fra venstre: Mike van der Poel og Alexandra Boltasseva

Størrelse: px
Starte visningen fra side:

Download "fra venstre: Mike van der Poel og Alexandra Boltasseva"

Transkript

1 fra venstre: Mike van der Poel og Alexandra Boltasseva

2 Kapitel 1 Brydninger Nye optiske materialer med nanostrukturer klæder lyset på til at bryde grænser af Mike van der Poel og Alexandra Boltasseva Optikken er inde i en brydningstid. En stadig bedre adgang til at strukturere materialerne helt ned på nanometerskala og en forståelse af hvad der virkelig sker, når lyset flyder gennem dem har betinget muligheden for at skræddersy optiske materialer med egenskaber, man før kun kunne drømme om. Vil du gerne have langsomt lys? Altså lys der flyder som sej sirup ned gennem bølgelederen, mens det dovent skvulper ind og ud af de nanometer store krystaller? Eller måske foretrækker du en usynlighedskappe? Altså en kappe, som får lyset til at flyde uden om en forhindring som vandet i bækken løber omkring en sten. Det handler ikke kun om betagelsen af smukke naturfænomener. Som lyset i dag flyder i forskningslaboratorier, kan det snart komme til at give dig hurtigere internetforbindelse, superlinser eller biler som kan køre sikkert i tåge. Nøglen til at lære lyset nye tricks hedder brydningsindeks.

3 Kapitel 1 Brydninger Halvlederkomponenter Når vi i dag tager billeder med digitalkamera og ser dem på den lille skærm bag på kameraet, så benytter vi os i begge tilfælde af halvledermaterialers særlige optiske egenskaber. Halvledere er nemlig en klasse af materialer, som danner et bindeled mellem elektronik og optik. Når man lyser på et halvledermateriale dannes en elektrisk strøm, som kan viderebehandles i et elektronisk kredsløb - det er det, som sker i digitalkameraet. Omvendt kan man lave halvledermaterialer, som udsender lys når man sender en strøm gennem dem - det er det, som sker i skærmen bag på nogle af de nyeste digitalkameraer. Den slags teknologier, hvor lys bliver detekteret, udsendt, forstærket eller indgår på en eller anden måde som en afgørende komponent, kaldes med en fællesbetegnelse for fotonik. Fotonikbranchen har i de senere år vokset dramatisk fordi fotonik indgår i flere og flere teknologier. For eksempel er det ret nyt at optage billeder digitalt og se dem på en halvlederbaseret fladskærm. C D C D C D Figur 1-1 Den optiske router. I en netværksrouter styres indkomne datasignaler til de rigtige udgange. Hvis to pakker med data ankommer samtidigt er det nødvendigt at bremse den ene datapakke op mens den anden ekspederes så kollision undgås. A B A B A B En af de allervigtigste anvendelser af fotonik er skjult for det blotte øje. De optiske komponenter er gravet ned i jorden eller lagt på bunden af havet og i øvrigt benyttes infrarødt og derfor usynligt lys. Alligevel bruger vi det alle sammen dagligt. Det er naturligvis det verdensomspændende kommunikationsnetværk, som består af millioner af kilometer optiske fibre, lasere, optiske forstærkere, detektorer og meget mere, der er tale om. Enorme mængder af data, som repræsenterer tekst, billeder, lyd osv., transmitteres over kontinenter hver eneste dag i form af lyspulser. Enhver som sender en e- mail, surfer på nettet eller bare taler i telefon (selv mobiltelefon) bruger det optiske netværk og det er sikkert de færreste som overhovedet er klar over det. Endnu færre er klar over, at arbejdshesten bag det optiske netværk, det, som laver, behandler og i sidste ende detekterer lyset, er nanometer tykke skiver af et halvledermateriale, der ligger som en sandwich mellem to andre halvledermaterialer. Sådan en sandwich kaldes en kvantebrønd, og den er et eksempel på et materiale, hvor netop nanometerstørrelsen er afgørende for materialets optiske egenskaber. Forskere over hele verden arbejder med forskellige former for halvledermaterialer der er formet på nanometerskala og DTU er så heldig at høre til den eksklusive skare af universiteter, der har sine egne faciliteter til at dyrke halvledermaterialer og bearbejde dem til optiske komponenter som lasere, forstærkere eller signalbehandlere af forskellig art. Med muligheden for at lave komponenter fra A-Z kan studerende og medarbejdere forske i alle aspekter af de fotoniske komponenter. I dag handler forskningen i høj grad om at finde ud af hvilke materialer der vil gøre lyset i stand til at møde udfordringen i fremtidens optiske komponenter. Der kan både være tale om forbedringer af eksisterende teknologier eller udviklingen af nye koncepter, der på et mere langsigtet niveau kan føre til helt nye anvendelser af lyset. I dette kapitel vil vi give eksempler på forskellige nanostrukturerede materialer og se hvilke fysiske egenskaber de har i lysstof vekselvirkningen og hvordan det har 12

4 Brydninger Kapitel 1 FAKTABOKS 1 Optiske processer i halvledere Halvledernes fordelagtige optiske egenskaber hænger sammen med at elektronerne i materialet kan foretage kvantespring fra et energiniveau til et andet mens de enten absorberer eller udsender en foton. Sammenhængen mellem energispringet E og fotonens bølgelængde og frekvens f er givet ved E = hf = hc/, hvor h er Plancks konstant og c er lysets hastighed i vakuum. Ligesom i atomfysikken er der tale om tre gensidigt forbundne processer: 1) Absorption, 2) spontan emission og 3) stimuleret emission. I halvledermaterialet springer elektronen imellem to bånd af tilladte tilstande, nemlig valensbåndet og ledningsbåndet. I en blå diodelygte bruges halvledermaterialet gallium-indium-nitrid (GaInN) med et båndgab på 2,6 ev = 4, J. Når man sender strøm gennem det materiale opstår der spontant udsendt lys (dvs. proces 2) når elektronerne springer fra ledningsbåndet til valensbåndet. Springet over båndgabet svarer til udsendelse af lys med en bølgelængde på = 470 nm. I digitalkameraet absorberes det indkomne lys (dvs. proces 1) på sensor af silicium (Si). E 1) 2) 3) ledningsbånd valensbånd potentiale for teknologisk anvendelse. Langsomt lys Lyset er et flygtigt fænomen. Med en ubegribelig hastighed snor lyset sig gennem det globale optiske netværk. Vi kan gribe telefonen og uden nævneværdig forsinkelse føre samtale med en person i Kina. Uddeles en Nobelpris i Stockholm, ved vi det med en forsinkelse som højest beløber sig til et par millisekunder. Men som informationsbærende medium er lysets adelsmærke ikke bare den store udbredelseshastighed. Det, som virkelig har betydning for lysets værdi i telekommunikation, er den enorme hastighed hvormed data kan flyttes. Der findes optiske komponenter, som kan håndtere en billiard (altså 1012) lyspulser i sekundet. Der er ingen elektroniske kredsløb som overhovedet nærmer sig den hastighed. Derfor er tanken om en optisk computer, hvor beregninger foretages 13

5 En serie lyspulser behandles i en fotonisk komponent. Denne tænkte komponent indeholder en fotonisk krystal (i forgrunden), en overfladeplasmon polariton bølgeleder (bagest, til venstre) og en sektion som bremser lyset op (bagest, til højre) 14

6 15

7 Kapitel 1 Brydninger vha. lys eller tanken om det rent optiske netværk, hvor lyspulserne forbliver lyspulser gennem hele netværket uden på noget tidspunkt at overføres til elektriske pulser en drøm, som mange arbejder på at gøre til virkelighed. Lysets flygtige natur er det, som gør det så attraktivt som det informationsbærende medium i alle mulige teknologiske sammenhænge. Men lysets flygtighed er samtidig dets akilleshæl. Der er nok af tekniske grunde til at man ikke i dag kan bygge en optisk computer eller et rent optisk netværk. Men over dem alle står en udfordring af en mere principiel karakter: Hvis vi for alvor skal bruge lyset til at lave beregninger og komplekse manipulationer i optiske netværk, må vi gribe fat i det og lagre det for en stund indtil timingen er i orden. Det nytter ikke at det bare farer omkring. Forskellige lyssignaler skal kunne sættes i kø således at de kan ekspederes efter tur. Dette er en helt nødvendig egenskab i ethvert kredsløb, og dette er en af hovedmotivationerne for at arbejde med langsomt lys. Se for eksempel på den optiske router der i enkel form præsenterer problemet. Hvis ikke datasignalerne skal blandes sammen er det nødvendigt at opbremse lyset fra den ene kanal for en stund. Løsningen på problemet i dag er fantasiforladt: De indkomne datasignaler aflæses elektronisk og lagres i en computerkreds så længe det er nødvendigt inden de atter sættes fri som optiske pulser. Men den elektriske konvertering er dyr og elektronikkens langsommelighed er en begrænsende faktor i de optiske netværks hastighed i dag. På dette tidspunkt er det imidlertid værd at præcisere sprogbrugen og klargøre begreberne. Når lys har en høj hastighed gennem et optisk materiale siger vi at det har en høj udbredelseshastighed, som måles i m/s. Når en optisk komponent kan håndtere billiarder af optiske pulser i sekundet siger vi at komponenten har en høj båndbredde, som måles i Hz. Det er den høje udbredelseshastighed, som gør at vi kan tale med en person på den anden side af kloden med millisekunds forsinkelse. Det er den høje båndbredde der gør at en enkelt optisk fiber kan transmittere mere end 100 mio telefonsamtaler på én gang. Hastigheden på en internetforbindelse opgøres i bit pr. sekund (b/s), der angiver hvor hurtigt information kan overføres via linien. Dette mål er relateret til den fysiske båndbredde ved at forbindelsens hastighed i b/s er proportional med den fysiske båndbredde målt i Hz. Det store mål i forbindelse med langsomt lys er at opbremse lyset samtidig med at den store båndbredde bevares. I flere laboratorier verden omkring har man demonstreret kraftig nedbremsning af lyset over en lille båndbredde. Andre steder har man demonstreret en beskeden opbremsning over en stor båndbredde. Ingen steder har man til dato både kunne lave en kraftig opbremsning og bevare den store båndbredde, og det er et af den moderne fotoniks gode spørgsmål, hvordan man kan gøre det! Teknikkerne til at opbremse lyset handler alle om at forme det optiske materiales brydningsindeks således at den afledte af lysets brydningsindeks (se boks) og dermed gruppehastigheden bliver meget lav. På har forskerne som de første haft held med at reducere lysets hastighed væsentligt i en halvlederkomponent. Dette resultat er af stor betydning for den praktiske anvendelse af langsomt lys, fordi halvlederkomponenter er kompakte, robuste og billige at fremstille. Det aktive materiale i komponenten er en halvleder kvantebrønd, hvor en svag lysstråle af en frekvens vekselvirker med en meget kraftigere lysstråle af en nærliggende frekvens. Så længe frekvensforskellen mellem de to lysbølger ikke er for stor udveksles der energi mellem dem og dette resulterer i en ganske lille ændring i materialets brydningsindeks, n. Selv om denne ændring i n er lille, så resulterer den i en stor afledt, dn/df, fordi den sker over et lille frekvensinterval. Derfor kan man få en lille gruppehastighed, således at lyssignalet bevæger sig langsomt gennem kvantebrønden. I eksperimentet på blev lyset opbremset med en faktor 3. Dette tal er måske i sig selv ikke overvældende stort. Men opbremsningen af lyset er mulig over en meget stor bånd- 16

8 Brydninger Kapitel 1 FAKTABOKS 2 Lysets hastighed Lysets hastighed v i et optisk materiale er givet ved materialets brydningsindeks n således at v = c/n, hvor c = km/s er lysets hastighed i vakuum. Brydningsindekset i glas er fx ca. n = 1,5, således at lyset opbremses og bevæger sig med en hastighed, som er omtrent 67 % af lyshastigheden i vakuum. Det er hastighedsændringen ved overgangen af lys fra et materiale til et andet som er ansvarlig for lysets brydning som vist på Figur 1-3. Brydningsindekset er en funktion af lysets frekvens f, således at n = n(f). Det betyder bl.a. at forskellige farver bryder forskelligt i et prisme. Imidlertid skal man holde tungen lige i munden, hvis man skal beregne hastigheden af en lyspuls i et optisk materiale. Lyspulsen bevæger sig nemlig med en hastighed v = c/n g bestemt af gruppebrydningsindekset ng som er givet ved n g = n + f dn/df. Det første led er brydningsindekset, mens det andet led er proportionalt med brydningsindekset afledte mht. frekvensen. I den moderne forskning arbejdes med at manipulere både brydningsindekset n og dens afledte dn/df. Det var en forskningsmæssig sensation da den danske fysiker Lene Hau i 1999 havde succes med at lave et optisk materiale med fdn/df = , således at hun kunne opbremse lyspulser til en hastighed på v = 17 m/s. I hendes forsøg var selve brydningsindekset, n, tæt på 1. brydningsindeks brydningsindeks n gruppebrydningsindeks n f dn + df frekvens f Figur 1-3 Langsomt lys går ud på at ændre brydningsindekset en lille smule over et lille frekvensinterval, således at det får en meget stor afledt (Brydningsindekset varierer meget kraftigt som funktion af bølgelængden). Det resulterer i en meget lille gruppebrydnings-indekshastighed. bredde, således at komponenten faktisk ville kunne opbremse et datasignal med en båndbredde på 20 GHz, eller hvad der svarer til meget hurtige internetforbindelser på én gang. I de tilfælde hvor lyset er bremset op til ekstremt lave hastigheder som i fx det meget omtalte eksperiment af Lene Hau (se boks) har det været på bekostning af båndbredden, som næppe var mere end et par hundrede kb/s eller hvad der svarer til en enkelt, langsom internetforbindelse. På er også lavet eksperimenter med opbremsning over den ekstreme båndbredde af omkring 1 Tb/s. Dette eksperiment 17

9 Kapitel 1 Brydninger Elektrisk styring Optisk puls ind Optisk puls ud Figur 1-2 Langsomt lys i en halvlederkomponent. Selve komponenten er 100 μm lang og 5 μm bred og er således så lille at den næsten ikke kan ses med det blotte øje. Hastigheden af lyset kan skrues op og ned ved hjælp af den elektriske forbindelse øverst til venstre. repræsenterer rekorden inden for opbremsning af lys med høj båndbredde. Til gengæld var opbremsningen beskeden med en ændring i gruppebrydningsindekset på omkring Det interessante ved alle disse eksperimenter er, at tager man produktet af, hvor lang tid de forskellige komponenter kan forsinke en lyspuls med lysets båndbredde, så får man et nogenlunde konstant tal! Dette forhold er en anden måde at udtrykke hovedspørgsmålet i den moderne forskning i langsomt lys: Kan tidsbåndbredde produktet brydes? Indtil videre er alle de demonstrerede teknikker helt utilstrækkelige til at klare opgaven som den optiske router (se Figur 1-6) kræver. Og hvad fik vi så ud af det? Det kan godt være at den optiske router er en hård nød at knække, men alligevel er resultaterne som de allerede tegner sig i dag meget værdifulde. For at forstå det bedre kunne vi fx vende blikket mod Thule i Nordvestgrønland, hvor det amerikanske forsvar har opstillet en kæmpestor, såkaldt fasestyret radar som spiller en vigtig rolle i overvågningen af luftrummet over nordpolen. En fasestyret radar består af en mængde små radarantenner som hver for sig udsender radarbølger. De enkelte radarbølger interfererer med hinanden og resultatet er en radarstråle i en bestemt retning. Ved at ændre fasen mellem de enkelte radarantenner kan retningen af den resulterende radarstråle ændres. Den fasestyrede radar er en metode til hurtigt at kunne flytte en radarstråle fra en retning til en anden uden bevægelige dele i radarantennen. På den måde er komponenter, som kan faseskifte en radarbølge afgørende i den fasestyrede radar. I dag arbejder forskere på på en ny generation af faseskiftere, som netop benytter langsomt lys til at forme radarbølgen. Disse faseskiftere har potentiale til at være mindre, hurtigere og billigere end de eksisterende. Måske har det ikke den store betydning for en kæmpe militær radar som den på Thule. Men det har betydning for muligheden for at installere den samme type radar i fx biler. Her er pris og størrelse afgørende for udbredelsen, og de store bilproducenter er ivrige efter at kunne tilbyde en forbedret trafiksikkerhed i deres biler vha. radarteknologi, som fortæller føreren hvis vedkommende er ved at komme for tæt på de andre biler på vejen. Nanoskala optik med overfladeplasmoner Den teknologiske udvikling i retning af nanofotonik involverer ikke alene brugen af meget små fotoniske kredsløb eller chips men også en helt ny måde at forme lysets udbredelse igennem nanostrukturerne. Meget små nanopartikler og strukturer sammensat af, hvad man kan kalde konventionelle materialer (altså dem, der direkte kan findes i naturen), udviser fascinerende optiske egenskaber, der ikke kan genfindes i den makroskopiske verden, som vi normalt betragter og udnytter. Skiftet i retning af nanofotonik er imidlertid ikke nemt. Det er nemlig således, at vekselvirkningen mellem lys og fast stof vil blive mindre for de fleste materialer efterhånden som de indgående strukturer bliver meget mindre end lysets bølgelængde. Der findes imidlertid en gruppe af materialer, nemlig metallerne (som normalt betragtes som værende nærmest ubrugelige indenfor fotonikken, idet de absorberer lys), der muliggør effektive metoder til at manipulere lys på nanoskala. 18

10 Brydninger Kapitel 1 Ved at benytte metaller altså materialer, hvori elektroner frit kan bevæge sig opnår vi muligheden for at udnytte de unikke overflade bølger, kaldet overflade plasmoner (se faktabox), der kan udbrede sig langs overfladen mellem metal og dielektrikum (sidstnævnte er det materiale, hvori optiske bølger normalt udbreder sig altså f.eks. glas). I modsætning til normalt lys/fotoner, så har overflade plasmonerne meget korte (dvs. nanoskala) bølgelængder, selvom de samtidigt har optiske frekvenser. Disse kort-bølgelængde overflade plasmoner muliggør fabrikationen af nanoskala optiske integrerede kredsløb, i hvilke lys kan blive ledt, opsplittet, filtreret, og endda forstærket gennem brug af komponenter, der er mindre end den optiske bølgelængde. Den omtalte reduktion i bølgelængde får man imidlertid ikke gratis, idet overflade plasmoner ofte udbreder sig med betydelige tab pga. absorption i metallerne (f.eks. vil overflade plasmoner i den synlige del af det optiske spektrum kun udbrede sig ca. 30 mikrometer langs en sølv-luft overflade før deres intensitet er reduceret med en faktor 7). Der findes imidlertid en måde til at få overflade plasmonerne til at udbrede sig længere langs overfladen, og det er ved at benytte meget tynde metal film. I det tilfælde, hvor metalfilmen bliver så tynd som 10 nanometer, kan man opnå, at overflade plasmoner i den infrarøde del af spektret kan udbrede sig over flere centimeter uden at være dæmpet for meget. De optiske egenskaber af overflade plasmonerne afhænger af mange faktorer såsom typen af metaller og dielektriske materialer, metalfilmenes tykkelse, og strukturernes geometri i øvrigt. Det betyder, at designeren af integrerede overflade plasmon kredsløb har en meget stor værktøjskasse at bruge mhp. at skræddersy bølgernes egenskaber. Et andet eksempel på en geometri, der kan lede overflade plasmoner, er en nanoskala v-formet grøft i en metalfilm. En sådan grøft kan lede lys langs sin bund uden at lyset tabes eller spredes (i lighed med vand der løber i bunden af en grøft). Dette er muligt, fordi overflade plasmonen forbliver stærkt bundet til grøftens bund og således koncentrerer lyset i et volumen vis tværsnit er mindre end én bølgelængde. Lysgivende komponenter kan ligeledes udnytte eksistensen af overflade plasmoner. Hvis man således placerer en lys-emitterede diode (LED) i en plasmon struktur, vil det være muligt at anslå overflade plasmoner meget effektivt. Anvendelsen af overflade plasmoner i nye faststof lyskilder er således et nyt og spændende forskningsemne, men det er muligt, at de lysdioder vi ser i traffiklys om få år vil indeholde overflade plasmon komponenter. I lighed med plane overflader, så vil metalliske nanopartikler også muliggøre dannelsen af overflade plasmoner. I disse tilfælde vil plasmonerne imidlertid have egenskaber, der er meget forskellige fra dem vi kan måle ved de plane overflader. Årsagen til disse forskelle skal søges i forhold omkring tætheden af frie elektroner. Således vil en plan bølge, der rammer en sølvpartikel med en diameter på 20 nanometer blive stærkt fokuseret ind i partiklen. Dette fører til en meget høj koncentration af lys intensiteten indenfor et område, der er i størrelsesordenen 10 nm stort, og sådan et intenst felt vil kunne finde anvendelser indenfor udviklingen af nye lysdioder, eller indenfor bio-sensorer og nano-litografi. Ligeledes kan mange sammensatte nanopartikler danne en optisk bølgeleder på miniature skala. Hvis man således placerer en kæde af nanopartikler efter hinanden, så vil overflade plasmoner kunne udbrede sig mellem dem gennem gensidig vekselvirkning eller populært sagt så svinger plasmonen sig fra partikel til partikel på sammen måde som en gibbon abe svinger sig fra gren til gren. En sådan nano-kæde bølgeleder kan holde det elektromagnetiske felt fanget indenfor et meget lille område, dvs. som et spor med en bredde på kun 50 nm, hvilket faktisk er 100 gange smallere end i normale dielektriske bølgeledere (se også kapitlet om optiske fibre). Dette giver naturligvis potentielle muligheder for at integrere mange komponenter på et meget lille areal. 19

11 Kapitel 1 Brydninger FAKTABOKS 3 At forstå overflade plasmoner Normalt tænker man på lys, der udbreder sig gennem et homogent materiale, med et bestemt brydningsindeks. Imidlertid vil overgangen mellem et dielektrisk materiale (f.eks. glas) og et metal (f.eks. sølv eller guld) kunne understøtte udbredelsen af elektromagnetiske bølger (herunder lys). Disse bølger bundet til den to-dimensionale overflade kaldes overflade plasmoner, og de repræsenterer optiske bølger, der er koblet til svingninger af frie elektroner i metallet. Overflade plasmoner udbreder sig langs overgangen mellem de to medier, og mærker således indflydelsen af dem begge. Dette er årsagen til at bølgelængden af overflade plasmoner afhænger af begge materialers egenskaber og er givet ved relationen: λ SP = ( m + d )/( m d ), hvor ε m og ε er d dielektricitets konstanterne af henholdsvis metal og dielektrikum. Den dielektriske konstant er en vigtig parameter, der karakteriserer de optiske egenskaber af et materiale. For dielektriske materialer er ε d normalt positiv (1 for luft for eksempel). De unikke egenskaber ved metal er at ε m kan blive negativ og stærkt bølgelængdeafhængig. Det betyder, at for visse frekvenser, så kan λ SP blive overordentlig kort, når ε m er tæt ved værdien for ε d. Dette adskiller overflade plasmoner fra normale fotoner: De har med andre ord en meget mindre bølgelængde ved same frekvens. Et eksempel er en Helium-Neon (He-Ne) laser, hvis fritrums emissions bølgelængde er 633 nm, der kan Skematisk repræsentation af en overflade plasmons feltfordeling, der viser orienteringen af de elektriske og magnetiske felter. 20

12 Brydninger Kapitel 1 anslå en overflade plasmon ved en Si/Ag overflade med en bølgelændge på kun 70 nm. Dette muliggør at overflade plasmonerne kan vekselvirke meget effektivt med meget små (nanoskala) objekter ved overfladen. Således kan en overflade plasmon blive anslået med en typisk/velkendt lyskilde gennem brug af nanopartikler placeret på metal overfladen. Der eksisterer forskellige måder, hvorpå man kan koble sædvanligt lang-bølgelængde lys til kort-bølgelængde overflade plasmoner, som kan vekselvirke effektivt med nanopartikler. Det negative brydningsindeks og superlinsen Indenfor fotonikken kan man designe kunstige materialer såkaldte metamaterialer hvis elektromagnetiske egenskaber ikke har deres sidestykke i naturen. Ordet meta er græsk og betyder udover og i denne forstand refererer navnet metamaterialer til materialer, der har egenskaber udover de konventionelle materialers. (a) (c) (b) Y De menneskeskabte metamaterialer opnår ikke deres nye egenskaber på grund af nye kemiske sammensætninger, men fordi man med nanoskala strukturer kan skræddersy materialet til at opføre sig på en anden måde end det oprindelige. X Z Metamaterialer er normalt blandinger af dielektriske materialer og ultra-små metalliske kredsløb eller trådmønstre, der kan påvirke lysets retning. Kunsten består i at sammensætte Figur 1-4 (a) Magnetisk resonant metal struktur: to modsat rettede splittede ringe af sub-bølgelængde dimensioner; (b) Elektrisk resonant metallisk struktur: metal stænger; (c) En kombination af begge strukturer resulterer i et negativtindeks metamateriale. 21

13 Kapitel 1 Brydninger FAKTABOKS 4 Sådan laver man nanostrukturerede materialer Fabrikation af komponenter med nanometer dimensioner og nøjagtighed kræver kompliceret udstyr og et specielt og umådeligt rent fremstillingsmiljø (et såkaldt renrum). En af de vigtigste processer indenfor nanofabrikation er den såkaldte nanolitografi der er den videnskab (eller kunst) at skrive eller trykke på nanoskala niveau. Normalt bliver dette gjort med elektronstrålelitografi (på engelsk electron beam lithography, EBL) der er en specialiseret teknik til dannelsen af ekstremt små mønstre. Denne EBL teknik består i korte træk af en stråle af elektroner, der skannes på tværs af en overflade dækket af et særligt materiale (den såkaldte resist ) der er følsomt overfor elektronerne, og derfor deponerer energi i et ønsket mønster på denne resist film. Når et nano-mønster er blevet defineret af elektronstrålen, kan dette mønster overføres til substrat materialet (det materiale hvorpå resist filmen er blevet påført) gennem ætsning, og man kan f.eks. danne nano-skala store metal klumper ved deponering i de fremkomne huller i resist filmen, hvorefter den uønskede resist maske endelig kan fjernes (se Figuren). Resist Substrat Eksponeret og fremkaldt resist Skematisk illustration af fabrikations skridt i dannelsen af et nano-mønster vha. elektron stråle litografi. Ætsning Metal deponering Resist fjernelse Liftoff 1 μm Eksempel på en fremstillet struktur guldklumper med diameter på mindre end 200 nm. 22

14 Brydninger Kapitel 1 et mønster af elektroniske komponenter, der kan bringes i resonans med lysbølgernes elektriske og magnetiske feltkomponenter, når lyset passerer gennem metamaterialerne. Når den elektromagnetiske stråling passerer hen over de strøm-ledende komponenter (såsom små ledningsløkker) så vil det magnetiske felt inducere en elektrisk strøm og således fremkalde et magnetisk svar på denne påvirkning. Set i et lidt større perspektiv betyder dette forhåbentligt, at man kan designe metamaterialer med foreskrevne parameter, såsom deres elektriske permittivitet ε og magnetiske permeabilitet μ. Næsten samtlige materialer, som vi finder indenfor optikken, det være sig f.eks. glas eller vand, har positive værdier for ε og μ (hvorimod mange metaller har en negativ ε ved synlige bølgelængder). I praksis benytter man ofte materialets brydningsindeks til at beskrive dets egenskaber, og brydningsindekset n hænger sammen med de ovennævnte parametre på følgende måde n =. Alle kendte gennemsigtige materialer er karakteriseret ved et positivt brydningsindeks, fordi ε og μ Positiv Negativ Figur 1-5 Skematisk illustration af brydningen af en lysstråle i det negative brydningsindeks materiale. begge er positive. Imidlertid kan visse specialfremstillede metamaterialer fremstilles så ε < 0 og μ < 0. I dette tilfælde, er det nødvendigt at uddrage den negative kvadratrod af n, hvormed man får såkaldte negative-index materialer (NIM) (Se Figur 1). Brydningsindekset n angiver den faktor, hvormed lysets fasehastighed reduceres ved udbredelse igennem materialet i forhold til vacuum. Figur 1-6 Dette diagram viser hvorledes lysstråler i teorien kan afbøjes rundt om et omsluttet (og dermed usynligt) objekt. Beskueren synes at se ubrudte lysstråler, og kan således ikke erkende objektets tilstedeværelse. 23

15 Kapitel 1 Brydninger FAKTABOKS 5 Superlinsen (negativt brydningsindeks linse) Blandt de mest spændende anvendelser af materialer med negativt brydningsindeks er den perfekte linse. Denne blev først foreslået af Professor Sir John Pendry i år Han beskrev, hvorledes en skive af materiale med brydningsindeks n = 1 og som placeres i luft vil tillade afbildning af objekter med en sub-bølgelængde (= mindre end bølgelængden) præcision. Sådanne superlinser kan forstørre billeder af objekter, der befinder sig i afstande meget mindre end lysets bølgelængde (og kaldes således nær-felts superlinser). Sådanne linser kan udnyttes til at skabe billeder med superdetaljeret opløsning. Man kan forestille sig, at disse linser i fremtiden kan fremstilles af komposit materialer, som indeholder både metaller og dielektriske materialer, og at disse linser vil virke i et meget bredt bølgelængdeområde. Figur. En superlinse kan i fremtiden benyttes til at lave billeder med hidtil ukendt opløsning. De gule kegler indikerer, hvorledes lysets stråler brydes (Illustration tegnet efter X. Zhang). NIM materialer er designet til at have negativt brydningsindeks, hvilket betyder at fasehastigheden i disse er modsat rettet i forhold til energiudbredelsesretningen. Dette er en højst usædvanlig situation set i forhold til konventionel optik og den verden vi normalt omgiver os med. Det betyder også, at ved overgangen mellem et materiale med positivt brydningsindeks og et med negativt indeks, vil en lysstråle afbøjes i den forkerte retning i forhold til materialeovergangens normal (se Figur1-5). Metamaterialer med negativ brydning som illustreret på Figur 1-4, kan føre til udvikling af såkaldte superlinser, der vil være istand til at afbilde objekter og finstrukturer, som er meget mindre end ly- 24

16 Brydninger Kapitel 1 sets bølgelængde (se faktaboks). Andre spændende anvendelser af metamaterialer omfatter antenner med overlegne egenskaber, optiske nano-kredsløb, og beklædninger der kan gøre objekter usynlige (en usynlighedskappe ). Hvordan vil en usynlighedskappe virke? For at gøre et objekt usynligt, må man omslutte det med en specialdesignet metamateriale et slags metamateriale rør der vil få lysbølger til at flyde rundt om objektet på samme måde som man kan forestille sig vand flyder omkring et rør. Hvis vi et øjeblik sammenligner de to situationer, bemærker man at vand opfører sig lidt forskelligt fra lys, så hvis man f.eks. stikker en blyant ned i vand, der bevæger sig, så vil vandet naturligt flyde rundet om blyanten. Når vandet kommer om på den anden side af forhindringen, så samles det igen, hvorimod afbøjet lys normalt ikke kan samles igen det spredes i andre retninger. Forestiller man sig imidlertid udnyttelsen af specielle metamaterialer, der kan få lyset til at flyde rundt om blyanten, så ville man kort efter at lyset har passeret denne ikke kunne vide, om der havde været en blyant eller ej. Man må altså forestille sig, at lyset afbøjes i bløde kurver omkring det objekt, vi ønsker at gøre usynligt, hvorefter strålerne samler sig i deres oprindelige bane bag objektet (se Figur 1-6). Objekter er synlige i det optiske frekvensområde, fordi de reflekterer eller spreder lys. Mange objekter vil ligeledes absorbere lys, men det der absorberes ses ikke. Således er himlen blå, fordi atmosfæren spreder blåt lys kraftigere end de røde frekvenser. Ihvertfald i teorien kan metamaterialer således virke som den usynlighedshjelm, som omtales i den græske mytologi, eller den usynlighedskappe som Harry Potter havde så stor gavn af. Der er stadigvæk lang vej at gå, men man kan da drømme om, at man en dag måske vil blive i stand til at bygge en usynlighedskappe omkring store industribygninger, som ødelægger udsigten fra terrassen, men som vi gerne vil have i nærheden, fordi det er der vi måske arbejder eller får produkter fra. Mike van der Poel, Lektor Alexandra Boltasseva, Adjunkt 25

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning

6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning 49 6 Plasmadiagnostik Plasmadiagnostik er en fællesbetegnelse for de forskellige typer måleudstyr, der benyttes til måling af plasmaers parametre og egenskaber. I fusionseksperimenter er der behov for

Læs mere

LYS I FOTONISKE KRYSTALLER 2006/1 29

LYS I FOTONISKE KRYSTALLER 2006/1 29 LYS I FOTONISKE KRYSTALLER OG OPTISKE NANOBOKSE Af Peter Lodahl Hvordan opstår lys? Dette fundamentale spørgsmål har beskæftiget fysikere gennem generationer. Med udviklingen af kvantemekanikken i begyndelsen

Læs mere

At lede lyset på nanovejen Side 46-49 i hæftet

At lede lyset på nanovejen Side 46-49 i hæftet At lede lyset på nanovejen Side 46-49 i hæftet SMÅ FORSØG OG OPGAVER Lys og lyd TV gennem lysleder I en lysleder sendes signaler i form af lysimpulser. Derfor kan det være en overraskelse, at man kan sende

Læs mere

144 Nanoteknologiske Horisonter

144 Nanoteknologiske Horisonter 144 Nanoteknologiske Horisonter KAPITEL 10 Nanofotonik kaster lys over fremtiden Fysik Nanofotonik kaster lys over fremtiden Per Lunnemann Hansen, Mads Lykke Andersen, Mike van der Poel, Jesper Mørk, Institut

Læs mere

Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM)

Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM) Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM) Institut for Fysik og Astronomi Aarhus Universitet, Sep 2006. Lars Petersen og Erik Lægsgaard Indledning Denne note skal tjene som en kort introduktion

Læs mere

Mikroskopet. Sebastian Frische

Mikroskopet. Sebastian Frische Mikroskopet Sebastian Frische Okularer (typisk 10x forstørrelse) Objektiver, forstørrer 4x, 10x el. 40x Her placeres objektet (det man vil kigge på) Kondensor, samler lyset på objektet Lampe Oversigt Forstørrelse

Læs mere

fra venstre: Philip Trøst Kristensen, Peter Lodahl og Søren Stobbe

fra venstre: Philip Trøst Kristensen, Peter Lodahl og Søren Stobbe fra venstre: Philip Trøst Kristensen, Peter Lodahl og Søren Stobbe fra venstre; Philip Trøst Kristensen, Peter Lodahl og Søren Stobbe Kapitel 2 Kvanteoptik i et farvet vakuum Anvendelser af nanoteknologi

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

1. Vibrationer og bølger

1. Vibrationer og bølger V 1. Vibrationer og bølger Vi ser overalt bevægelser, der gentager sig: Sætter vi en gynge i gang, vil den fortsætte med at svinge på (næsten) samme måde, sætter vi en karrusel i gang vil den fortsætte

Læs mere

Lys fra silicium-nanopartikler. Fysiklærerdag 22. januar 2010 Brian Julsgaard

Lys fra silicium-nanopartikler. Fysiklærerdag 22. januar 2010 Brian Julsgaard Lys fra silicium-nanopartikler Fysiklærerdag 22. januar 2010 Brian Julsgaard Oversigt Hvorfor silicium? Hvorfor lyser nano-struktureret silicium? Hvad er en nanokrystal og hvordan laver man den? Hvad studerer

Læs mere

FYSIK I DET 21. ÅRHUNDREDE Laseren den moderne lyskilde

FYSIK I DET 21. ÅRHUNDREDE Laseren den moderne lyskilde FYSIK I DET 1. ÅRHUNDREDE Laseren den moderne lyskilde Kapitel Stof og stråling kan vekselvirke på andre måder end ved stimuleret absorption, stimuleret emission og spontan emission. Overvej hvilke. Opgave

Læs mere

Øvelse i kvantemekanik Måling af Plancks konstant

Øvelse i kvantemekanik Måling af Plancks konstant Øvelse i kvantemekanik Måling af Plancks konstant Tim Jensen og Thomas Jensen 2. oktober 2009 Indhold Formål 2 2 Teoriafsnit 2 3 Forsøgsresultater 4 4 Databehandling 4 5 Fejlkilder 7 6 Konklusion 7 Formål

Læs mere

Materiale 1. Materiale 2. FIberIntro

Materiale 1. Materiale 2. FIberIntro 1 Materiale 1 Materiale 1 FIberIntro Fiberintro Hvad er et fibersignal? I bund og grund konverterer vi et elektrisk signal til et lyssignal for at transmittere det over lange afstande. Der er flere parametre,

Læs mere

Protoner med magnetfelter i alle mulige retninger.

Protoner med magnetfelter i alle mulige retninger. Magnetisk resonansspektroskopi Protoners magnetfelt I 1820 lavede HC Ørsted et eksperiment, der senere skulle gå over i historiebøgerne. Han placerede en magnet i nærheden af en ledning og så, at når der

Læs mere

Brydningsindeks af vand

Brydningsindeks af vand Brydningsindeks af vand Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 15. marts 2012 Indhold 1 Indledning 2 2 Formål

Læs mere

Optik under diffraktionsgrænsen

Optik under diffraktionsgrænsen Optik under diffraktionsgrænsen Martin Kristensen Institut for Fysik og Astronomi og inano, Aarhus Universitet, Ny Munkegade Bygning 1520, DK-8000 Århus C, Danmark NEDO I klassisk optik er gitre de eneste

Læs mere

fra venstre: Michael Frosz og Ole Bang Fra venstre: Michael Frosz og Ole Bang

fra venstre: Michael Frosz og Ole Bang Fra venstre: Michael Frosz og Ole Bang fra venstre: Michael Frosz og Ole Bang Fra venstre: Michael Frosz og Ole Bang Kapitel 6 Kraftig som en laser - hvidere end solen Superkontinuumgenerering - den ultimative hvidlyskilde af Michael Frosz

Læs mere

14 Nanoteknologiske Horisonter

14 Nanoteknologiske Horisonter 14 Nanoteknologiske Horisonter KAPITEL 2 Nanoteknologi i billeder Fysik Nanoteknologi i billeder Jakob B. Wagner, Center for Elektronnanoskopi Sebastian Horch, Center for Atomic-scale Materials Design,

Læs mere

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger Fysikøvelse Erik Vestergaard www.matematikfysik.dk Musik og bølger Formål Hovedformålet med denne øvelse er at studere det fysiske begreb stående bølger, som er vigtigt for at forstå forskellige musikinstrumenters

Læs mere

Lærebogen i laboratoriet

Lærebogen i laboratoriet Lærebogen i laboratoriet Januar, 2010 Klaus Mølmer v k e l p Sim t s y s e t n a r e em Lærebogens favoritsystemer Atomer Diskrete energier Elektromagnetiske overgange (+ spontant henfald) Sandsynligheder,

Læs mere

Kan I blande farver på computeren?

Kan I blande farver på computeren? Kan I blande farver på computeren? Nøgleord: Materiale: Varighed: Farveblanding med lys (additiv farveblanding), Primær farver, Sekundærfarver, Optisk farveblanding Digital øvelse ½ lektion Det handler

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

Atomare overgange Tre eksempler på vekselvirkningen mellem lys og stof, som alle har udgangspunkt i den kvantemekaniske atommodel:

Atomare overgange Tre eksempler på vekselvirkningen mellem lys og stof, som alle har udgangspunkt i den kvantemekaniske atommodel: Moderne Fysik 6 Side 1 af 7 Forrige gang nævnte jeg STM som eksempel på en teknologisk landvinding baseret på en rent kvantemekanisk effekt, nemlig den kvantemekaniske tunneleffekt. I dag et andet eksempel

Læs mere

Kraftig som en laser, hvidere end solen Superkontinuumsgenerering - den ultimative hvidlyskilde

Kraftig som en laser, hvidere end solen Superkontinuumsgenerering - den ultimative hvidlyskilde Downloaded from orbit.dtu.dk on: Nov 16, 2015 Kraftig som en laser, hvidere end solen Superkontinuumsgenerering - den ultimative hvidlyskilde Frosz, Michael Henoch; Bang, Ole Published in: Optiske Horisonter

Læs mere

fra venstre: Kresten Yvind, David Larsson og Per Lunnemand Hansen

fra venstre: Kresten Yvind, David Larsson og Per Lunnemand Hansen fra venstre: Kresten Yvind, David Larsson og Per Lunnemand Hansen Kapitel 3 Nanoteknologi i masseproduktion Halvledere, lasere og avancerede optiske komponenter af Kresten Yvind, David Larsson og Per Lunnemann

Læs mere

Tjekspørgsmål til Laseren den moderne lyskilde

Tjekspørgsmål til Laseren den moderne lyskilde Tjekspørgsmål til Laseren den moderne lyskilde Kapitel 2. Sådan opstår laserlyset 1. Bølgemodellen for lys er passende, når lys bevæger sig fra et sted til et andet vekselvirker med atomer 2. Partikel/kvantemodellen

Læs mere

Hvordan kan du forklare hvad. NANOTEKNOLOGI er?

Hvordan kan du forklare hvad. NANOTEKNOLOGI er? Hvordan kan du forklare hvad NANOTEKNOLOGI er? Du ved godt, at alting er lavet af atomer, ikke? En sten, en blyant, et videospil, et tv, en hund og du selv består af atomer. Atomer danner molekyler eller

Læs mere

MODUL 1-2: ELEKTROMAGNETISK STRÅLING

MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1 - ELEKTROMAGNETISKE BØLGER I 1. modul skal I lære noget omkring elektromagnetisk stråling (EM- stråling). I skal lære noget om synligt lys, IR- stråling, UV-

Læs mere

Undersøgelse af lyskilder

Undersøgelse af lyskilder Felix Nicolai Raben- Levetzau Fag: Fysik 2014-03- 21 1.d Lærer: Eva Spliid- Hansen Undersøgelse af lyskilder bølgelængde mellem 380 nm til ca. 740 nm (nm: nanometer = milliardnedel af en meter), samt at

Læs mere

5 Plasmaopvarmning. Figur 5.1. De tre mest anvendte metoder til opvarmning af fusionsplasmaer.

5 Plasmaopvarmning. Figur 5.1. De tre mest anvendte metoder til opvarmning af fusionsplasmaer. Ohmsk opvarmning 45 5 Plasmaopvarmning Under diskussionen af fusionsprocesserne og Lawson-kriteriet i kapitel 3 så vi, at to krav skal opfyldes for at opnå et antændt fusionsplasma. Det ene er kravet om

Læs mere

Dopplereffekt. Rødforskydning. Erik Vestergaard

Dopplereffekt. Rødforskydning. Erik Vestergaard Dopplereffekt Rødforskydning Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard 2012 Erik Vestergaard www.matematikfysik.dk 3 Dopplereffekt Fænomenet Dopplereffekt, som vi skal

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærere Hold Termin hvori undervisningen afsluttes: maj-juni 2011 HTX

Læs mere

Forsøg del 1: Beregning af lysets bølgelængde

Forsøg del 1: Beregning af lysets bølgelængde Forsøg del 1: Beregning af lysets bølgelængde Formål Formålet med denne forsøgsrække er, at vise mange aspekter inden for emnet lys med udgangspunkt i begrænset materiale. Formålet med forsøget er at beregne

Læs mere

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen Strålingsintensitet Skal det fx afgøres hvor skadelig en given radioaktiv stråling er, er det ikke i sig selv relevant at kende aktiviteten af kilden til strålingen. Kilden kan være langt væk eller indkapslet,

Læs mere

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,

Læs mere

Kan I blande farver med lys?

Kan I blande farver med lys? Kan I blande farver med lys? Nøgleord: Materiale: Varighed: Farveblanding med lys (additiv farveblanding), Primær farver, Sekundærfarver Fysisk øvelse - NB! kræver særlig forberedelse - 3 dioder (rød,

Læs mere

Spektralanalyse. Jan Scholtyßek 09.11.2008. 1 Indledning 1. 2 Formål. 3 Forsøgsopbygning 2. 4 Teori 2. 5 Resultater 3. 6 Databehandling 3

Spektralanalyse. Jan Scholtyßek 09.11.2008. 1 Indledning 1. 2 Formål. 3 Forsøgsopbygning 2. 4 Teori 2. 5 Resultater 3. 6 Databehandling 3 Spektralanalyse Jan Scholtyßek 09..2008 Indhold Indledning 2 Formål 3 Forsøgsopbygning 2 4 Teori 2 5 Resultater 3 6 Databehandling 3 7 Konklusion 5 7. Fejlkilder.................................... 5 Indledning

Læs mere

Den menneskelige cochlea

Den menneskelige cochlea Den menneskelige cochlea Af Leise Borg Leise Borg er netop blevet cand.scient. Artiklen bygger på hendes speciale i biofysik Introduktion Hørelsen er en vigtig sans for mennesket, både for at sikre overlevelse,

Læs mere

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?:

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: Angiv de variable: Check din forventning ved at hælde lige store mængder vand i to glas med henholdsvis store og små kugler. Hvor

Læs mere

Laboratorieøvelse Kvantefysik

Laboratorieøvelse Kvantefysik Formålet med øvelsen er at studere nogle aspekter af kvantefysik. Øvelse A: Heisenbergs ubestemthedsrelationer En af Heisenbergs ubestemthedsrelationer handler om sted og impuls, nemlig at (1) Der gælder

Læs mere

Diodespektra og bestemmelse af Plancks konstant

Diodespektra og bestemmelse af Plancks konstant Diodespektra og bestemmelse af Plancks konstant Fysik 5 - kvantemekanik 1 Joachim Mortensen, Rune Helligsø Gjermundbo, Jeanette Frieda Jensen, Edin Ikanović 12. oktober 28 1 Indledning Formålet med denne

Læs mere

Øvelse i kvantemekanik Kvantiseret konduktivitet

Øvelse i kvantemekanik Kvantiseret konduktivitet 29 Øvelse i kvantemekanik Kvantiseret konduktivitet 5.1 Indledning Denne øvelse omhandler et fænomen som blandt andet optræder i en ganske dagligdags situation hvor et mekanisk relæ afbrydes. Overraskende

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes: maj-juni 2013 HTX Vibenhus / Københavns Tekniske Gymnasium

Læs mere

Teknologihistorie. Historien bag FIA-metoden

Teknologihistorie. Historien bag FIA-metoden Historien bag FIA-metoden Baggrund: Drivkræfter i den videnskabelige proces Opfindermyten holder den? Det er stadig en udbredt opfattelse, at opfindere som typer er geniale og nogle gange sære og ensomme

Læs mere

Opgavesæt om Gudenaacentralen

Opgavesæt om Gudenaacentralen Opgavesæt om Gudenaacentralen ELMUSEET 2000 Indholdsfortegnelse: Side Gudenaacentralen... 1 1. Vandet i tilløbskanalen... 1 2. Hvor kommer vandet fra... 2 3. Turbinerne... 3 4. Vandets potentielle energi...

Læs mere

Teknologi & kommunikation

Teknologi & kommunikation Grundlæggende Side af NV Elektrotekniske grundbegreber Version.0 Spænding, strøm og modstand Elektricitet: dannet af det græske ord elektron, hvilket betyder rav, idet man tidligere iagttog gnidningselektricitet

Læs mere

Elektromagnetisk spektrum

Elektromagnetisk spektrum 1 4 7 3 3. Bølgelængde nm Varme og kolde farver Af Peter Svane Overflader opvarmes af solen, men temperaturen afhænger ikke kun af absorption og refleksion i den synlige del af spektret. Det nære infrarøde

Læs mere

fra venstre Lars Staalhagen og Villy Bæk Iversen Artiklens forfatter på arbejde

fra venstre Lars Staalhagen og Villy Bæk Iversen Artiklens forfatter på arbejde fra venstre Lars Staalhagen og Villy Bæk Iversen Artiklens forfatter på arbejde Kapitel 11 Når telefonen melder optaget Ressourceplanlægning i telenet af Lars Staalhagen og Villy Bæk Iversen Det globale

Læs mere

STUDIERETNINGSPROJEKT 2010

STUDIERETNINGSPROJEKT 2010 Projektforslagene er udarbejdet i samarbejde med Institut for Sensorer, Signaler og Elektroteknik STUDIERETNINGSPROJEKT 2010 Byg dit eget spektrometer Side 4 Hør matematikken Side 5 Den moderne vindmølle

Læs mere

Kapitel 8. Magnetiske felter - natur, måleenheder m.v. 1 Wb = 1 Tesla = 10.000 Gauss m 2 1 µt (mikrotesla) = 10 mg (miligauss)

Kapitel 8. Magnetiske felter - natur, måleenheder m.v. 1 Wb = 1 Tesla = 10.000 Gauss m 2 1 µt (mikrotesla) = 10 mg (miligauss) Kapitel 8 Magnetiske felter - natur, måleenheder m.v. Natur Enhver leder hvori der løber en strøm vil omgives af et magnetfelt. Størrelsen af magnetfeltet er afhængig af strømmen, der løber i lederen og

Læs mere

Standardmodellen og moderne fysik

Standardmodellen og moderne fysik Standardmodellen og moderne fysik Christian Christensen Niels Bohr instituttet Stof og vekselvirkninger Standardmodellen Higgs LHC ATLAS Kvark-gluon plasma ALICE Dias 1 Hvad beskriver standardmodellen?

Læs mere

Lysets fysik Optiske fibre P0 projekt

Lysets fysik Optiske fibre P0 projekt Lysets fysik Optiske fibre P0 projekt Forsidebillede: En oplyst plexiglasleder hvorpå gruppens navn er skrevet [1] Titel: Optiske fibre Tema: Lysets fysik Projektperiode: 01/09 18/09 2015 Projektgruppe:

Læs mere

Atomic force mikroskopi på blodceller

Atomic force mikroskopi på blodceller 1 Atomic force mikroskopi på blodceller Problemstilling: Problemstillingen eleven bliver sat overfor er: Hvad er atomic force mikroskopi, og hvordan kan det bruges til at studere blodceller på nanometerskala?

Læs mere

Kvantefysik. Objektivitetens sammenbrud efter 1900

Kvantefysik. Objektivitetens sammenbrud efter 1900 Kvantefysik Objektivitetens sammenbrud efter 1900 Indhold 1. Formål med foredraget 2. Den klassiske fysik og determinismen 3. Hvad er lys? 4. Resultater fra atomfysikken 5. Kvantefysikken og dens konsekvenser

Læs mere

Sådan bruger du bedst e-mærket

Sådan bruger du bedst e-mærket 1 Få flere online salg eller leads igennem 2 Beslutningsprocessen i et salg online Hvem styrer hvem? Frederik Bjerring kører en tidlig morgen i efteråret 2009 op langs roskildevej på vej til sit arbejde,

Læs mere

Gyptone lofter 4.1 Akustik og lyd

Gyptone lofter 4.1 Akustik og lyd Gyptone lofter 4.1 Akustik og lyd Reflecting everyday life Akustik og lyd Akustik er, og har altid været, en integreret del af byggemiljøet. Basis for lyd Akustik er en nødvendig design-faktor ligesom

Læs mere

I AM YOUR 1 NIKKOR FINDER

I AM YOUR 1 NIKKOR FINDER I AM YOUR FINDER I AM VISUAL PERFECTION Nikon 1-systemkameraer er fantastiske til at fange livets mest flygtige øjeblikke. Nikon 1-kameraer med udskifteligt objektiv giver en ekstraordinær ydelse, imponerende

Læs mere

AFM Øvelse for gymnasieklasser Atomar kraft Mikroskop (AFM)

AFM Øvelse for gymnasieklasser Atomar kraft Mikroskop (AFM) AFM Øvelse for gymnasieklasser Atomar kraft Mikroskop (AFM) Interdisciplinært Nanoscience center (inano) Aarhus Universitet, december 2006 (redigeret august 2014) Ronnie Vang 1 Formål Denne øvelse har

Læs mere

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Modtaget dato: (forbeholdt instruktor) Godkendt: Dato: Underskrift: Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Kristian Jerslev, Kristian Mads Egeris Nielsen, Mathias

Læs mere

Partikelacceleratorer: egenskaber og funktion

Partikelacceleratorer: egenskaber og funktion Partikelacceleratorer: egenskaber og funktion Søren Pape Møller Indhold Partikelaccelerator maskine til atomare partikler med høje hastigheder/energier Selve accelerationen, forøgelse i hastighed, kommer

Læs mere

Skriftlig Eksamen i Moderne Fysik

Skriftlig Eksamen i Moderne Fysik Moderne Fysik 10 Side 1 af 7 Navn: Storgruppe: i Moderne Fysik Spørgsmål 1 Er følgende udsagn sandt eller falsk? Ifølge Einsteins specielle relativitetsteori er energi og masse udtryk for det samme grundlæggende

Læs mere

Prøveudtagning i forbindelse med bestemmelse af fugt i materialer

Prøveudtagning i forbindelse med bestemmelse af fugt i materialer Prøveudtagning i forbindelse med bestemmelse af fugt i materialer Når du skal indsende prøver af materiale til analyse i Teknologisk Instituts fugtlaboratorium, er det vigtigt, at du har udtaget prøverne

Læs mere

10 tips til panorering og motiver i bevægelse

10 tips til panorering og motiver i bevægelse 10 tips til panorering og motiver i bevægelse Panorering er en effektiv måde at vise bevægelse i et foto. Det tilfører fotoet en masse dynamik, og gør dine fotos mere levende. Teknikken er ikke svær hvis

Læs mere

Filmen vare ca. 20 minutter og introducere eleven til emner som:

Filmen vare ca. 20 minutter og introducere eleven til emner som: LÆRERVEJLEDNING Introduktion Lyset mennesket er en visuel undervisningsplatform, der sætter fokus på lysets forunderlige verden, dets mange fremtrædener og hvordan det påvirker os i vores dagligdag. Materialet

Læs mere

Men det er da et nydeligt objektiv, ik?

Men det er da et nydeligt objektiv, ik? Generelt indtryk Macro Takumar 50mm f/4 blev produceret fra 1964, og blev i 1966 afløst af en redesignet udgave. Afløseren (Super Macro Takumar 50mm f/4) blev i 1971 jo afløst af Super-Multi-Coated Macro

Læs mere

Solen - Vores Stjerne

Solen - Vores Stjerne Solen - Vores Stjerne af Christoffer Karoff, Aarhus Universitet På et sekund udstråler Solen mere energi end vi har brugt i hele menneskehedens historie. Uden Solen ville der ikke findes liv på Jorden.

Læs mere

imo-learn MOVED BY LEARNING

imo-learn MOVED BY LEARNING imo-learn MOVED BY LEARNING Lær inkorporeret læring at kende, lær imo-learn at kende imo-learn MOVED BY LEARNING imo-learn omdefinerer den måde, vi lærer på, og sikrer en revolutionerende ny læringsoplevelse.

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

Kvantemekanik. Atomernes vilde verden. Klaus Mølmer. unı vers

Kvantemekanik. Atomernes vilde verden. Klaus Mølmer. unı vers Kvantemekanik Atomernes vilde verden Klaus Mølmer unı vers Kvantemekanik Atomernes vilde verden Kvantemekanik Atomernes vilde verden Af Klaus Mølmer unı vers Kvantemekanik Atomernes vilde verden Univers

Læs mere

Gode råd til flot og miljøvenlig tekst og grafik.

Gode råd til flot og miljøvenlig tekst og grafik. VIEWNET PYLONER OG SKÆRME Gode råd til flot og miljøvenlig tekst og grafik. ARKITEKTONISKE INFORMATIONS-, MEDIE- & WAYFINDINGSYSTEMER - WWW.VIEWNET.DK - ALL RIGHTS RESERVED Velkommen til en ny og spændende

Læs mere

DKK Rally-lydighed, Øvede-klassen. 40. Fristende 8-tal

DKK Rally-lydighed, Øvede-klassen. 40. Fristende 8-tal DKK Rally-lydighed, Øvede-klassen. 40. Fristende 8-tal Øvelsen består af 2 madskåle eller lignende fristelser samt 2 kegler, stolper eller personer og der skal gås et 8-tal rundt om de to yderste kegler.

Læs mere

Håndtering af stof- og drikketrang

Håndtering af stof- og drikketrang Recke & Hesse 2003 Kapitel 5 Håndtering af stof- og drikketrang Værd at vide om stof- og drikketrang Stoftrang kommer sjældent af sig selv. Den opstår altid i forbindelse med et bestemt udløsningssignal

Læs mere

Transienter og RC-kredsløb

Transienter og RC-kredsløb Transienter og RC-kredsløb Fysik 6 Elektrodynamiske bølger Joachim Mortensen, Edin Ikanovic, Daniel Lawther 4. december 2008 (genafleveret 4. januar 2009) 1. Formål med eksperimentet og den teoretiske

Læs mere

Objektivet er i øvrigt næsten identisk med 55mm f/1,8 eneste forskel er, at f/2 eren er fysisk begrænset imod at åbne blænden til 1,8.

Objektivet er i øvrigt næsten identisk med 55mm f/1,8 eneste forskel er, at f/2 eren er fysisk begrænset imod at åbne blænden til 1,8. Generelt indtryk Asahi Takumar objektiver er for mig efterhånden gået hen og blevet lidt af en udfordring. En udfordring, fordi jeg har så svært ved at lade være med at købe dem, når jeg ser et objektiv

Læs mere

NATURVIDENSKAB HANDLER OM EVIG UNGDOM, CYKLER DER RUSTER OG ALVERDENS ANDRE SPÆNDENDE SPØRGSMÅL DU ER ALTID VELKOMMEN TIL AT KONTAKTE OS:

NATURVIDENSKAB HANDLER OM EVIG UNGDOM, CYKLER DER RUSTER OG ALVERDENS ANDRE SPÆNDENDE SPØRGSMÅL DU ER ALTID VELKOMMEN TIL AT KONTAKTE OS: DU ER ALTID VELKOMMEN TIL AT KONTAKTE OS: NATURVIDENSKAB HANDLER OM EVIG UNGDOM, CYKLER DER RUSTER OG ALVERDENS ANDRE SPÆNDENDE SPØRGSMÅL! Uddannelsesleder Marianne B. Johansen Tlf. 8923 4017 mbj@silkets.dk

Læs mere

FREMTIDENS ENERGI Lærervejledning til modul 4. Goddag til fremtiden

FREMTIDENS ENERGI Lærervejledning til modul 4. Goddag til fremtiden FREMTIDENS ENERGI Lærervejledning til modul 4 Goddag til fremtiden Indledning Undervisningsmodul 4 fremtidsperspektiverer og viser fremtidens energiproduktion. I fremtiden er drømmen hos både politikere

Læs mere

Atomure og deres anvendelser

Atomure og deres anvendelser Atomure og deres anvendelser Af Anders Brusch og Jan W. Thomsen, Niels Bohr Institutet, Københavns Universitet De mest præcise målinger i fysikken laves i dag ved hjælp af atomure, hvor man kan undersøge

Læs mere

ysikrapport: Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08

ysikrapport: Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08 ysikrapport: Gay-Lussacs lov Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08 J eg har længe gået med den idé, at der godt kunne være

Læs mere

TIPS & TRICKS TIL EN GOD TUR

TIPS & TRICKS TIL EN GOD TUR TIPS & TRICKS TIL EN GOD TUR Sådan sikrer du dig, at eleverne både får en sjov dag og noget fagligt med hjem. FØR TUREN Fortæl klassen om den tematur, de skal på. Lad eleverne drøfte de spørgsmål, som

Læs mere

Tredje kapitel i serien om, hvad man kan få ud af sin håndflash, hvis bare man bruger fantasien

Tredje kapitel i serien om, hvad man kan få ud af sin håndflash, hvis bare man bruger fantasien Tredje kapitel i serien om, hvad man kan få ud af sin håndflash, hvis bare man bruger fantasien For nogen tid siden efterlyste jeg i et forum et nyt ord for håndflash, da det nok ikke er det mest logiske

Læs mere

Generelt om Healing/indre legemer

Generelt om Healing/indre legemer Generelt om Healing/indre legemer Når en healer står overfor et menneske som han/hun ønsker at give healing, ser healeren ikke bare på den fysiske krop. Igennem sin udvikling og træning har healeren lært

Læs mere

Vandafstrømning på vejen

Vandafstrømning på vejen Øvelse V Version 1.5 Vandafstrømning på vejen Formål: At bremse vandet der hvor det rammer. Samt at styre hastigheden af vandet, og undersøge hvilke muligheder der er for at forsinke vandet, så mindst

Læs mere

Praktisk træning. Bakke. & bagpartskontrol. 16 Hund & Træning

Praktisk træning. Bakke. & bagpartskontrol. 16 Hund & Træning Praktisk træning Tekst: Karen Strandbygaard Ulrich Foto: jesper Glyrskov, Christina Ingerslev & Jørgen Damkjer Lund Illustrationer: Louisa Wibroe Bakke & bagpartskontrol 16 Hund & Træning Det er en fordel,

Læs mere

Kom/IT rapport Grafisk design Anders H og Mikael

Kom/IT rapport Grafisk design Anders H og Mikael Kom/IT rapport Grafisk design Anders H og Mikael Denne rapport i grafisk design, vil tage udgangspunkt i den PowerPoint præsentation vi lavede i forbindelse med en opgave i samfundsfag. Rapporten er inddelt

Læs mere

Er der flere farver i sort?

Er der flere farver i sort? Er der flere farver i sort? Hvad er kromatografi? Kromatografi benyttes inden for mange forskellige felter og forskningsområder og er en anvendelig og meget benyttet analytisk teknik. Kromatografi bruges

Læs mere

Opsætning af eksponater - En markedsundersøgelse på Nordia 2002 Af: Lars Engelbrecht

Opsætning af eksponater - En markedsundersøgelse på Nordia 2002 Af: Lars Engelbrecht Opsætning af eksponater - En markedsundersøgelse på Nordia 2002 Af: Lars Engelbrecht Når jeg besøger en frimærkeudstilling, kan jeg ikke lade være med at blive imponeret over de tusinder af timer, der

Læs mere

Fangst- og redskabsovervågning

Fangst- og redskabsovervågning Kapitel 12 side 72 Fangst- og redskabsovervågning Udstyret til fangst- og redskabsovervågning giver fiskeren oplysninger om trawlet og fangsten. Oplysningerne bliver samlet på en skærm. Det kan være et

Læs mere

BIOLOGI OG SUNDHED BIOLOGI A MATEMATIK B KEMI B

BIOLOGI OG SUNDHED BIOLOGI A MATEMATIK B KEMI B BIOLOGI OG SUNDHED BIOLOGI A MATEMATIK B KEMI B STX - MENNESKET I DEN GLOBALE VERDEN SAMMENHÆNGEN MELLEM MENNESKE OG NATUR Studieretningen sætter fokus på menneskets biologi og sundhed. I biologi og kemi

Læs mere

8 danske succeshistorier 2002-2003

8 danske succeshistorier 2002-2003 8 danske T E K N I S K - V I D E N S K A B E L I G F O R S K N I N G succeshistorier 2002-2003 Statens Teknisk-Videnskabelige Forskningsråd Små rør med N A N O T E K N O L O G I stor betydning Siliciumteknologien,

Læs mere

GONIOMETER PGX+ STRENOMETER INFORMATION BESKRIVELSE

GONIOMETER PGX+ STRENOMETER INFORMATION BESKRIVELSE STRENOMETER INFORMATION GONIOMETER PGX+ BESKRIVELSE Måling af kontaktvinklen er en velkendt metode til at se hvordan en væske og en overflade påvirker hinanden. Fænomenet kontaktvinkel er fx medvirkende

Læs mere

Indhold Problemstilling... 2 Solceller... 2 Lysets brydning... 3 Forsøg... 3 Påvirker vandet solcellernes ydelse?... 3 Gør det en forskel, hvor meget

Indhold Problemstilling... 2 Solceller... 2 Lysets brydning... 3 Forsøg... 3 Påvirker vandet solcellernes ydelse?... 3 Gør det en forskel, hvor meget SOLCELLER I VAND Indhold Problemstilling... 2 Solceller... 2 Lysets brydning... 3 Forsøg... 3 Påvirker vandet solcellernes ydelse?... 3 Gør det en forskel, hvor meget vand, der er mellem lyset og solcellen?...

Læs mere

TRIZ Companion. En håndbog i systematisk innovation. Læseprøve

TRIZ Companion. En håndbog i systematisk innovation. Læseprøve TRIZ Companion En håndbog i systematisk innovation Danskforord 7 Forord 8 Indholdsfortegnelse Del 1 Essensen i TRIZ 9 HvaderTRIZ? 9 TRIZindeholderfemgrundlæggendefilosofier 10 HvorforTRIZ? 13 TRIZforhvem?

Læs mere

Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum?

Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum? Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum? - om fysikken bag til brydningsindekset Artiklen er udarbejdet/oversat ud fra især ref. 1 - fra borgeleo.dk Det korte svar:

Læs mere

FYSIK C. Videooversigt. Intro video... 2 Bølger... 2 Den nære astronomi... 3 Energi... 3 Kosmologi... 4. 43 videoer.

FYSIK C. Videooversigt. Intro video... 2 Bølger... 2 Den nære astronomi... 3 Energi... 3 Kosmologi... 4. 43 videoer. FYSIK C Videooversigt Intro video... 2 Bølger... 2 Den nære astronomi... 3 Energi... 3 Kosmologi... 4 43 videoer. Intro video 1. Fysik C - intro (00:09:20) - By: Jesper Nymann Madsen Denne video er en

Læs mere

Herfra hvor jeg står, kan jeg ikke se nogen curlingbørn

Herfra hvor jeg står, kan jeg ikke se nogen curlingbørn DIMISSIONSTALE 2015 Kære studenter. I medierne beskrives de unge ofte som curlingbørn. Curlingbørn fordi deres forældre har fejet alle problemer og forhindringer væk, så de aldrig har oplevet, at noget

Læs mere

BM25 SmartTest. Det perfekte valg, hvis du søger...

BM25 SmartTest. Det perfekte valg, hvis du søger... BM25 SmartTest Det perfekte valg, hvis du søger... Praktisk afprøvning af bremseanpasning og EBS- funktion på vogntog under kørsel. Elektronisk måling og grafisk udskrift af alle former for trykluftsmålinger.

Læs mere

RARRT De 5 vigtigste trin til at gøre dit barn robust

RARRT De 5 vigtigste trin til at gøre dit barn robust AT De 5 vigtigste trin til at gøre dit barn robust Når det handler om at lykkes i livet, peger mange undersøgelser i samme retning: obuste børn, der har selvkontrol, er vedholdende og fokuserede, klarer

Læs mere

Spanielskolens Grundtræning 7-12 måneder.

Spanielskolens Grundtræning 7-12 måneder. s Grundtræning 7-12 måneder. Indledning. Vi har under hvalpe træningen lagt vægt på at præge hvalpen i rigtig retning og forberede den til dens fremtidige arbejdsopgaver. Vi skal nu i gang med at indarbejde

Læs mere

Materiale fra U-8 Inspirationskurset i Hobro d. 6.-7. september 2013 Udviklingskonsulent Anna Heide, JHF Kreds 4

Materiale fra U-8 Inspirationskurset i Hobro d. 6.-7. september 2013 Udviklingskonsulent Anna Heide, JHF Kreds 4 Motorisk træning Materiale fra U-8 Inspirationskurset i Hobro d. 6.-7. september 2013 Udviklingskonsulent Anna Heide, JHF Kreds 4 Hermed inspiration til motorisk træning og forskellige rammer, man kan

Læs mere