Eftervisning af bygningens stabilitet
|
|
|
- Katrine Andresen
- 9 år siden
- Visninger:
Transkript
1 Bilag A Eftervisning af bygningens stabilitet I det følgende afsnit eftervises, hvorvidt bygningens bærende konstruktioner har tilstrækkelig stabilitet til at optage de laster, der påvirker bygningen. Stabiliteten vil blive vericeret for vindpåvirkning på facaden samt tagkonstruktionen, hvorved de bærende konstruktioner er bygningens tværgående vægge. Der vil blive taget udgangspunkt i modullinie 20 og 24, idet der således undersøges et tværsnit med og uden kælder. Slutteligt i afsnittet undersøges bygningens deformationer. Væggene regnes fuldt indspændt ved fundamentet. Desuden vil der ved de efterfølgende beregninger blive set bort fra ingeniørgangen, som forendes under bygningen, hvor der ikke er kælder. A.1 Kraftpåførsel For at stabiliteten af tværvæggene kan eftervises, er det nødvendigt at påføre konstruktionen de reelle kraftstørrelser. På gur A.1 ses lasterne, der påvirker tværvæggen i modullinie 20, hvor størrelserne er fundet i afsnit??. Den indvendige vindlast vil ikke have indvirkning på de bærende vægge, idet trykket/suget på lejlighedens vægge tilsammen vil modsvare hinanden. 1
2 A. Eftervisning af bygningens stabilitet Gr.A april 2004 Figur A.1 Karakteristiske adelaster i kn/m 2 på tværvæggen i modullinie 20. Til venstre er egenvægten ikke medtaget. Til højre er en simplere beregningsmodel vist. Af guren ses, at tværvæggens funktion er at virke som en skive, der leder moment og normalkraft til fundamentet. Tilsvarende for modullinie 24 skal kræfterne påføres. I dette tilfælde ønskes kræfterne ikke ført helt til fundamentet, men blot til kældervæggen og søjlen hvor tværvæggen er understøttet, se gur A.2. Dette skyldes, at spændingen ønskes undersøgt, hvor tværvæggen skal overføre sin last. For kældervæggen vil tværvæggen dog ligge på bjælken, som er understøttet af kældervæggen. Herved er det kun kræfterne, der skal overføres fra tværvæggen, som er påtegnet guren. 2
3 Figur A.2 Karakteristiske adelaster i kn/m 2 på tværvæggen i modullinie 24. Til venstre en egenvægten ikke angivet. Til højre er en simplere beregningsmodel vist. På ovenstående gur er antagelsen om, at de tværgående vægge er stive, anvendt. Herved vil momentet fra vinden forårsage et kraftpar, der giver træk i den ene facade samt tryk i den anden. Desuden antages, at bjælken under tværvæggen også vil virke stiv og blot "vippe" med den ovenstående væg. Spændingsundersøgelse Der vil for de to omtalte stabiliserende tværvægge blive foretaget en spændingsundersøgelse. Denne undersøgelse har til formål at udregne spændingerne i indspændingstværsnittet og derved kontrollere for knusning eller løft. For hver tværvæg på nær endevæggene regnes samtlige lodrette adelaster at virke på et belastningsareal 4, 2 9, 6 = 40, 3 m 2, se evt. gur xx. Modullinie 20 Efterfølgende beregninger skal eftervise om modullinie 20 har tilstrækkelig stabilitet til at optage lasterne. Først udregnes de lodrette laster og de spændinger, som forårsages heraf. Udover de lodrette laster vil der også forekomme vandrette laster, hvorved disse efterfølgende bestemmes. Belastningen fra de lodrette laster bestemmes i efterfølgende tabel, hvor disse skal optages på et areal på 0,15 9,6 m 2 og føres til fundamentet. Herved bliver spændingen fra de lodrette laster følgende: 3
4 A. Eftervisning af bygningens stabilitet Gr.A april 2004 Lasttype Areal/højde Last [kn] Spænding [MP a] Dækkonstruktion (6 dæk) 40,3 m 2 40,3 3,24 kn/m /(0,15 9,6) 0,54 Vægkonstruktion 15,6 m 15,6 36 kn/m /(0,15 9,6) 0,39 Nyttelast (1 etage) 40,3 m 2 40,3 2 kn/m /(0,15 9,6) 0,06 Tabel A.1 Spændinger forårsaget af de lodrette laster. Lasterne er bestemt i afsnit??. Ud over den lodrette belastning vil spændingen i indspændingstværsnittet også være påvirket af den vandrette vindlast på facaden og taget, idet disse vil forårsage et indspændingsmoment. Figur A.3 Statisk model af den lodrette last samt vindlast på facaden. Da de bærende tværvægge er de eneste vægge, der skal optage indspændingsmomentet, skal hver tværvæg optage en vindlast (tryk og sug) virkende over 4,2 m, hvilket svarer til bredden af én lejlighed. Først bestemmes det samlede indspændingsmoment fra den karakteristiske vindlast på facaden: M vind,facade = 1 2 l2 q vind,facade b = , 62 (0, , 18) 4, 2 = 302kNm (A.1) hvor l er højden af facadevæggen [m] q er adelasten fra vinden [kn/m 2 ] b er bredden, som vinden virker over for én tværvæg [m] Herved bliver den maksimale og minimale spænding forårsaget af vindlasten 4
5 på facaden følgende: σ vind,facade = ± M vind,facade W (A.2) 302 = ± 1/6 9, 6 2 0, 15 = ±0, 13MP a Vindlasten vil påvirke taget med en adelast, der optages af tværvæggene som en punktlast. Hvorledes vindlasten overføres til tværvæggene kan ses i afsnit x.x. Nedenstående gur viser således den statiske model af konstruktionen, hvor også punktlasten P vind,tag er påført. Figur A.4 Statisk model af den lodrette last samt vindlast på facade og tag. Vindlasten vil virke parallelt med tagryggen, hvorved det er nødvendigt at bestemme lastens vandrette komposant, idet den lodrette komposant ikke optages af de tværgående vægge, se evt. afsnit xx. På gur A.5 ses tagets forskellige belastningszoner samt deres lodrette længde. 5
6 A. Eftervisning af bygningens stabilitet Gr.A april 2004 Figur A.5 Vindlastens belastningszoner samt deres lodrette belastningslængde. I nedenstående tabel er de forskellige zoners adelast angivet samt den vandrette komposant heraf, se også gur A.1. Den farligste vindlast på taget vil forekomme ved kombination af maksimal tryk på zone G og H samt maksimal sug på zone I og J. Zone Last [kn/m 2 ] Vandret last [kn/m 2 ] G 0,06 0,011 H 0,03 0,005 I 0,24 0,044 J 0,38 0,069 Tabel A.2 Vindlasten på taget ved maksimal tryk og sug. De vandrette adelaster kan herefter omregnes til en punktlast, idet hver tværvæg skal optage en vindlast fordelt på 4,2 m. P vind,tag = 4, 2 (0, 011 0, , 005 0, , 044 0, , 069 0, 56) = 0, 33kN Denne punktlast vil forårsage et indspændingsmoment på: M vind,tag = P vind,tag h = 0, 33 15, 6 = 5, 1kNm (A.3) 6
7 Herved bliver den maksimale og minimale spænding forårsaget af vindlasten på taget følgende: 5, 1 σ vind,tag = ± 1/6 9, 6 2 0, 15 = ±2, 21kP a Ud fra overstående spændinger er det muligt at udregne de regningsmæssige normalspændinger i indspændingstværsnittet for de udvalgte lastkombinationer, se evt.??. Lastkombination G N V Spænding [MPa] 1 1 (0,54+0,39) + 1 0,06 + 0,5 0,06 4 1, a 1 (0,54+0,39) + 0,5 0, ,5 (0,13+0,002) 1, b 1 (0,54+0,39) + 1,3 0,06+0,5 0, ,5 (0, ) 1, ,8 (0,54+0,39) - 1,5 (0,13+0,002) 0,55 3 Tabel A.3 De regningsmæssige normalspændinger for de udvalgte lastkombinationer. På nedenstående gur ses en skitse af, hvordan spændingen fordeler sig i fundamentet. Figur A.6 Spændingsfordelingen i fundamentet. Det kan ud fra tabel A.3 vurderes, om bygningens stabilitet er tilstrækkelig, idet stabiliteten er eftervist, hvis spændingerne, der overføres til fundamentet, ikke overstiger betonens regningsmæssige styrke. Det er kun nødvendigt at kontrollere trykstyrken, idet der ikke forekommer løft i konstruktionen, da den lodrette last er større end trækket forårsaget af vinden, se lastkombination 2.2. Styrken kontrolleres ved følgende formel: σ = f cd (A.4) hvor σ er den overførte spænding [M P a] f cd er betonens regningsmæssige trækstyrke [MP a] 7
8 A. Eftervisning af bygningens stabilitet Gr.A april 2004 I afsnit x.x er betonens regningsmæssige trykstyrke beregnet til 12,12 MPa ved beton 20, hvorved det kan konkluderes, at kravet til spændingen overholdes for alle lastkombinationer. Da spændingerne er forholdsvis små vurderes, at der ikke vil forekomme problemer ved ingeniørgangen. Dette kan også godtgøres ud fra ingeniørgangens placering, idet denne er placeret fra midten af bygningen og 1 meter ud mod svalegangen, hvor spændingerne vil være betydelig mindre end de udregnede i tabel A.3. Modullinie 24 Udover ovenstående kontrol af spændingerne i modullinie 20 skal det også eftervises, at modullinie 24 har tilstrækkelig stabilitet til at optage de forekommende spændinger. Det er valgt at kontrollere spændingerne, hvor tværvæggen skal overføre sin last til kælderen. Lasterne vil således være tilsvarende indspændingstværsnittet i modullinie 20, dog skal lasten optages på et mindre areal svarende til det areal tværvæggen er understøttet af søjlen samt bjælken (0,15 0,25 m 2 ). I nedenstående tabel er spændingerne for de lodrette laster udregnet. Lasttype Areal/højde Last [kn] Spænding [MP a] Dækkonstruktion 40,3 m 2 40,3 3,24 kn/m /(0,15 0,25) 20,9 Vægkonstruktion 15,6 m 15,6 36 kn/m /(0,15 0,25) 15,0 Nyttelast (ét dæk) 40,3 m 2 40,3 2 kn/m /(0,15 0,25) 2,2 Tabel A.4 Spændinger forårsaget af de lodrette laster. Momentet fra vinden opdeles i et kraftpar, der forårsager tryk og træk, hvor den samlede værdi af momentet ndes ud fra formel A.1 og A.3. P vind = , 1 9, 6 = ±32kN Hvilket svarer til en spænding på: 32 σ vind = ± 0, 15 0, 25 = ±0, 9MP a Herved kan spændingen bestemmes ud fra de udvalgte lastkombinationer. Lasterne i tabel A.4 optages af begge facader, hvorved den halve værdi benyttes. Lastkombination G N V Spænding [MPa] 1 1 (10,5+7,5) + 1 1,1 + 0,5 1,1 4 21,3 2.1.a 1 (10,5+7,5) + 0,5 1, ,5 0,9 22,1 2.1.b 1 (10,5+7,5) + 1,3 1,1 + 0,5 1, ,5 0,9 22, ,8 (10,5+7,5) - 1,5 0,9 13,1 3 Tabel A.5 De regningsmæssige normalspændinger for de udvalgte lastkombinationer. 8
9 Spændingen skal igen kontrolleres ved formel A.4. Søjlen og bjælken som den tværgående væg ligger på er af beton 45. Den regningsmæssige styrke er derved 27,27 MP a, hvilket er tilstrækkelig for at undgå knusning af betonen. Deformationsundersøgelse Ud over spændingsundersøgelsen er det nødvendigt at kontrollere at bygningen ikke overgår for store ytninger. Da bygningens tværvægge deformerer ens, jvf. afsnit??, er det tilstrækkeligt at undersøge deformationen af én tværvæg. Deformationen undersøges ved vindpåvirkning på facaden samt taget, hvorved bygningens ytning vil være forårsaget af henholdsvis en ade- samt en punktlast, se gur A.7. Figur A.7 Deformationerne af en tværvæg fra henholdsvis vindlast på facaden samt tag. Den samlede deformation bestemmes ved at addere deformationen fra adelasten med punktlasten, hvor de indgående parametre i nedenstående beregning er fastsat tidligere i afsnittet: δ = δ 1 + δ 2 = q vind,facade H 4 + P vind,taf H 3 8 EI 3 EI (0, , 18) 15, 6 4 = 8 2, /12 9, 6 3 0, 15 0, 33 15, , /12 9, 6 3 0, = m = 0, 002mm Af ovenstående udregning kan det hurtigt konkluderes, at der ikke vil forekomme problemer med bygningens deformation, idet udbøjningen vil være ininitisimal. 9
Dimensionering af samling
Bilag A Dimensionering af samling I det efterfølgende afsnit redegøres for dimensioneringen af en lodret støbeskelssamling mellem to betonelementer i tværvæggen. På nedenstående gur ses, hvorledes tværvæggene
TUNGE SKILLEVÆGGE PÅ TRYKFAST ISOLERING BEREGNINGSMODELLER
pdc/sol TUNGE SKILLEVÆGGE PÅ TRYKFAST ISOLERING BEREGNINGSMODELLER Indledning Teknologisk Institut, byggeri har for EPS sektionen under Plastindustrien udført dette projekt vedrørende anvendelse af trykfast
Laster. A.1 Brohuset. Nyttelast (N) Snelast (S) Bilag A. 18. marts 2004 Gr.A-104 A. Laster
Bilag A Laster Følgende er en gennemgang af de laster, som konstruktionen påvirkes af. Disse bestemmes i henhold til DS 410: Norm for last på konstruktioner, hvor de konkrete laster er: Nyttelast (N) Snelast
TUNGE SKILLEVÆGGE PÅ FLERE LAG TRYKFAST ISOLERING. Input Betondæk Her angives tykkelsen på dækket samt den aktuelle karakteristiske trykstyrke.
pdc/jnk/sol TUNGE SKILLEVÆGGE PÅ FLERE LAG TRYKFAST ISOLERING Indledning Teknologisk Institut, byggeri har for Plastindustrien i Danmark udført dette projekt vedrørende bestemmelse af bæreevne for tunge
4 HOVEDSTABILITET 1. 4.1 Generelt 2
4 HOVEDSTABILITET 4 HOVEDSTABILITET 1 4.1 Generelt 2 4.2 Vandret lastfordeling 4 4.2.1.1 Eksempel - Hal efter kassesystemet 7 4.2.2 Lokale vindkræfter 10 4.2.2.1 Eksempel Hal efter skeletsystemet 11 4.2.2.2
Statikrapport. Projektnavn: Kildeagervænget 182 Klasse: 13BK1C Gruppe nr. 2 Dato: 11.10.2013
Statikrapport Projektnavn: Kildeagervænget 182 Klasse: 13BK1C Gruppe nr. 2 Dato: 11.10.2013 Simon Hansen, Mikkel Busk, Esben Hansen & Simon Enevoldsen Udarbejdet af: Kontrolleret af: Godkendt af: Indholdsfortegnelse
Forspændt bjælke. A.1 Anvendelsesgrænsetilstanden. Bilag A. 14. april 2004 Gr.A-104 A. Forspændt bjælke
Bilag A Forspændt bjælke I dette afsnit vil bjælken placeret under facadevæggen (modullinie D) blive dimensioneret, se gur A.1. Figur A.1 Placering af bjælkei kælder. Bjælken dimensioneres ud fra, at den
Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Ole Jørgensens Gade 14 st. th.
Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Ole Jørgensens Gade 14 st. th. Dato: 19. juli 2017 Sags nr.: 17-0678 Byggepladsens adresse: Ole Jørgensens Gade 14 st. th. 2200 København
Redegørelse for den statiske dokumentation
KART Rådgivende Ingeniører ApS Korskildelund 6 2670 Greve Redegørelse for den statiske dokumentation Privatejendom Dybbølsgade 27. 4th. 1760 København V Matr. nr. 1211 Side 2 INDHOLD Contents A1 Projektgrundlag...
BEREGNING AF O-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT
Indledning BEREGNING AF O-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT Teknologiparken Kongsvang Allé 29 8000 Aarhus C 72 20 20 00 [email protected] www.teknologisk.dk I dette notat gennemregnes som eksempel et
I dette kapitel behandles udvalgte dele af bygningens bærende konstruktioner. Følgende emner behandles
2. Skitseprojektering af bygningens statiske system KONSTRUKTION I dette kapitel behandles udvalgte dele af bygningens bærende konstruktioner. Følgende emner behandles : Totalstabilitet af bygningen i
Statisk analyse ETAGEBOLIGER BORGERGADE
Indhold BESKRIVELSE AF BYGGERIET... 2 BESKRIVELSE AF DET STATISKE SYSTEM... 2 LODRETTE LASTER:... 2 VANDRETTE LASTER:... 2 OMFANG AF STATISKE BEREGNINGER:... 2 KRÆFTERNES GENNEMGANG IGENNEM BYGGERIET...
Redegørelse for den statiske dokumentation
Redegørelse for den statiske dokumentation Udvidelse af 3stk. dørhuller - Frederiksberg Allé Byggepladsens adresse: Frederiksberg Allé 1820 Matrikelnr.: 25ed AB Clausen A/S side 2 af 15 INDHOLD side A1
BEREGNING AF U-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT
Indledning BEREGNING AF U-TVÆRSNIT SOM ET KOMPLEKST TVÆRSNIT Teknologiparken Kongsvang Allé 29 8000 Aarhus C 72 20 20 00 [email protected] www.teknologisk.dk I dette notat gennemregnes som eksempel et
Statiske beregninger. Børnehaven Troldebo
Statiske beregninger Børnehaven Troldebo Juni 2011 Bygherre: Byggeplads: Projekterende: Byggesag: Silkeborg kommune, Søvej 3, 8600 Silkeborg Engesvangvej 38, Kragelund, 8600 Silkeborg KLH Architects, Valdemar
A1. Projektgrundlag A2.2 Statiske beregninger -konstruktionsafsnit
A1. Projektgrundlag A2.2 Statiske beregninger -konstruktionsafsnit Erhvervsakademiet, Århus Bygningskonstruktøruddannelsen, 3. semester Projektnavn: Multihal Trige Klasse: 13bk2d Gruppe nr.: Gruppe 25
Bilag K-Indholdsfortegnelse
0 Bilag K-Indholdsfortegnelse Bilag K-Indholdsfortegnelse BILAG K-1 LASTER K- 1.1 Elementer i byggeriet K- 1. Forudsætninger for lastoptagelse K-7 1.3 Egenlast K-9 1.4 Vindlast K-15 1.5 Snelast K-5 1.6
Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Lysbrovej 13
Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Lysbrovej 13 Dato: 22. Januar 2015 Byggepladsens adresse: Lysbrovej 13 Matr. nr. 6af AB Clausen A/S STATISK DUMENTATION Adresse: Lysbrovej
Kipning, momentpåvirket søjle og rammehjørne
Kipning, momentpåvirket søjle og rammehjørne april 05, LC Den viste halbygning er opbygget af en række stålrammer med en koorogeret stålplade som tegdækning. Stålpladen fungerer som stiv skive i tagkonstruktionen.
Betonkonstruktioner, 3 (Dimensionering af bjælker)
Betonkonstruktioner, 3 (Dimensionering af bjælker) Bøjningsdimensionering af bjælker - Statisk bestemte bjælker - Forankrings og stødlængder - Forankring af endearmering - Statisk ubestemte bjælker Forskydningsdimensionering
DIPLOM PROJEKT AF KASPER NIELSEN
DIPLOM PROJEKT AF KASPER NIELSEN Titelblad Tema: Afgangsprojekt. Projektperiode: 27/10 2008-8/1 2009. Studerende: Fagvejleder: Kasper Nielsen. Sven Krabbenhøft. Kasper Nielsen Synopsis Dette projekt omhandler
Bærende konstruktion Vejledning i beregning af søjle i træ. Fremgangsmåde efter gennemført undervisning med PowerPoint.
Bærende konstruktion Fremgangsmåde efter gennemført undervisning med PowerPoint. Jens Sørensen 21-05-2010 Indholdsfortegnelse INDHOLDSFORTEGNELSE... 2 FORORD... 3 BAGGRUND... 4 DET GENNEMGÅENDE EKSEMPEL...
Ber egningstabel Juni 2017
Beregningstabel Juni 2017 Beregningstabeller Alle tabeller er vejledende overslagsdimensionering uden ansvar og kan ikke anvendes som evt. myndighedsberegninger, som dog kan tilkøbes. Beregningsforudsætninger:
Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Tullinsgade 6 3.th
Redegørelse for den statiske dokumentation Nedrivning af bærende væg - Tullinsgade 6 3.th Dato: 10. april 2014 Byggepladsens adresse: Tullinsgade 6, 3.th 1618 København V. Matr. nr. 667 AB Clausen A/S
Sag nr.: 12-0600. Matrikel nr.: Udført af: Renovering 2013-02-15
STATISKE BEREGNINGER R RENOVERING AF SVALEGANG Maglegårds Allé 65 - Buddinge Sag nr.: Matrikel nr.: Udført af: 12-0600 2d Buddinge Jesper Sørensen : JSO Kontrolleret af: Finn Nielsen : FNI Renovering 2013-02-15
Beregningsopgave 2 om bærende konstruktioner
OPGAVEEKSEMPEL Beregningsopgave 2 om bærende konstruktioner Indledning: Familien Jensen har netop købt nyt hus. Huset skal moderniseres, og familien ønsker i den forbindelse at ændre på nogle af de bærende
Om sikkerheden af højhuse i Rødovre
Om sikkerheden af højhuse i Rødovre Jørgen Munch-Andersen og Jørgen Nielsen SBi, Aalborg Universitet Sammenfatning 1 Revurdering af tidligere prøvning af betonstyrken i de primære konstruktioner viser
K.I.I Forudsætning for kvasistatisk respons
Kontrol af forudsætning for kvasistatisk vindlast K.I Kontrol af forudsætning for kvasistatisk vindlast I det følgende er det eftervist, at forudsætningen, om at regne med kvasistatisk vindlast på bygningen,
Betonkonstruktioner, 1 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber
Betonkonstruktioner, 1 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber Materialeparametre ved dimensionering Lidt historie Jernbeton (kort introduktion)
Tillæg 1 til SBI-anvisning 186: Småhuses stabilitet. 1. udgave, 2002
Tillæg 1 til SBI-anvisning 186: Småhuses stabilitet 1. udgave, 2002 Titel Tillæg 1 til SBI-anvisning 186: Småhuses stabilitet Udgave 1. udgave Udgivelsesår 2002 Forfattere Mogens Buhelt og Jørgen Munch-Andersen
3 LODRETTE LASTVIRKNINGER 1
3 LODRETTE LASTVIRKNINGER 3 LODRETTE LASTVIRKNINGER 1 3.1 Lodrette laster 3.1.1 Nyttelast 6 3.1. Sne- og vindlast 6 3.1.3 Brand og ulykke 6 3. Lastkombinationer 7 3..1 Vedvarende eller midlertidige dimensioneringstilfælde
11/3/2002. Statik og bygningskonstruktion Program lektion Søjlen. Søjlen. Søjlen Pause
Statik og bygningskonstruktion Program lektion 10 8.30-9.15 9.15 9.30 Pause 9.30 10.15 af bygningskonstruktioner 10.15 10.45 Pause 10.45 1.00 Opgaveregning Kursusholder Poul Henning Kirkegaard, institut
Konstruktion IIIb, gang 9 (Formgivning af trykpåvirkede betonkonstruktioner)
Konstruktion IIIb, gang 9 (Formgivning af trykpåvirkede betonkonstruktioner) Hvad er beton?, kemiske og mekaniske egenskaber Materialeparametre ved dimensionering Lidt historie Jernbeton (kort introduktion)
Løsning, Bygningskonstruktion og Arkitektur, opgave 6
Løsning, Bygningskonstruktion og Arkitektur, opgave 6 For en excentrisk og tværbelastet søjle skal det vises, at normalkraften i søjlen er under den kritiske værdi mht. søjlevirkning og at momentet i søjlen
Murskive. En stabiliserende muret væg har dimensionerne: H: 2,8 m. L: 3,5 m. t: 108 mm. og er påvirket af en vandret og lodret last på.
Murskive En stabiliserende muret væg har dimensionerne: H: 2,8 m L: 3,5 m t: 108 mm og er påvirket af en vandret og lodret last på P v: 22 kn P L: 0 kn Figur 1. Illustration af stabiliserende skive 1 Bemærk,
A. Konstruktionsdokumentation
A. Konstruktionsdokumentation A.. Statiske Beregninger-konstruktionsafsnit, Betonelementer Juni 018 : 01.06.016 A.. Statiske Beregninger-konstruktionsafsnit, Betonelementer Rev. : 0.06.018 Side /13 SBi
STATISK DOKUMENTATION
STATISK DOKUMENTATION A. KONSTRUKTIONSDOKUMENTATION A1 A2 A3 Projektgrundlag Statiske beregninger Konstruktionsskitser Sagsnavn Sorrentovej 28, 2300 Klient Adresse Søs Petterson Sorrentovej 28 2300 København
Bilag A: Beregning af lodret last
Bilag : Beregning af lodret last dette bilag vil de lodrette laster, der virker på de respektive etagers bærende vægge, blive bestemt. De lodrette laster hidrører fra etagedækkernes egenvægt, de bærende
Statisk dokumentation Iht. SBI anvisning 223
Side 1 af 7 Statisk dokumentation Iht. SBI anvisning 223 Sagsnr.: 17-526 Sagsadresse: Brønshøj Kirkevej 22, 2700 Brønshøj Bygherre: Jens Vestergaard Projekt er udarbejdet af: Projekt er kontrolleret af:
I den gældende udgave af EN (6.17) angives det, at søjlevirkning kan optræde
Lodret belastet muret væg Indledning Modulet anvender beregningsmodellen angivet i EN 1996-1-1, anneks G. Modulet anvendes, når der i et vægfelt er mulighed for (risiko for) 2. ordens effekter (dvs. søjlevirkning).
Deformation af stålbjælker
Deformation af stålbjælker Af Jimmy Lauridsen Indhold 1 Nedbøjning af bjælker... 1 1.1 Elasticitetsmodulet... 2 1.2 Inertimomentet... 4 2 Formelsamling for typiske systemer... 8 1 Nedbøjning af bjælker
Bærende konstruktion Vejledning i beregning af søjle i stål. Fremgangsmåde efter gennemført undervisning med PowerPoint.
Bærende konstruktion Fremgangsmåde efter gennemført undervisning med PowerPoint. Jens Sørensen 28-05-2010 Indholdsfortegnelse INDHOLDSFORTEGNELSE... 2 FORORD... 3 BAGGRUND... 4 DET GENNEMGÅENDE EKSEMPEL...
Bella Hotel. Agenda. Betonelementer udnyttet til grænsen
Image size: 7,94 cm x 25,4 cm Betonelementer udnyttet til grænsen Kaare K.B. Dahl Agenda Nøgletal og generel opbygning Hovedstatikken for lodret last Stål eller beton? Lidt om beregningerne Stabilitet
Det tekniske-, natur- og sundhedsvidenskabelige fakultet Institut for byggeri og anlæg Sohngaardsholmvej Aalborg
Institut for Byggeri & Anlæg Aalborg Universitet Praktikprojekt for Kaare Hedegaard 9. semester 2009 Det tekniske-, natur- og sundhedsvidenskabelige fakultet Institut for byggeri og anlæg Sohngaardsholmvej
Beregningstabel - juni 2009. - en verden af limtræ
Beregningstabel - juni 2009 - en verden af limtræ Facadebjælke for gitterspær / fladt tag Facadebjælke for hanebåndspær Facadebjælke for hanebåndspær side 4 u/ midterbjælke, side 6 m/ midterbjælke, side
Opgave 1. Spørgsmål 4. Bestem reaktionerne i A og B. Bestem bøjningsmomentet i B og C. Bestem hvor forskydningskraften i bjælken er 0.
alborg Universitet Esbjerg Side 1 af 4 sider Skriftlig røve den 6. juni 2011 Kursus navn: Grundlæggende Statik og Styrkelære, 2. semester Tilladte hjælemidler: lle Vægtning : lle ogaver vægter som udgangsunkt
Betonkonstruktioner, 5 (Jernbetonplader)
Christian Frier Aalborg Universitet 006 Betonkonstrktioner, 5 (Jernbetonplader) Virkemåde / dformninger / nderstøtninger Enkeltspændte plader Dobbeltspændte plader Deformationsberegninger 1 Christian Frier
VEJDIREKTORATET FLYTBAR MAST TIL MONTAGE AF KAMERA
VEJDIREKTORATET FLYTBAR MAST TIL MONTAGE AF KAMERA TL-Engineering oktober 2009 Indholdsfortegnelse 1. Generelt... 3 2. Grundlag... 3 2.1. Standarder... 3 3. Vindlast... 3 4. Flytbar mast... 4 5. Fodplade...
Stabilitet - Programdokumentation
Make IT simple 1 Stabilitet - Programdokumentation Anvendte betegnelser Vægskive Et rektangulært vægstykke/vægelement i den enkelte etage, som indgår i det lodret bærende og stabiliserende system af vægge
Modulet beregner en trådbinders tryk- og trækbæreevne under hensyntagen til:
Binder Modulet beregner en trådbinders tryk- og trækbæreevne under hensyntagen til: Differensbevægelse (0,21 mm/m målt fra estimeret tyngdepunkt ved sokkel til fjerneste binder) Forhåndskrumning (Sættes
NOTAT BEREGNING AF JORDTRYK VHA EC6DESIGN.COM. ÆKVIVALENT ENSFORDELT LAST
pdc/sol NOTAT BEREGNING AF JORDTRYK VHA EC6DESIGN.COM. ÆKVIVALENT ENSFORDELT LAST Teknologiparken Kongsvang Allé 29 8000 Aarhus C 72 20 20 00 [email protected] www.teknologisk.dk Indledning I dette notat
Bygningskonstruktøruddannelsen Gruppe Semester Forprojekt 15bk1dk Statikrapport Afleveringsdato: 08/04/16 Revideret: 20/06/16
Indholdsfortegnelse A1. Projektgrundlag... 3 Bygværket... 3 Grundlag... 3 Normer mv.... 3 Litteratur... 3 Andet... 3 Forundersøgelser... 4 Konstruktioner... 5 Det bærende system... 5 Det afstivende system...
Programdokumentation - Skivemodel
Make IT simple 1 Programdokumentation - Skivemodel Anvendte betegnelser Vægskive Et rektangulært vægstykke/vægelement i den enkelte etage, som indgår i det lodret bærende og stabiliserende system af vægge
Lastkombinationer (renskrevet): Strøybergs Palæ
Lastkobinationer (renskrevet): Strøybergs Palæ Nu er henholdsvis den karakteristiske egenlast, last, vindlast, snelast nyttelast bestet for bygningens tre dele,, eedækkene kælderen. Derfor opstilles der
Sandergraven. Vejle Bygning 10
Sandergraven. Vejle Bygning 10 Side : 1 af 52 Indhold Indhold for tabeller 2 Indhold for figur 3 A2.1 Statiske beregninger bygværk Længe 1 4 1. Beregning af kvasistatisk vindlast. 4 1.1 Forudsætninger:
Sag: Humlebækgade 35, st. tv., 2200 København N. Statisk Dokumentation Diverse ombygninger trappeåbning i etageadskillelse
Sag: Humlebækgade 35, st. tv., 2200 København N Statisk Dokumentation Adresse: Bygherre: Humlebækgade 35, st.tv 2200 København N Matrikel nr. 4878 Ejendoms nr. 62740 Amanda Steenstrup Udført af: Güner
Konstruktion IIIb, gang 13 (Jernbetonplader)
Christian Frier Aalborg Universitet 003 Konstrktion IIIb, gang 13 (Jernbetonplader) Virkemåde / dformninger / nderstøtninger Overslagsregler fra Teknisk Ståbi Enkeltspændte plader Dobbeltspændte plader
Konstruktionsmæssige forhold med 3D betonprint
Konstruktionsmæssige forhold med 3D betonprint Eksisterende printprincipper og deres statiske muligheder og begrænsninger v. Kåre Flindt Jørgensen, NCC Danmark A/S 1 Vægprincipper Kantvægge V-gitret væg
UDVALGTE STATISKE BEREGNINGER IFM. GYVELVEJ 7 - NORDBORG
UDVALGTE STATISKE BEREGNINGER IFM. GYVELVEJ 7 - NORDBORG UDARBEJDET AF: SINE VILLEMOS DATO: 29. OKTOBER 2008 Sag: 888 Gyvelvej 7, Nordborg Emne: Udvalgte beregninger, enfamiliehus Sign: SV Dato: 29.0.08
Eksempel på anvendelse af efterspændt system.
Eksempel på anvendelse af efterspændt system. Formur: Bagmur: Efterspændingsstang: Muret VægElementer Placeret 45 mm fra centerlinie mod formuren Nedenstående er angivet en række eksempler på kombinationsvægge
Redegørelse for statisk dokumentation
Redegørelse for statisk dokumentation Nedrivning af bærende væg Vestbanevej 3 Dato: 22-12-2014 Sags nr: 14-1002 Byggepladsens adresse: Vestbanevej 3, 1 TV og 1 TH 2500 Valby Rådgivende ingeniører 2610
A2.05/A2.06 Stabiliserende vægge
A2.05/A2.06 Stabiliserende vægge Anvendelsesområde Denne håndbog gælder både for A2.05win og A2.06win. Med A2.05win beregner man kun system af enkelte separate vægge. Man får som resultat horisontalkraftsfordelingen
PRAKTISK PROJEKTERING EKSEMPEL
PRAKTISK PROJEKTERING EKSEMPEL FORUDSÆTNINGER Dette eksempel er tilrettet fra et kursus afholdt i 2014: Fra arkitekten fås: Plantegning, opstalt, snit (og detaljer). Tegninger fra HusCompagniet anvendes
Gyproc Brandsektionsvægge
Gyproc Brandsektionsvægge Lovgivning I BR 95, kap. 6.4.1 stk. 2 står der: En brandsektionsvæg skal udføres mindst som BSvæg 60, og den skal under brand bevare sin stabilitet, uanset fra hvilken side væggen
En sædvanlig hulmur som angivet i figur 1 betragtes. Kun bagmuren gennemregnes.
Tværbelastet rektangulær væg En sædvanlig hulmur som angivet i figur 1 betragtes. Kun bagmuren gennemregnes. Den samlede vindlast er 1,20 kn/m 2. Formuren regnes udnyttet 100 % og optager 0,3 kn/m 2. Bagmuren
A. Konstruktionsdokumentation Initialer : MOHI A2.1 Statiske beregninger - Konstruktionsafsnit Fag : BÆR. KONST. Dato : 08-06-2012 Side : 1 af 141
Side : 1 af 141 Indhold A2.2 Statiske beregninger Konstruktionsafsnit 2 1. Dimensionering af bjælke-forbindelsesgangen. 2 1.1 Dimensionering af bjælke i modulline G3 i Tagkonstruktionen. 2 1.2 Dimensionering
Praktisk design. Per Goltermann. Det er ikke pensum men rart at vide senere
Praktisk design Per Goltermann Det er ikke pensum men rart at vide senere Lektionens indhold 1. STATUS: Hvad har vi lært? 2. Hvad mangler vi? 3. Klassisk projekteringsforløb 4. Overordnet statisk system
STATISK DOKUMENTATION
STATISK DOKUMENTATION for Ombygning Cæciliavej 22, 2500 Valby Matrikelnummer: 1766 Beregninger udført af Lars Holm Regnestuen Rådgivende Ingeniører Oversigt Nærværende statiske dokumentation indeholder:
MURVÆRKSPROJEKTERING VER. 4.0 SBI - MUC 01.10.06 DOKUMENTATION Side 1
DOKUMENTATION Side 1 Beregning af murbuer Indledning. Dette notat beskriver den numeriske model til beregning af stik og skjulte buer. Indhold Forkortelser Definitioner Forudsætninger Beregningsforløb
NemStatik. Stabilitet - Programdokumentation. Anvendte betegnelser. Beregningsmodel. Make IT simple
Stabilitet - Programdokumentation Anvendte betegnelser Vægskive Et rektangulært vægstykke/vægelement i den enkelte etage, som indgår i det lodret bærende og stabiliserende system af vægge N Ed M Ed e l
Program lektion Indre kræfter i plane konstruktioner Snitkræfter Indre kræfter i plane konstruktioner Snitkræfter.
Tektonik Program lektion 4 8.15-9.00 Indre kræfter i plane konstruktioner 9.00 9.15 Pause 9.15 10.00 Indre kræfter i plane konstruktioner. Opgaver 10.00 10.15 Pause 10.15 12.00 Tøjninger og spændinger
Program lektion Indre kræfter i plane konstruktioner Snitkræfter
Tektonik Program lektion 4 12.30-13.15 Indre kræfter i plane konstruktioner 13.15 13.30 Pause 13.30 14.15 Tøjninger og spændinger Spændinger i plan bjælke Deformationer i plan bjælke Kursusholder Poul
DS/EN DK NA:2013
Nationalt anneks til Præfabrikerede armerede komponenter af autoklaveret porebeton Forord Dette nationale anneks (NA) er en revision af EN 12602 DK NA:2008 og erstatter dette fra 2013-09-01. Der er foretaget
Sammenligning af normer for betonkonstruktioner 1949 og 2006
Notat Sammenligning af normer for betonkonstruktioner 1949 og 006 Jørgen Munch-Andersen og Jørgen Nielsen, SBi, 007-01-1 Formål Dette notat beskriver og sammenligner normkravene til betonkonstruktioner
A.1 PROJEKTGRUNDLAG. Vodskovvej 110, Vodskov Ny bolig og maskinhus. Sag nr: Udarbejdet af. Per Bonde
A.1 PROJEKTGRUNDLAG Vodskovvej 110, Vodskov Ny bolig og maskinhus Sag nr: 16.11.205 Udarbejdet af Per Bonde Randers d. 09/06-2017 Indholdsfortegnelse A1 Projektgrundlag... 2 A1.1 Bygværket... 2 A1.1.1
DS/EN 15512 DK NA:2011
DS/EN 15512 DK NA:2011 Nationalt anneks til Stationære opbevaringssystemer af stål Justerbare pallereolsystemer Principper for dimensionering. Forord Dette nationale anneks (NA) er det første danske NA
A.1 PROJEKTGRUNDLAG. Villa Hjertegræsbakken 10, 8930 Randers NØ
A.1 PROJEKTGRUNDLAG Villa Hjertegræsbakken 10, 8930 Randers NØ Nærværende projektgrundlag omfatter kun bærende konstruktioner i stueplan. Konstruktioner for kælder og fundamenter er projekteret af Stokvad
RENOVERING AF LØGET BY AFDELING 42
APRIL 2013 AAB VEJLE RENOVERING AF LØGET BY AFDELING 42 A1 PROJEKTGRUNDLAG ADRESSE COWI A/S Havneparken 1 7100 Vejle TLF +45 56 40 00 00 FAX +45 56 40 99 99 WWW cowi.dk APRIL 2013 AAB VEJLE RENOVERING
Athena DIMENSION Plan ramme 3, Eksempler
Athena DIMENSION Plan ramme 3, Eksempler November 2007 Indhold 1 Eksempel 1: Stålramme i halkonstruktion... 3 1.1 Introduktion... 3 1.2 Opsætning... 3 1.3 Knuder og stænger... 5 1.4 Understøtninger...
BEF-PCSTATIK. PC-Statik Lodret lastnedføring efter EC0+EC1. Dokumentationsrapport ALECTIA A/S
U D V I K L I N G K O N S T R U K T I O N E R Dokumentationsrapport 2008-12-08 Teknikerbyen 34 2830 Virum Denmark Tlf.: +45 88 19 10 00 Fax: +45 88 19 10 01 CVR nr. 22 27 89 16 www.alectia.com U D V I
B. Bestemmelse af laster
Besteelse af laster B. Besteelse af laster I dette afsnit fastlægges de laster, der forudsættes at virke på konstruktionen. Lasterne opdeles i egenlast, nyttelast, snelast, vindlast, vandret asselast og
Et vindue har lysningsvidden 3,252 m. Lasten fra den overliggende etage er 12.1 kn/m.
Teglbjælke Et vindue har lysningsvidden 3,252 m. Lasten fra den overliggende etage er 12.1 kn/m. Teglbjælken kan udføres: som en præfabrikeret teglbjælke, som minimum er 3 skifter høj eller en kompositbjælke
Beregningsopgave om bærende konstruktioner
OPGAVEEKSEMPEL Indledning: Beregningsopgave om bærende konstruktioner Et mindre advokatfirma, Juhl & Partner, ønsker at gennemføre ændringer i de bærende konstruktioner i forbindelse med indretningen af
Projekteringsanvisning for Ytong porebetondæk og dæk/væg samlinger
Projekteringsanvisning for Ytong porebetondæk og dæk/væg samlinger 2012 10 10 SBI og Teknologisk Institut 1 Indhold 1 Indledning... 3 2 Definitioner... 3 3 Normforhold. Robusthed... 3 4. Forudsætninger...
Jackon AS, Postboks 1410, N-1602 Frederiksstad, Norge. Projekteringsrapport. EPS/XPS-sokkelelement til det danske marked.
Jackon AS, Postboks 1410, N-1602 Frederiksstad, Norge EPS/XPS-sokkelelement til det danske marked Januar 2007 ù Jackon AS, Postboks 1410, N-1602 Frederiksstad, Norge EPS/XPS-sokkelelement til det danske
Betonkonstruktioner Lektion 1
Betonkonstruktioner Lektion 1 Hans Ole Lund Christiansen [email protected] Det Tekniske Fakultet 1 Materialeegenskaber Det Tekniske Fakultet 2 Beton Beton Består af: - Vand - Cement - Sand/grus -Sten Det
Eksempel på inddatering i Dæk.
Brugervejledning til programmerne Dæk&Bjælker samt Stabilitet Nærværende brugervejledning er udarbejdet i forbindelse med et konkret projekt, og gennemgår således ikke alle muligheder i programmerne; men
A1 Projektgrundlag. Projekt: Tilbygning til Randers Lilleskole Sag: 15.05.111. Dato: 16.03.2016
A1 Projektgrundlag Projekt: Tilbygning til Randers Lilleskole Sag: 15.05.111 Dato: 16.03.2016 Indholdsfortegnelse A1 Projektgrundlag... 3 A1.1 Bygværket... 3 A1.1.1 Bygværkets art og anvendelse... 3 A1.1.2
STATISKE BEREGNINGER AF ÆLDRE MURVÆRK
pdc/sol STATISKE BEREGNINGER AF ÆLDRE MURVÆRK 1. Indledning En stor del af den gamle bygningsmasse i Danmark er opført af teglstenmurværk, hvor den anvendte opmuringsmørtel er kalkmørtel. I byggerier fra
Festtelt, Aluminiumrammer Type 6,0-2,2-3,3 og Type 9,0-2,2-3,8 Statiske beregninger EN 13782:2005
Festtelt, Aluminiumrammer Type 6,0-2,2-3,3 og Type 9,0-2,2-3,8 Statiske beregninger EN 13782:2005 Kibæk Presenning Lyager 11, 6933 Kibæk Udgivelsesdato : Juli 2009 Projekt : 14.7414.07 Rev. : A Udarbejdet
Lodret belastet muret væg efter EC6
Notat Lodret belastet muret væg efter EC6 EC6 er den europæiske murværksnorm også benævnt DS/EN 1996-1-1:006 Programmodulet "Lodret belastet muret væg efter EC6" kan beregne en bærende væg som enten kan
Statisk beregning. Styropack A/S. Styrolit fundamentssystem. Marts Dokument nr. Revision nr. 2 Udgivelsesdato
Marts 2010 Dokument nr Revision nr 2 Udgivelsesdato 12032007 Udarbejdet TFI Kontrolleret KMJ Godkendt TFI ù 1 Indholdsfortegnelse 1 Indledning 3 2 Beregningsforudsætninger 4 21 Normer og litteratur 4 22
Titelblad. Synopsis. Kontorbyggeri ved Esbjerg Institute of Technology. En kompliceret bygning. Sven Krabbenhøft. Jakob Nielsen
1 Titelblad Titel: Tema: Hovedvejleder: Fagvejledere: Kontorbyggeri ved Esbjerg Institute of Technology En kompliceret bygning Jens Hagelskjær Henning Andersen Sven Krabbenhøft Jakob Nielsen Projektperiode:
A1. Projektgrundlag A2.2 Statiske beregninger -konstruktionsafsnit
A1. Projektgrundlag A2.2 Statiske beregninger -konstruktionsafsnit Erhvervsakademiet, Århus Bygningskonstruktøruddannelsen, 2. semester Projektnavn: Statik rapport Klasse: 12bk1d Gruppe nr.: 2 Dato:09/10/12
Statiske beregninger for enfamiliehus Egeskellet 57 i Malling
Statiske beregninger for enfailiehus Egeskellet 57 i Malling Statiske beregninger Hanebånd Lodret last på hanebånd (45 45): L h 4 p rh 057 k 05 k 3 06 p rh = 073 k p kh 057 k 05 k 0 06 p kh = 064 k p ψh
Urban 4. Arkitektur 6. Konstruktion 10 Brand- og flugtveje 10. Brand og akustik 12 Stabilisering 13 Søjle og bjælke dimensionering 14
Urban 4 Bebyggelsesprocent 4 Arkitektur 6 Plan 6 Snit 7 Facade 8 Foreslag på udnyttelse af udearealet 9 Konstruktion 10 Brand- og flugtveje 10 Brand og akustik 12 Stabilisering 13 Søjle og bjælke dimensionering
Etablering af ny fabrikationshal for Maskinfabrikken A/S
Etablering af ny fabrikationshal for Dokumentationsrapport for stålkonstruktioner Byggeri- & anlægskonstruktion 4. Semester Gruppe: B4-1-F12 Dato: 29/05-2012 Hovedvejleder: Jens Hagelskjær Faglig vejleder:
OP-DECK Solution Last Tabel Let Erhverv 2,5 kn/m2 3 August 2009 Simpel Understøttet (m.) Indspændt 1 side (m.) 4 4,5 5 5,5 4 4,5 5 5,5
Let Erhverv 2,5 kn/m2 3 August 9 Simpel Understøttet (m.) Indspændt 1 side (m.) Bredde T-Dæk (b1) 60 60 60 60 60 60 60 60 Højde T-Dæk (h1) 138 138 158 168 138 138 138 138 Beton lag T-Dæk (h0) 50 50 50
