 kn/m. Teglbjælke Et vindue har lysningsvidden 3,252 m. Lasten fra den overliggende etage er 12.1 kn/m. Teglbjælken kan udføres: som en præfabrikeret teglbjælke, som minimum er 3 skifter høj eller en kompositbjælke

Læs mere

Om sikkerheden af højhuse i Rødovre

Om sikkerheden af højhuse i Rødovre Om sikkerheden af højhuse i Rødovre Jørgen Munch-Andersen og Jørgen Nielsen SBi, Aalborg Universitet Sammenfatning 1 Revurdering af tidligere prøvning af betonstyrken i de primære konstruktioner viser

Læs mere

SIGNATURER: Side 1. : Beton in-situ, eller elementer (snitkontur) : Hul i beton. : Udsparing, dybde angivet. : Udsparing, d angiver dybde

SIGNATURER: Side 1. : Beton in-situ, eller elementer (snitkontur) : Hul i beton. : Udsparing, dybde angivet. : Udsparing, d angiver dybde Side 1 SIGNATURER: : Beton in-situ, eller elementer (snitkontur) : Hård isolering (vandfast) : Blød isolering : Hul i beton : Udsparing, dybde angivet : Støbeskel : Understøbning/udstøbning : Hul, ø angiver

Læs mere

RENOVERING AF LØGET BY AFDELING 42

RENOVERING AF LØGET BY AFDELING 42 APRIL 2013 AAB VEJLE RENOVERING AF LØGET BY AFDELING 42 A1 PROJEKTGRUNDLAG ADRESSE COWI A/S Havneparken 1 7100 Vejle TLF +45 56 40 00 00 FAX +45 56 40 99 99 WWW cowi.dk APRIL 2013 AAB VEJLE RENOVERING

Læs mere

Styring af revner i beton. Bent Feddersen, Rambøll

Styring af revner i beton. Bent Feddersen, Rambøll Styring af revner i beton Bent Feddersen, Rambøll 1 Årsag Statisk betingede revner dannes pga. ydre last og/eller tvangsdeformationer. Eksempler : Trækkræfter fra ydre last (fx bøjning, forskydning, vridning

Læs mere

I dette kapitel behandles udvalgte dele af bygningens bærende konstruktioner. Følgende emner behandles

I dette kapitel behandles udvalgte dele af bygningens bærende konstruktioner. Følgende emner behandles 2. Skitseprojektering af bygningens statiske system KONSTRUKTION I dette kapitel behandles udvalgte dele af bygningens bærende konstruktioner. Følgende emner behandles : Totalstabilitet af bygningen i

Læs mere

EN DK NA:2007

EN DK NA:2007 EN 1991-1-6 DK NA:2007 Nationalt Anneks til Eurocode 1: Last på bygværker Del 1-6: Generelle laster Last på konstruktioner under udførelse Forord I forbindelse med implementeringen af Eurocodes i dansk

Læs mere

Murprojekteringsrapport

Murprojekteringsrapport Side 1 af 6 Dato: Specifikke forudsætninger Væggen er udført af: Murværk Væggens (regningsmæssige) dimensioner: Længde = 6,000 m Højde = 2,800 m Tykkelse = 108 mm Understøtningsforhold og evt. randmomenter

Læs mere

PRAKTISK PROJEKTERING EKSEMPEL

PRAKTISK PROJEKTERING EKSEMPEL PRAKTISK PROJEKTERING EKSEMPEL FORUDSÆTNINGER Dette eksempel er tilrettet fra et kursus afholdt i 2014: Fra arkitekten fås: Plantegning, opstalt, snit (og detaljer). Tegninger fra HusCompagniet anvendes

Læs mere

MURVÆRKSPROJEKTERING VER. 4.0 SBI - MUC 01.10.06 DOKUMENTATION Side 1

MURVÆRKSPROJEKTERING VER. 4.0 SBI - MUC 01.10.06 DOKUMENTATION Side 1 DOKUMENTATION Side 1 Beregning af murbuer Indledning. Dette notat beskriver den numeriske model til beregning af stik og skjulte buer. Indhold Forkortelser Definitioner Forudsætninger Beregningsforløb

Læs mere

Sammenligning af normer for betonkonstruktioner 1949 og 2006

Sammenligning af normer for betonkonstruktioner 1949 og 2006 Notat Sammenligning af normer for betonkonstruktioner 1949 og 006 Jørgen Munch-Andersen og Jørgen Nielsen, SBi, 007-01-1 Formål Dette notat beskriver og sammenligner normkravene til betonkonstruktioner

Læs mere

Sag nr.: 12-0600. Matrikel nr.: Udført af: Renovering 2013-02-15

Sag nr.: 12-0600. Matrikel nr.: Udført af: Renovering 2013-02-15 STATISKE BEREGNINGER R RENOVERING AF SVALEGANG Maglegårds Allé 65 - Buddinge Sag nr.: Matrikel nr.: Udført af: 12-0600 2d Buddinge Jesper Sørensen : JSO Kontrolleret af: Finn Nielsen : FNI Renovering 2013-02-15

Læs mere

Sammenligning af sikkerhedsniveauet for elementer af beton og letbeton

Sammenligning af sikkerhedsniveauet for elementer af beton og letbeton Dansk Betondag 2004 Hotel Svendborg, Fyn 23. september 2004 Sammenligning af sikkerhedsniveauet for elementer af beton og letbeton Ingeniørdocent, lic. techn. Bjarne Chr. Jensen Niels Bohrs Allé 1 5230

Læs mere

Additiv Decke - beregningseksempel. Blivende tyndpladeforskalling til store spænd

Additiv Decke - beregningseksempel. Blivende tyndpladeforskalling til store spænd MUNCHOLM A/S TOLSAGERVEJ 4 DK-8370 HADSTEN T: 8621-5055 F: 8621-3399 www.muncholm.dk Additiv Decke - beregningseksempel Indholdsfortegnelse: Side 1: Forudsætninger Side 2: Spændvidde under udstøbning Side

Læs mere

Konsekvensklasser for bygningskonstruktioner

Konsekvensklasser for bygningskonstruktioner DS-information DS/INF 1990 1. udgave 2012-04-24 Konsekvensklasser for bygningskonstruktioner Consequences classes for building constructions DS/INF 1990 København DS projekt: M258329 ICS: 91.070.10; 91.080.01

Læs mere

Betonkonstruktioner, 3 (Dimensionering af bjælker)

Betonkonstruktioner, 3 (Dimensionering af bjælker) Betonkonstruktioner, 3 (Dimensionering af bjælker) Bøjningsdimensionering af bjælker - Statisk bestemte bjælker - Forankrings og stødlængder - Forankring af endearmering - Statisk ubestemte bjælker Forskydningsdimensionering

Læs mere

Implementering af Eurocode 2 i Danmark

Implementering af Eurocode 2 i Danmark Implementering af Eurocode 2 i Danmark Bjarne Chr. Jensen ingeniørdocent, lic. techn. Syddansk Universitet Eurocode 2: Betonkonstruktioner Del 1-1: 1 1: Generelle regler samt regler for bygningskonstruktioner

Læs mere

Kollaps af Rødovre Skøjtehal

Kollaps af Rødovre Skøjtehal Notat Kollaps af Rødovre Skøjtehal Indledning Den 14. januar 2009 kollapser gitterspær, betondæk og vægge under montagen på ny skøjtehal i Rødovre, Rødovre Parkvej 425. Nedenstående betragtninger er et

Læs mere

12 TOLERANCER 1 12 TOLERANCER

12 TOLERANCER 1 12 TOLERANCER 12 TOLERANCER 12 TOLERANCER 1 12.1 Tolerancer 2 12.1.1 Betonelementers mål 2 12.1.2 Byggepladsmål 2 12.1.3 Grundlæggende tolerancebegreber 3 12.1.4 Vejledende beregning til valg af toleranceangivelser

Læs mere

DIPLOM PROJEKT AF KASPER NIELSEN

DIPLOM PROJEKT AF KASPER NIELSEN DIPLOM PROJEKT AF KASPER NIELSEN Titelblad Tema: Afgangsprojekt. Projektperiode: 27/10 2008-8/1 2009. Studerende: Fagvejleder: Kasper Nielsen. Sven Krabbenhøft. Kasper Nielsen Synopsis Dette projekt omhandler

Læs mere

3.4.1. y 2. 274 Gyproc Håndbog 9. Projektering / Etagedæk og Lofter / Gyproc TCA-Etagedæk. Gyproc TCA-Etagedæk. Dimensionering

3.4.1. y 2. 274 Gyproc Håndbog 9. Projektering / Etagedæk og Lofter / Gyproc TCA-Etagedæk. Gyproc TCA-Etagedæk. Dimensionering Projektering / Etagedæk og Lofter / Dimensionering Dimensioneringstabeller De efterfølgende tabeller 1 og 2 indeholder maksimale spændvidder for Gyproc TCA etagedæk udført med C-profiler. Spændvidder er

Læs mere

Drejebog Elementmontage. Logistik & Produktionsvejledning. 23.04.2015 Mikael D. Lauridsen

Drejebog Elementmontage. Logistik & Produktionsvejledning. 23.04.2015 Mikael D. Lauridsen Drejebog Elementmontage Logistik & Produktionsvejledning 23.04.2015 Mikael D. Lauridsen Indholdsfortegnelse Drejebog Elementmontage 1 Logistik 3 Byggeplads 3 Procesopstartsmøde 4 Sikkerhed 4 Montage 5

Læs mere

Udførelsesstandard for betonarbejder

Udførelsesstandard for betonarbejder Byggelovgivning (Byggeloven + BR 10) DS/ Nationalt anneks EN 1990 DK NA DS 409 DS/ Nationalt anneks EN 1992 DK NA DS 411 Udførelsesstandard for betonarbejder DS/EN 13670 og DS 2427 DS 2426 DS481 DS/ DS/

Læs mere

Brikfarvekoder. Revideret 15. januar 2014. Oplysninger om koder på brik: CEdeklaration. Brikfarve

Brikfarvekoder. Revideret 15. januar 2014. Oplysninger om koder på brik: CEdeklaration. Brikfarve Brikfarvekoder Oplysninger om koder på brik: Brikfarve CEdeklaration Bemærkinger Anvendelse Exponeringsklasse MX3.2 til MX5 Aggressivt kemisk miljø BLÅ RØD Korrosionsbestandighed Frostfasthed 1 F F2 Rustfast

Læs mere

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Lysbrovej 13

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Lysbrovej 13 Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Lysbrovej 13 Dato: 22. Januar 2015 Byggepladsens adresse: Lysbrovej 13 Matr. nr. 6af AB Clausen A/S STATISK DUMENTATION Adresse: Lysbrovej

Læs mere

Montage af Ytong Dækelementer

Montage af Ytong Dækelementer Montage af Ytong Dækelementer Generelt Aflæsning af elementer Ytong Dækelementer leveres med lastbil uden kran. Bygherren skal sikre gode tilkørselsforhold på fast vej. Elementerne leveres på paller, der

Læs mere

Yderligere oplysninger om DSK samt tilsluttede leverandører, kan fås ved henvendelse til:

Yderligere oplysninger om DSK samt tilsluttede leverandører, kan fås ved henvendelse til: Landbrugets Byggeblade Konstruktioner Bærende konstruktioner Produktkrav for spaltegulvselementer af beton Bygninger Teknik Miljø Arkivnr. 102.09-21 Udgivet Dec. 1990 Revideret 19.06.2009 Side 1 af 5 Dette

Læs mere

DS/EN DK NA:2011

DS/EN DK NA:2011 DS/EN 1992-1-2 DK NA:2011 Nationalt anneks til Eurocode 2: Betonkonstruktioner Del 1-2: Generelle regler Brandteknisk dimensionering Forord Dette nationale anneks (NA) er en revision af og erstatter EN

Læs mere

Statiske beregninger. - metode og dokumentation. af Bjarne Chr. Jensen

Statiske beregninger. - metode og dokumentation. af Bjarne Chr. Jensen Statiske beregninger - metode og dokumentation af Bjarne Chr. Jensen Statiske beregninger metode og dokumentation 1. udgave Nyt Teknisk Forlag 2003 Forlagsredaktion: Thomas Rump,tr@nyttf.dk Omslag: Henning

Læs mere

Brikfarvekoder. Revideret 15. januar 2014. Oplysninger om koder på brik: CEdeklaration. Brikfarve

Brikfarvekoder. Revideret 15. januar 2014. Oplysninger om koder på brik: CEdeklaration. Brikfarve Brikfarvekoder Oplysninger om koder på brik: Brikfarve CEdeklaration Bemærkinger Anvendelse Exponeringsklasse MX3.2 til MX5 Aggressivt kemisk miljø BLÅ RØD Korrosionsbestandighed Frostfasthed 1 F F2 Rustfast

Læs mere

Kom godt i gang Bestem styrkeparametrene for murværket. Faneblad: Murværk Gem, Beregn Gem

Kom godt i gang Bestem styrkeparametrene for murværket. Faneblad: Murværk Gem, Beregn Gem Kom godt i gang Bestem styrkeparametrene for murværket. Faneblad: Murværk Deklarerede styrkeparametre: Enkelte producenter har deklareret styrkeparametre for bestemte kombinationer af sten og mørtel. Disse

Læs mere

Projektering og udførelse Kældervægge af Ytong

Projektering og udførelse Kældervægge af Ytong Projektering og udførelse Kældervægge af Ytong kældervægge af ytong - projektering og udførelse I dette hæfte beskrives vigtige parametre for projektering af kældervægge med Ytong samt generelle monteringsanvisninger.

Læs mere

Schöck Isokorb type Q, QP, Q+Q, QP+QP,

Schöck Isokorb type Q, QP, Q+Q, QP+QP, Schöck Isokorb type, P, +, P+P, Schöck Isokorb type 10 Armeret armeret Indhold Side Eksempler på elementplacering/tværsnit 60 Produktbeskrivelse/bæreevnetabeller og tværsnit type 61 Planvisninger type

Læs mere

Schöck Isokorb type KS. For tilslutning af udkragede stålbjælker. til armeret beton. Armeret beton-stål. Schöck Isokorb type QS

Schöck Isokorb type KS. For tilslutning af udkragede stålbjælker. til armeret beton. Armeret beton-stål. Schöck Isokorb type QS 130 Schöck Isokorb type Side 132 For tilslutning af udkragede stålbjælker til armeret beton. Schöck Isokorb type QS Side 153 For tilslutning af understøttede stålbjælker til armeret beton. 131 Schöck Isokorb

Læs mere

DS/EN DK NA:2015

DS/EN DK NA:2015 Nationalt anneks til Eurocode 3: Stålkonstruktioner Del 1-1: Generelle regler samt regler for bygningskonstruktioner Forord Dette nationale anneks (NA) er en revision af DS/EN 1993-1-1 DK NA:2014 og erstatter

Læs mere

Dansk Dimensioneringsregel for Deltabjælker, Eurocodes juli 2009

Dansk Dimensioneringsregel for Deltabjælker, Eurocodes juli 2009 ES-CONSULT A/S E-MAIL es-consult@es-consult.dk STAKTOFTEN 0 DK - 950 VEDBÆK TEL. +45 45 66 10 11 FAX. +45 45 66 11 1 DENMARK http://.es-consult.dk Dansk Dimensioneringsregel for Deltabjælker, Eurocodes

Læs mere

Lodret belastet muret væg efter EC6

Lodret belastet muret væg efter EC6 Notat Lodret belastet muret væg efter EC6 EC6 er den europæiske murværksnorm også benævnt DS/EN 1996-1-1:006 Programmodulet "Lodret belastet muret væg efter EC6" kan beregne en bærende væg som enten kan

Læs mere

Tillæg 1 til SBI-anvisning 186: Småhuses stabilitet. 1. udgave, 2002

Tillæg 1 til SBI-anvisning 186: Småhuses stabilitet. 1. udgave, 2002 Tillæg 1 til SBI-anvisning 186: Småhuses stabilitet 1. udgave, 2002 Titel Tillæg 1 til SBI-anvisning 186: Småhuses stabilitet Udgave 1. udgave Udgivelsesår 2002 Forfattere Mogens Buhelt og Jørgen Munch-Andersen

Læs mere

EN GL NA:2010

EN GL NA:2010 Grønlands Selvstyre, Departement for Boliger, Infrastruktur og Trafik (IAAN) Formidlet af Dansk Standard EN 1991-1-1 GL NA:2010 Grønlandsk nationalt anneks til Eurocode 6: Murværkskonstruktioner Del 1-1:

Læs mere

3 LODRETTE LASTVIRKNINGER 1

3 LODRETTE LASTVIRKNINGER 1 3 LODRETTE LASTVIRKNINGER 3 LODRETTE LASTVIRKNINGER 1 3.1 Lodrette laster 3.1.1 Nyttelast 6 3.1. Sne- og vindlast 6 3.1.3 Brand og ulykke 6 3. Lastkombinationer 7 3..1 Vedvarende eller midlertidige dimensioneringstilfælde

Læs mere

Redegørelse for den statiske dokumentation

Redegørelse for den statiske dokumentation KART Rådgivende Ingeniører ApS Korskildelund 6 2670 Greve Redegørelse for den statiske dokumentation Privatejendom Dybbølsgade 27. 4th. 1760 København V Matr. nr. 1211 Side 2 INDHOLD Contents A1 Projektgrundlag...

Læs mere

Råhus. Entreprise 7. Indholdsfortegnelse

Råhus. Entreprise 7. Indholdsfortegnelse Entreprise Råhus Denne entreprise dækker over råhuset. I afsnittet er de indledende overvejelser for materialevalg, stabilitet og spændingsbestemmelse beskrevet med henblik på optimering af råhusets udformning.

Læs mere

KONCEPT MED TTS-ELEMENTER MATCHER ELEMENTER DER BREDDEN PÅ EN PARKERINGSBÅS TTS. KONCEPT: Føtex Parkeringshus, Herning. P-dæk forskudt en halv etage.

KONCEPT MED TTS-ELEMENTER MATCHER ELEMENTER DER BREDDEN PÅ EN PARKERINGSBÅS TTS. KONCEPT: Føtex Parkeringshus, Herning. P-dæk forskudt en halv etage. -HUS KONCEPT MED TTS-ELEMENTER 2 ELEMENTER DER MATCHER BREDDEN PÅ EN PARKERINGSBÅS Nyt koncept med TTS-elementer Nogle af de væsentligste krav til et parkeringshus er en hensigtsmæssig indretning, lavt

Læs mere

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Tullinsgade 6 3.th

Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Tullinsgade 6 3.th Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Tullinsgade 6 3.th Dato: 10. april 2014 Byggepladsens adresse: Tullinsgade 6, 3.th 1618 København V. Matr. nr. 667 AB Clausen A/S

Læs mere

Eksempel på anvendelse af efterspændt system.

Eksempel på anvendelse af efterspændt system. Eksempel på anvendelse af efterspændt system. Formur: Bagmur: Efterspændingsstang: Muret VægElementer Placeret 45 mm fra centerlinie mod formuren Nedenstående er angivet en række eksempler på kombinationsvægge

Læs mere

Om sikkerheden af højhuse i Rødovre Jørgen Munch-Andersen, Jørgen Nielsen & Niels-Jørgen Aagaard, SBi, 21. jan. 2007

Om sikkerheden af højhuse i Rødovre Jørgen Munch-Andersen, Jørgen Nielsen & Niels-Jørgen Aagaard, SBi, 21. jan. 2007 Notat Om sikkerheden af højhuse i Rødovre Jørgen Munch-Andersen, Jørgen Nielsen & Niels-Jørgen Aagaard, SBi, 21. jan. 2007 Indledning Dette notat omhandler sikkerheden under vindpåvirkning af 2 højhuse

Læs mere

Arkivnr Bærende konstruktioner Udgivet Dec Revideret Produktkrav for spaltegulvselementer af beton Side 1 af 5

Arkivnr Bærende konstruktioner Udgivet Dec Revideret Produktkrav for spaltegulvselementer af beton Side 1 af 5 Landbrugets Byggeblade Konstruktioner Bygninger Teknik Miljø Arkivnr. 102.09-21 Bærende konstruktioner Udgivet Dec. 1990 Revideret 13.11.2002 Produktkrav for spaltegulvselementer af beton Side 1 af 5 Dette

Læs mere

GSY KOMPOSITBJÆLKE PRODUKTBLAD KONSTRUKTIONSFRIHED TIL KOMPLEKST BYGGERI

GSY KOMPOSITBJÆLKE PRODUKTBLAD KONSTRUKTIONSFRIHED TIL KOMPLEKST BYGGERI GSY KOMPOSITBJÆLKE PRODUKTBLAD KONSTRUKTIONSFRIHED TIL KOMPLEKST BYGGERI GIVE STÅLSPÆR A/S GSY BJÆLKEN 1 GSY BJÆLKEN 3 2 TEKNISK DATA 4 2.1 BÆREEVNE 4 2.2 KOMFORTFORHOLD 9 2.3 BRAND......................................

Læs mere

Bærende konstruktion Vejledning i beregning af søjle i stål. Fremgangsmåde efter gennemført undervisning med PowerPoint.

Bærende konstruktion Vejledning i beregning af søjle i stål. Fremgangsmåde efter gennemført undervisning med PowerPoint. Bærende konstruktion Fremgangsmåde efter gennemført undervisning med PowerPoint. Jens Sørensen 28-05-2010 Indholdsfortegnelse INDHOLDSFORTEGNELSE... 2 FORORD... 3 BAGGRUND... 4 DET GENNEMGÅENDE EKSEMPEL...

Læs mere

Hansen UnitAl facadeprincipper

Hansen UnitAl facadeprincipper Hansen UnitAl facadeprincipper HS Hansen a/s Bredgade 4, 940 Lem Tlf. 975 1100 Hovedmail: hsh@hsh.dk Hjemmeside: www.hshansen.dk Tekniske informationer UnitAl element: Dimensioner: Bredde: Højde: Vægt:

Læs mere

Lars Christensen Akademiingeniør.

Lars Christensen Akademiingeniør. 1 Lars Christensen Akademiingeniør. Benny Nielsen Arkitektfirma m.a.a. Storskovvej 38 8260 Viby 24. juni 1999, LC Enfamiliehus i Malling, Egeskellet 57. Hermed de forhåbentlig sidste beregninger og beskrivelser

Læs mere

DS/EN DK NA:2013

DS/EN DK NA:2013 Nationalt anneks til Eurocode 1: Last på bygværker - Del 1-7: Generelle laster - Ulykkeslast Forord Dette nationale anneks (NA) er en revision og sammenskrivning af EN 1991-1-7 DK NA:2007 og DS/EN 1991-1-7

Læs mere

Eksempel på inddatering i Dæk.

Eksempel på inddatering i Dæk. Brugervejledning til programmerne Dæk&Bjælker samt Stabilitet Nærværende brugervejledning er udarbejdet i forbindelse med et konkret projekt, og gennemgår således ikke alle muligheder i programmerne; men

Læs mere

Hovedentreprise Dato : 2015-10-2020 Arbejdsbeskrivelse Betonelementer, leverance Rev.dato : Indholdsfortegnelse Side : 1/23. Indholdsfortegnelse...

Hovedentreprise Dato : 2015-10-2020 Arbejdsbeskrivelse Betonelementer, leverance Rev.dato : Indholdsfortegnelse Side : 1/23. Indholdsfortegnelse... 20 Indholdsfortegnelse Side : 1/23 Indholdsfortegnelse... 1 1. Orientering... 3 1.1 Generelt... 3 2. Omfang... 4 2.1 Generelt... 4 2.2 Bygningsdele... 4 2.3 Projektering... 4 2.5 Sikkerhed og sundhed...

Læs mere

Udførelse af betonkonstruktioner

Udførelse af betonkonstruktioner Emne: Udførelse af betonkonstruktioner 31 01 107 DS 482/Ret. 1-1. udgave. Godkendt: 2002-02-19. Udgivet: 2002-03-08 Juni 2005 Tilbage til menu Gengivet med tilladelse fra Dansk Standard. Eftertryk forbudt

Læs mere

Hansen UnitAl facadeprincipper

Hansen UnitAl facadeprincipper Hansen Bredgade 4, 940 Lem St. Tlf. 975 1100 Hovedmail: hsh@hsh.dk Hjemmeside: www.hsh.dk Revision, 1.09.15 Tekniske informationer Hansen Unitl element: Dimensioner: Bredde: Højde: Vægt: Glastykkelse:

Læs mere

Betonelement-Foreningen

Betonelement-Foreningen Betonelement-Foreningen 2015-12-02 Vedr.: Memo fra Abeo A/S og DTU af 10. april 2015, Memorandum: Hollow-core slabs & compliance with fire safety regulations I ovennævnte memo [1] fremsættes som en påstand,

Læs mere

EN 1993-5 DK NA:2014 Nationalt Anneks til Eurocode 3: Design of steel structures Del 5: Piling

EN 1993-5 DK NA:2014 Nationalt Anneks til Eurocode 3: Design of steel structures Del 5: Piling EN 1993-5 DK NA:2014 Nationalt Anneks til Eurocode 3: Design of steel structures Del 5: Piling Forord I forbindelse med implementeringen af Eurocodes er der udarbejdet: Nationale Annekser til de brospecifikke

Læs mere

BEF-PCSTATIK. PC-Statik Lodret lastnedføring efter EC0+EC1 Version 2.0. Dokumentationsrapport 2009-03-20 ALECTIA A/S

BEF-PCSTATIK. PC-Statik Lodret lastnedføring efter EC0+EC1 Version 2.0. Dokumentationsrapport 2009-03-20 ALECTIA A/S U D V I K L I N G K O N S T R U K T I O N E R Version.0 Dokumentationsrapport 009-03-0 Teknikerbyen 34 830 Virum Denmark Tlf.: +45 88 19 10 00 Fax: +45 88 19 10 01 CVR nr. 7 89 16 www.alectia.com U D V

Læs mere

Beton- konstruktioner. Beton- konstruktioner. efter DS/EN 1992-1-1. efter DS/EN 1992-1-1. Bjarne Chr. Jensen. 2. udgave. Nyt Teknisk Forlag

Beton- konstruktioner. Beton- konstruktioner. efter DS/EN 1992-1-1. efter DS/EN 1992-1-1. Bjarne Chr. Jensen. 2. udgave. Nyt Teknisk Forlag 2. UDGAVE ISBN 978-87-571-2766-9 9 788757 127669 varenr. 84016-1 konstruktioner efter DS/EN 1992-1-1 Betonkonstruktioner efter DS/EN 1992-1-1 behandler beregninger af betonkonstruktioner efter den nye

Læs mere

Betonkonstruktioner, 1 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber

Betonkonstruktioner, 1 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber Betonkonstruktioner, 1 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber Materialeparametre ved dimensionering Lidt historie Jernbeton (kort introduktion)

Læs mere

Hansen UnitAl facadeprincipper

Hansen UnitAl facadeprincipper Hansen UnitAl facadeprincipper Bredgade 4, 940 Lem St. Tlf. 975 1100 Hovedmail: hsh@hsh.dk Hjemmeside: www.hsh.dk Revision F, 14.01.15 Tekniske informationer Hansen UnitAl element: Dimensioner: Bredde:

Læs mere

Beregningstabel - juni 2009. - en verden af limtræ

Beregningstabel - juni 2009. - en verden af limtræ Beregningstabel - juni 2009 - en verden af limtræ Facadebjælke for gitterspær / fladt tag Facadebjælke for hanebåndspær Facadebjælke for hanebåndspær side 4 u/ midterbjælke, side 6 m/ midterbjælke, side

Læs mere

Helvægge og dæk af letbeton. Bæreevne og stabilitet

Helvægge og dæk af letbeton. Bæreevne og stabilitet Helvægge og dæk af letbeton Bæreevne og stabilitet HÆFTE NR. OKT. 009 LetbetonELEMENTgruppen - BIH Indholdsfortegnelse / Forord Indholdsfortegnelse. Generelle oplysninger... 3-7. Forudsætninger... 3. Varedeklaration...

Læs mere

3. parts kontrol / Validering

3. parts kontrol / Validering 3. parts kontrol / Validering Carsten Steen Sørensen, 1 Indhold 3. parts kontrol Validering Normer 2 3. parts kontrol Forankret i Byggelovgivning 3. parts kontrol kræves ved CC3 Anerkendt statiker Anerkendte

Læs mere

BEREGNING AF O-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT

BEREGNING AF O-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT Indledning BEREGNING AF O-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT Teknologiparken Kongsvang Allé 29 8000 Aarhus C 72 20 20 00 info@teknologisk.dk www.teknologisk.dk I dette notat gennemregnes som eksempel et

Læs mere

NOTAT BEREGNING AF JORDTRYK VHA EC6DESIGN.COM. ÆKVIVALENT ENSFORDELT LAST

NOTAT BEREGNING AF JORDTRYK VHA EC6DESIGN.COM. ÆKVIVALENT ENSFORDELT LAST pdc/sol NOTAT BEREGNING AF JORDTRYK VHA EC6DESIGN.COM. ÆKVIVALENT ENSFORDELT LAST Teknologiparken Kongsvang Allé 29 8000 Aarhus C 72 20 20 00 info@teknologisk.dk www.teknologisk.dk Indledning I dette notat

Læs mere

Højisolerede funderingselementer. Den bedste måde at opnå lavenergi på

Højisolerede funderingselementer. Den bedste måde at opnå lavenergi på Højisolerede funderingselementer Den bedste måde at opnå lavenergi på Højisolerede funderingselementer Da der blev indført nye og strammere Regler for varmetab i BR10, blev det unægteligt vanskeligere

Læs mere