Transienter og RC-kredsløb

Størrelse: px
Starte visningen fra side:

Download "Transienter og RC-kredsløb"

Transkript

1 Transienter og RC-kredsløb Fysik 6 Elektrodynamiske bølger Joachim Mortensen, Edin Ikanovic, Daniel Lawther 4. december 2008 (genafleveret 4. januar 2009)

2 1. Formål med eksperimentet og den teoretiske baggrund Formålet med dette eksperiment er todelt. Vi ønsker at undersøge transient opførsel i et RC-kredsløb, mere specifikt ønsker vi at bestemme tidskonstanten τ = RC og sammenligne med den teoretiske værdi. Vi ønsker også at bestemme hvordan et RC-kredsløb kan bruges som frekvensfilter. Her vil vi bestemme overføringsfunktionen g(f) og faseforskydningen θ(f) for henholdsvis et lavpas- og et highpasfilter og sammenligne med de teoretiske kurver. Når vi tænder for strømmen i kredsløbet til højre, går der et stykke tid inden strømmen indfinder en ligevægt. Efter en karakteristisk tid τ er kapacitoren ladet op til forsyningsspændingen U. Vha. Krichhoffs love kan vi finde at op- og afladningen kan beskrives med følgende ligninger: Transient opførsel er et begreb der dækker over hvordan strømmen opfører sig i et RC-kredsløb når man tænder for strømmen og indtil der opstår en ligevægtsstiuation. Vi har tegnet vores opstilling i fig A og vi kan så opstille Krichhoffs love og løse efter strømmen, vi får følgende ligning: For at undersøge hvordan RC-kredsløbet kan bruges som frekvensfilter, vil vi undersøge henholdvis et lavpasfilter og et højpasfilter. Vi kan følge sammen fremgangsmåde som før og opstille Krichhoffs love for kredsløbene og løse efter strømmen. Når vi arbejder med højpasfilteret finder vi så ud af at amplituden bliver dæmpet med en faktor g, og at udgangssignalet bliver faseforskudt: Det vil sige at amplituden af udgangssignalet er tilnærmelsesvis lig indgangssignalet for frekvenser meget højere end den karakteristiske tid τ = RC, men går mod nul for ω gående mod nul. For lavpasfilteret finder vi at der gælder:

3 Opsætning og forsøgsgennemgang Opstilling bestod af et RC-kredsløb, som havde en modstand på 10 kω og en transistor på 47 nf. Højpasfilter ser således ud: Lavpasfilter ombytter sådan set bare kapacitor og resistor: For at undersøge den transiente opførsel og finde den karakteristiske tid τ = RC bruges en firkantspulsspænding, og pulslængden justeres så den er markant højere end den karakteristiske tid. En picoskop aflæser både spændingen over stræmforsyningen og spændingen over henholdsvis resistor (HPF) og kapacitor (LPF). Picoskopet er forbundet en computer og giver os datasæt af formen tid spænding. Frekvensen af strømforsyningen kan også aflæses på computeren. For at undersøge kredsløbenes frekvensfiltrering tilsluttede vi kredsløbene en vekselstrømforsyning, der giver en spændingsforskel af typen ε = ε 0 cos(ωt + θ), hvor vi kunne variere på frekvensen. For at se på gain-funktionen g tog vi så en række målinger ved forskellige frekvenser på begge kredsløb. Amplitudeforholdet mellem indgangsspænding og udgangsspænding kunne aflæses direkte på computeren. Disse kredsløb introducerer også en faseforskydning i forhold til indgangsspændingens fase dette kunne aflæses indirekte for hver af de afprøvede frekvenser ved at kigge på U-nulpunkter i outputdataen for hhv. spændingen over strømforsyningen og resistor / kapacitor.

4 Lidt om rettelserne i fitningen af den karakteristiske tid I første omgang kunne vores rapport ikke godkendes fordi vi havde fittet til produktet R*C som to variable, selvom vi kun har informationer om dem som produkt vi bør have fittet til en enkel variabel, τ. Dette gjorde ikke nogen forskel mht. den fittede værdi, men gav nogen fuldstændige ubrugelige usikkerheder det giver jo slet ikke mening at snakke om usikkerheder på de to størrelser R og C når de er afhængige af hinanden i fitningen på denne måde. Efter aftale med labøvelses-instruktørene har vi lavet fitningen om og fået nogen brugbare resultater for det ene delforsøg i undersøgelsen af den transiente opførsel (kredsløb B), og det ene delforsøg i undersøgelsen af filtreringsegenskaberne (highpas-filter faseforskydningen). De andre steder har vi bare bemærket fejlen i fitningen undervejs. Måleresultater Transient opførsel: I første omgang undersøger vi hvordan spændingen over resistoren i kredsløb A udvikler sig i tid, mens kapacitoren bliver opladt. U(t) = = 1) Vi fitter spændingen over resistoren i highpass-filteren til ovennævnte U(t) funktion.

5 Vi får følgende fitningsresultater: U = 3 V +/ (0.2047%) R = ohm +/ e+014 C = e-008 Farad +/ Hvilket giver τ = 10kOhm * 47nF = 470μs. I denne fitning bør vi have fittet til τ, det giver ikke mening at snakke om individuelle usikkerheder på R og C. Det kan oplyses at indgangsspændingen havde en værdi, der flukturerede lidt (og aftog lidt med tiden muligvis et problem med pulsgeneratoren) men var i gennemsnit på 1.6 V. U 0 er på ca. det dobbelte, grundet kapacitorens placering i kredsløbet når den skal oplades får vi en tilsvarende negativ ladning på den side, der er i forbindelse med resistoren, hvilket giver en ekstra spændingsforskel over resistoren. Derfor bør vores U 0 også være lidt højere, ca 3.2 V. Man kan se at Gnuplot ikke har haft lyst til at sætte U 0 højere end 3, selvom datapunktene rent faktisk skærer her. Grunden til, at den fittede kurve ikke helt følger datapunkterne, er formentligt at mange af vores datapunkter i bunden af kurven ligger en lille smule under U=0 muligvis grundet en lidt skæv kalibrering af picoskopen. Den fitning vi får er den bedste fitning, Gnuplot kan give os, til en funktion der IKKE dykker ned under U=0. Værdien for τ = RC passer meget godt til produktet af de to komponenters påskrevne egenskaber, τ = 10kOhm * 47nF = 470μs. Vi aflæser 469μs, en meget lille afvigelse. Se næste side for diskussion omkring usikkerhederne i denne teoretiske værdi.

6 2) Vi fitter spændingen over kapacitoren i lavpasfilteret til en funktion af typen U(t) = U 0 (1-exp(-t/(RC))). Da vi kom til at udføre denne del af forsøget med picoskopet sat til at aflæse AC-strøm, er vi nødt til at inddrage en konstant A i vores beregninger, som bruges som gennemsnittet af den konstante (men ikke helt konstante alligevel ) indgangsspænding. Vi ser at kapacitoren bliver opladt, når der tændes for strømmen, og at der efter et stykke tid så opstår en ligevægt over kapacitoren. Vi får følgende fitningsresultater: Final set of parameters Asymptotic Standard Error ======================= ========================== U = / ( %) t = / e-007 (0.1075%) A = / ( %) Vi får altså en karektaristisk tid τ = 0.43 ms ± 11%.

7 Beregner vi den forventede værdi ud ved hjælp af de anvendte komponenters påskrevne værdier, får vi τ = 0.47 ms ± σ(rc), hvor usikkerheden σ(rc) af denne teoretiske værdi er givet ved de relative usikkerheder δ R, δ C fra produktionen af komponenterne: δ R = 5% δ C = 20% Den teoretiske usikkerhed er givet ved den sædvanlige formel for ophobning af usikkerheder: σ(rc) = = 0.097ms Det vil sige at vores fittede karektaristiske tid passer til den teoretiske værdi indenfor de givne usikkerheder, både med hensyn til kredsløb A og B.

8 Undersøgelse af amplitudedæmpningen ved forskellige vekselstrøm-frekvenser: Nu tilkobler vi vekselstrømkilden til kredsløbene. Ved frekvensen f= 40 Hz ser vi en markant dæmpning af udgangsamplituden i forhold til amplituden af spændingsforskellen over strømforsyningen.

9 Ved f = 98 Hz ser vi at udgangsspændingen ikke er dæmpet i så høj grad.

10 Vi fitter en dæmpningsfunktion g(ω) = U(ud)/U(ind) = til dataen for højpasfilterets udgangsspænding i forhold til indgangsspænding ved forskellige frekvenser i intervallet 40-98Hz. Set i bakspejlet skulle vi helt sikkert have taget et bredere frekvensområde for at få et bedre billede af frekvensdæmpningen, men gain-funktionen bør ifølge teorien komme op mod 1 for høje frekvenser. Vores fitningsresultater bliver: R = / e+015 (1.679e+013%) C = 4.554e-008 +/ e+004 (1.679e+013%) Her skulle vi igen have fittet til den karektaristiske tid, da det ikke giver mening at snakke om de individuelle usikkerheder på R og C givet de informationer, vi har. Vi aflæser den karakteristiske tid, τ = RC = 455μs. Vores målepunkter ser ud til at passe fint til linjen for g(ω), men desværre gør vores lidt for snævert frekvensområde, at vi ikke kan se så meget af frekvensafhængigheden det kunne være mere interessent at se på yderpunkter hvor g nærmede sig 0 eller 1.

11 Vi udarbejder et datasæt for faseforskydningen ved forskellige frekvenser i intervallet 40Hz 100Hz, og fitter til en funktion af typen Vores fitningsresultat bliver: tau = / (1.877%) Denne karakteristiske tid er alt, alt for stor i forhold til vores opgivne R*C. Dette skyldes måske, at vi ikke har nok af de lave frekvenser med til at Gnuplot kan fitte funktionen særlig godt. Det antydes af grafen, af faseforskydningen aftager ved højere frekvenser. Highpass-filtret lader derved høje frekvenser passere uden faseforskydning eller amplitudedæmpning, mens lave frekvenser bliver dæmpet og forskudt.

12 Lavpasfilter: Vi fitter til gain-funktionen Vi ser at amplituden dæmpes for høje frekvenser, som forventet. Vores fitningsresultater bliver: R = /- 5.17e+014 (5.17e+012%) C = e-008 +/ (5.17e+012%) Her skulle vi igen have fittet til den karektaristiske tid, da det ikke giver mening at snakke om de individuelle usikkerheder på R og C givet de informationer, vi har.

13 Vi aflæser den karakteristiske tid til en 3% afvigelse fra den forventede RC-værdi. Vi udarbejder et datasæt for faseforskydningen og fitter til funktionen R = Ohm +/ e+015 (2.142e+013%) C = 4.293e-008 Farad +/ e+004 (2.142e+013%) Her skulle vi igen have fittet til den karektaristiske tid, da det ikke giver mening at snakke om de individuelle usikkerheder på R og C givet de informationer, vi har. Vi aflæser den karakteristiske tid til en 9% afvigelse fra vores forventet karakteristisk tid. Det ses at faseforskydningen vokser ved højere frekvenser. Konklusion Vi har vist kredsløbenes anvendelsesmulighed som frekvensfilter, og fået underbygget vores teoretisk udledt formel for karakteristiske tider for den transiente op/afladning. Vi har også i nogen grad påvist de formler for gain- og faseforskydningsfunktioner, vi har regnet os frem til, selvom dette lider lidt under

14 at vi ikke har kigget på et bredt nok frekvensområde med hensyn til highpass-filtret - især grafen til dennes faseforskydning kan ikke siges at være så overbevisende.

Elektrodynamik Lab 1 Rapport

Elektrodynamik Lab 1 Rapport Elektrodynamik Lab 1 Rapport Indhold Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Transienter og RC-kredsløb 1.1 Formål 1. Teori 1.3

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

Elektron- og lysdiffraktion

Elektron- og lysdiffraktion Elektron- og lysdiffraktion Fysik 8: Kvantemekanik II Joachim Mortensen, Michael Olsen, Edin Ikanović, Nadja Frydenlund 19. marts 2009 1 Elektron-diffraktion 1.1 Indledning og kort teori Formålet med denne

Læs mere

Diodespektra og bestemmelse af Plancks konstant

Diodespektra og bestemmelse af Plancks konstant Diodespektra og bestemmelse af Plancks konstant Fysik 5 - kvantemekanik 1 Joachim Mortensen, Rune Helligsø Gjermundbo, Jeanette Frieda Jensen, Edin Ikanović 12. oktober 28 1 Indledning Formålet med denne

Læs mere

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V.

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V. For at svare på nogle af spørgsmålene i dette opgavesæt kan det sagtens være, at du bliver nødt til at hente informationer på internettet. Til den ende kan oplyses, at der er anbragt relevante link på

Læs mere

Rygtespredning: Et logistisk eksperiment

Rygtespredning: Et logistisk eksperiment Rygtespredning: Et logistisk eksperiment For at det nu ikke skal ende i en omgang teoretisk tørsvømning er det vist på tide vi kigger på et konkret logistisk eksperiment. Der er selvfølgelig flere muligheder,

Læs mere

Analog Øvelser. Version. A.1 Afladning af kondensator. Opbyg følgende kredsløb: U TL = 70 % L TL = 50 %

Analog Øvelser. Version. A.1 Afladning af kondensator. Opbyg følgende kredsløb: U TL = 70 % L TL = 50 % A.1 Afladning af kondensator Opbyg følgende kredsløb: U TL = 70 % L TL = 50 % Når knappen har været aktiveret, ønskes lys i D1 i 30 sekunder. Brug formlen U C U start e t RC Beskriv kredsløbet Find komponenter.

Læs mere

Preben Holm - Copyright 2002

Preben Holm - Copyright 2002 9 > : > > Preben Holm - Copyright 2002! " $# %& Katode: minuspol Anode: pluspol ')(*+(,.-0/1*32546-728,,/1* Pilen over tegnet for spændingskilden på nedenstående tegning angiver at spændingen kan varieres.

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

Fasedrejning. Fasedrejning i en kondensator og betragtninger vedrørende RC-led.

Fasedrejning. Fasedrejning i en kondensator og betragtninger vedrørende RC-led. Fasedrejning Fasedrejning i en kondensator og betragtninger vedrørende RC-led. Følgende er nogle betragtninger, der gerne skulle føre frem til en forståelse af forholdene omkring kondensatorers og spolers

Læs mere

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen.

Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari jerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Formål: Formålet med denne øvelse er at anvende Ohms lov på en såkaldt spændingsdeler,

Læs mere

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Opgaverne er udregnet i samarbejde med Thomas Salling, s110579 og Mikkel Seibæk, s112987. 11/12-2012

Læs mere

Øvelse i kvantemekanik Måling af Plancks konstant

Øvelse i kvantemekanik Måling af Plancks konstant Øvelse i kvantemekanik Måling af Plancks konstant Tim Jensen og Thomas Jensen 2. oktober 2009 Indhold Formål 2 2 Teoriafsnit 2 3 Forsøgsresultater 4 4 Databehandling 4 5 Fejlkilder 7 6 Konklusion 7 Formål

Læs mere

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 Harmonisk oscillator Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 28. november 2007 Indhold 1 Formål 2 2 Teori 2 3 Fremgangsmåde 3 4 Resultatbehandling

Læs mere

Hold 6 Tirsdag. Kristian Krøier, Jacob Christiansen & Thomas Duerlund Jensen Fag: ELA Lærer: Jan Petersen (JPe) Dato for aflevering: 29.

Hold 6 Tirsdag. Kristian Krøier, Jacob Christiansen & Thomas Duerlund Jensen Fag: ELA Lærer: Jan Petersen (JPe) Dato for aflevering: 29. ELA journal: Øvelse 3 Grundlæggende Op. Amp. Koblinger. Dato for øvelse:. nov. 00 & 9. nov. 00 Hold 6 Tirsdag Kristian Krøier, Jacob Christiansen & Thomas Duerlund Jensen Fag: ELA Lærer: Jan Petersen (JPe)

Læs mere

Svingninger & analogier

Svingninger & analogier Fysik B, 2.år, TGK, forår 2006 Svingninger & analogier Dette forsøg løber som tre sammenhængende forløb, der afvikles som teoretisk modellering og praktiske forsøg i fysiklaboratorium: Lokale 43. Der er

Læs mere

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator øvelse Formål Øvelse med oscillator, hvor frekvensen bestemmes, for den frie og dæmpede svingning. Vi vil tilnærme data fra

Læs mere

Den ideelle operationsforstærker.

Den ideelle operationsforstærker. ELA Den ideelle operationsforstærker. Symbol e - e + v o Differensforstærker v o A OL (e + - e - ) - A OL e ε e ε e - - e + (se nedenstående figur) e - e ε e + v o AOL e - Z in (i in 0) e + i in i in v

Læs mere

ysikrapport: Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08

ysikrapport: Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08 ysikrapport: Gay-Lussacs lov Maila Walmod, 1.3 HTX, Rosklide I gruppe med Morten Hedetoft, Kasper Merrild og Theis Hansen Afleveringsdato: 28/2/08 J eg har længe gået med den idé, at der godt kunne være

Læs mere

KONDENSATORER (DC) Princip og kapacitans Serie og parallel kobling Op- og afladning

KONDENSATORER (DC) Princip og kapacitans Serie og parallel kobling Op- og afladning KONDENSATORER (DC) Princip og kapacitans Serie og parallel kobling Op- og afladning Dagsorden: Opladningens principielle forløb En matematisk tilgang til opladning (og kort om afladning afslutningsvis)

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold.

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Formål Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Teori Et batteri opfører sig som en model bestående af en ideel spændingskilde og en indre

Læs mere

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger Fysikøvelse Erik Vestergaard www.matematikfysik.dk Musik og bølger Formål Hovedformålet med denne øvelse er at studere det fysiske begreb stående bølger, som er vigtigt for at forstå forskellige musikinstrumenters

Læs mere

Øvelse i kvantemekanik Kvantiseret konduktivitet

Øvelse i kvantemekanik Kvantiseret konduktivitet 29 Øvelse i kvantemekanik Kvantiseret konduktivitet 5.1 Indledning Denne øvelse omhandler et fænomen som blandt andet optræder i en ganske dagligdags situation hvor et mekanisk relæ afbrydes. Overraskende

Læs mere

Dokumentation af programmering i Python 2.75

Dokumentation af programmering i Python 2.75 Dokumentation af programmering i Python 2.75 Af: Alexander Bergendorff Jeg vil i dette dokument, dokumentere det arbejde jeg har lavet i løbet opstarts forløbet i Programmering C. Jeg vil forsøge, så vidt

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Den frie og dæmpede oscillator

Den frie og dæmpede oscillator Ida Nissen - 80385 Maria Wulff - 140384 Jacob Bjerregaard - 7098 Morten Badensø - 40584 Fysik Lab.øvelser Uge Den frie og dæmpede oscillator Formål Formålet med denne øvelse er at studere den harmoniske

Læs mere

Lærervejledning Modellering (3): Funktioner (1):

Lærervejledning Modellering (3): Funktioner (1): Lærervejledning Formål Gennem undersøgelsesbaseret undervisning anvendes lineære sammenhænge, som middel til at eleverne arbejder med repræsentationsskift og aktiverer algebraiske teknikker. Hvilke overgangsproblemer

Læs mere

Noter til Komplekse tal i elektronik. Højtaler Bas, lavpasled, Mellemtone, Diskant

Noter til Komplekse tal i elektronik. Højtaler Bas, lavpasled, Mellemtone, Diskant Noter til Komplekse tal i elektronik. Eksempler på steder, hvor der bruges kondensatorer og spoler i elektronik: Equalizer Højtaler Bas, lavpasled, Mellemtone, Diskant Selektive forstærkere. Når der er

Læs mere

Stx matematik B december 2007. Delprøven med hjælpemidler

Stx matematik B december 2007. Delprøven med hjælpemidler Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Eksponentiel regression med TI-Nspire ved transformation af data

Eksponentiel regression med TI-Nspire ved transformation af data Eksponentiel regression med TI-Nspire ved transformation af data En vigtig metode til at få overblik over data er at tranformere dem, således at der fremkommer en lineær sammenhæng. Ordet transformation

Læs mere

Harmoniske Svingninger

Harmoniske Svingninger Harmoniske Svingninger Frank Villa 16. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Evaluering af Soltimer

Evaluering af Soltimer DANMARKS METEOROLOGISKE INSTITUT TEKNISK RAPPORT 01-16 Evaluering af Soltimer Maja Kjørup Nielsen Juni 2001 København 2001 ISSN 0906-897X (Online 1399-1388) Indholdsfortegnelse Indledning... 1 Beregning

Læs mere

Mit kabel lyder bedre end dit!

Mit kabel lyder bedre end dit! Mit kabel lyder bedre end dit! Af Kaj Reinholdt Mogensen www.kajmogensen.dk Virkeligheden er at det ikke er kablet som lyder af noget, men derimod kombinationen af apparaternes elektriske egenskaber, deres

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

Notat vedrørende projektet EFP06 Lavfrekvent støj fra store vindmøller Kvantificering af støjen og vurdering af genevirkningen

Notat vedrørende projektet EFP06 Lavfrekvent støj fra store vindmøller Kvantificering af støjen og vurdering af genevirkningen Notat vedrørende projektet EFP6 Lavfrekvent støj fra store vindmøller Kvantificering af støjen og vurdering af genevirkningen Baggrund Et af projektets grundelementer er, at der skal foretages en subjektiv

Læs mere

Øvelse 13 - Rente og inflation

Øvelse 13 - Rente og inflation Øvelse 13 - Rente og inflation Tobias Markeprand 1. december 2008 Opgave 14.4 Beregn realrenten ved hhv den nøjagtige formel og den approksimative formel for hvert af de følgende tilfælde a) i = 6% og

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Strømforsyning +/- 12V serieregulator og 5V Switch mode

Strømforsyning +/- 12V serieregulator og 5V Switch mode Udarbejdet af: +/- 12V serieregulator og 5V Switch mode Side 1 af 15 Udarbejdet af: Komponentliste. B1: 4 stk. LN4007 1A/1000V diode D1: RGP30D diode Fast Recovery 150nS - 500nS, 3A 200V C1 C3 og C4: 100nF

Læs mere

Matematik A studentereksamen

Matematik A studentereksamen Xxxx Side 1 af 11 Opgave 7 Jeg aflæser af boksplottet for personbeskatningen i 2007 medianen til. Første og anden kvartil aflæser jeg til hhv. og. Den mindst observerede personbeskatning i år 2007 var

Læs mere

Nb: der kan komme mindre justeringer af denne plan.

Nb: der kan komme mindre justeringer af denne plan. Efterårets øvelser, blok 2 Fysik2 Introduktion Fysik 2 øvelser består af 3 øvelser hvori der indgår måling af de fundamentale størrelser: længde, tid og masse. Alle øvelserne handler på en eller anden

Læs mere

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives.

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives. Eksamensspørgsmål - maj/juni 2016 1. Tal Du skal redegøre for løsningsregler for ligninger. Forklar, hvordan følgende ligning kan løses grafisk: x + 4 = 3x - 2 Redegør for opstilling af formler til løsning

Læs mere

Fasedrejning i RC / CR led og betragtninger vedrørende spoler

Fasedrejning i RC / CR led og betragtninger vedrørende spoler Fasedrejning i en kondensator og betragtninger vedrørende RC-led. Følgende er nogle betragtninger, der gerne skulle føre frem til en forståelse af forholdene omkring kondensatorers og spolers frekvensafhængighed,

Læs mere

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens. Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,

Læs mere

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Teknologi Projekt. Trafik - Optimal Vej

Teknologi Projekt. Trafik - Optimal Vej Roskilde Tekniske Gymnasium Teknologi Projekt Trafik - Optimal Vej Af Nikolaj Seistrup, Henrik Breddam, Rasmus Vad og Dennis Glindhart Roskilde Tekniske Gynasium Klasse 1.3 7. december 2006 Indhold 1 Forord

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Svingninger. Erik Vestergaard

Svingninger. Erik Vestergaard Svingninger Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard, 2009. Billeder: Forside: Bearbejdet billede af istock.com/-m-i-s-h-a- Desuden egne illustrationer. Erik Vestergaard

Læs mere

Matematik B Klasse 1.4 Hjemmeopaver

Matematik B Klasse 1.4 Hjemmeopaver Matematik B Klasse 1.4 Hjemmeopaver 1) opgave 336, side 23 Opgaven går ud på at jeg skal finde ud af hvor gamle børnene højst kan være, når forældrene tilsammen er 65 år og de skal være 40 år ældre end

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader GEOMETRI-TØ, UGE Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave, [P] 5... Find parametriseringer af de kvadratiske flader

Læs mere

Daniells element Louise Regitze Skotte Andersen

Daniells element Louise Regitze Skotte Andersen Louise Regitze Skotte Andersen Fysikrapport. Morten Stoklund Larsen - Lærer K l a s s e 1. 4 G r u p p e m e d l e m m e r : N i k i F r i b e r t A n d r e a s D a h l 2 2-0 5-2 0 0 8 2 Indhold Indledning...

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Den harmoniske svingning

Den harmoniske svingning Den harmoniske svingning Teori og en anvendelse Preben Møller Henriksen Version. Noterne forudsætter kendskab til sinus og cosinus som funktioner af alle reelle tal, dvs. radiantal. I figuren nedenunder

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Formler, ligninger, funktioner og grafer

Formler, ligninger, funktioner og grafer Formler, ligninger, funktioner og grafer Omskrivning af formler, funktioner og ligninger... 1 Grafisk løsning af ligningssystemer... 1 To ligninger med to ubekendte beregning af løsninger... 15 Formler,

Læs mere

Projekt. HF-forstærker.

Projekt. HF-forstærker. Projekt. HF-forstærker. Rapport. Udarbejdet af: Klaus Jørgensen. Gruppe: Brian Schmidt, Klaus Jørgensen Og Morten From Jacobsen. It og Elektronikteknolog. Erhvervsakademiet Fyn. Udarbejdet i perioden:

Læs mere

Newtons afkølingslov

Newtons afkølingslov Newtons afkølingslov miniprojekt i emnet differentialligninger Teoretisk del Vi skal studere, hvordan temperaturen i en kop kaffe aftager med tiden. Lad T ( t ) betegne temperaturen i kaffen til tiden

Læs mere

Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015. Teoretisk prøve. Prøvetid: 3 timer

Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015. Teoretisk prøve. Prøvetid: 3 timer Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015 Teoretisk prøve Prøvetid: 3 timer Opgavesættet består af 15 spørgsmål fordelt på 5 opgaver. Bemærk, at de enkelte spørgsmål ikke tæller

Læs mere

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2.

C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b2. C) Perspektiv jeres kommunes resultater vha. jeres svar på spørgsmål b1 og b. 5.000 4.800 4.600 4.400 4.00 4.000 3.800 3.600 3.400 3.00 3.000 1.19% 14.9% 7.38% 40.48% 53.57% 66.67% 79.76% 9.86% 010 011

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

Supplerende notat om kommunale kontrakter

Supplerende notat om kommunale kontrakter Supplerende notat om kommunale kontrakter En sammenligning af kommunernes brug af forvaltningskontrakter og institutionskontrakter KREVI Dette notat indeholder en kortlægning af kommunernes brug af forvaltningskontrakter

Læs mere

Antennens udstrålingsmodstand hvad er det for en størrelse?

Antennens udstrålingsmodstand hvad er det for en størrelse? Antennens udstrålingsmodstand hvad er det for en størrelse? Det faktum, at lyset har en endelig hastighed er en forudsætning for at en antenne udstråler, og at den har en ohmsk udstrålingsmodstand. Den

Læs mere

FY01 Obligatorisk laboratorieøvelse. Matematisk Pendul. Jacob Christiansen Afleveringsdato: 10. april 2003 Morten Olesen Andreas Lyder

FY01 Obligatorisk laboratorieøvelse. Matematisk Pendul. Jacob Christiansen Afleveringsdato: 10. april 2003 Morten Olesen Andreas Lyder FY01 Obligatorisk laboratorieøvelse Matematisk Pendul Hold E: Hold: D12 Jacob Christiansen Afleveringsdato: 10. april 2003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4 El-Teknik A Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen Klasse 3.4 12-08-2011 Strømstyrke i kredsløbet. Til at måle strømstyrken vil jeg bruge Ohms lov. I kredsløbet kender vi resistansen og spændingen.

Læs mere

Rapport. Undersøgelse af Dantale DVD i forhold til CD. Udført for Erik Kjærbøl, Bispebjerg hospital og Jens Jørgen Rasmussen, Slagelse sygehus

Rapport. Undersøgelse af Dantale DVD i forhold til CD. Udført for Erik Kjærbøl, Bispebjerg hospital og Jens Jørgen Rasmussen, Slagelse sygehus Rapport Undersøgelse af Dantale DVD i forhold til CD Udført for Erik Kjærbøl, Bispebjerg hospital og Jens Jørgen Rasmussen, Slagelse sygehus 2003-08-19 DELTA Dansk Elektronik, Lys & Akustik Teknisk-Audiologisk

Læs mere

Lyskryds. Thomas Olsson Søren Guldbrand Pedersen. Og der blev lys!

Lyskryds. Thomas Olsson Søren Guldbrand Pedersen. Og der blev lys! Og der blev lys! OPGAVEFORMULERING:... 2 DESIGN AF SEKVENS:... 3 PROGRAMMERING AF PEEL KREDS... 6 UDREGNING AF RC-LED CLOCK-GENERAOR:... 9 LYSDIODER:... 12 KOMPONENLISE:... 13 DIAGRAM:... 14 KONKLUSION:...

Læs mere

Varmeligningen og cosinuspolynomier.

Varmeligningen og cosinuspolynomier. Varmeligningen og cosinuspolynomier. Projekt for MM50 Marts 009 Hans J. Munkholm 0. Praktiske oplysninger Dette projekt besvares af de studerende, som er tilmeldt eksamen i MM50 uden at være tilmeldt eksamen

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5

Definition:... 1 Hældningskoefficient... 3 Begyndelsesværdi... 3 Formler... 4 Om E-opgaver 11a... 5 Lineære funktioner Indhold Definition:... Hældningskoefficient... 3 Begndelsesværdi... 3 Formler... 4 Om E-opgaver a... 5 Definition: En lineær funktion er en funktion, hvor grafen er lineær. Dvs. grafen

Læs mere

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Modtaget dato: (forbeholdt instruktor) Godkendt: Dato: Underskrift: Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Kristian Jerslev, Kristian Mads Egeris Nielsen, Mathias

Læs mere

Fysik 12 Projekt Interferens med mikrobølger

Fysik 12 Projekt Interferens med mikrobølger Fysik 1 Projekt Interferens med mikrobølger Astrid Rømer Michael Bjerngaard Morten S. Larsen Sebastian B. Simonsen 3.maj kl.1.00 Indhold 1 Problemformulering Indledning 3 Teori 3.1 Bølgeligningen og kompleks

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

Hjertets elektriske potentialer og målingen af disse

Hjertets elektriske potentialer og målingen af disse Hjertets elektriske potentialer og målingen af disse Indholdsfortegnelse Indholdsfortegnelse... 1 Introduktion... 1 Grundlæggende kredsløbteknik... 1 Ohms lov... 2 Strøm- og spændingsdeling... 4 Elektriske

Læs mere

Elektronikken bag medicinsk måleudstyr

Elektronikken bag medicinsk måleudstyr Elektronikken bag medicinsk måleudstyr Måling af svage elektriske signaler Indholdsfortegnelse Indholdsfortegnelse... 1 Introduktion... 1 Grundlæggende kredsløbteknik... 2 Ohms lov... 2 Strøm- og spændingsdeling...

Læs mere

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1

6. Regression. Hayati Balo,AAMS. 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6. Regression Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 1 6.0 Indledning til funktioner eller matematiske modeller Mange gange kan

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Projektopgave Matematik A Tema: Eksponentielle modeller Vejleder: Jørn Bendtsen Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Dato: 01-01-2008 Indholdsfortegnelse Indledning... 3 1.

Læs mere

1 Generelt om dokumentation af usikkerheder

1 Generelt om dokumentation af usikkerheder 1 1 Generelt om dokumentation af usikkerheder Begrundelsen for at følge den standardprocedure, som er beskrevet i det følgende - og som måske ved første øjekast kan virke vel grundig - er, at det har vist

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

Lysets fysik Optiske fibre P0 projekt

Lysets fysik Optiske fibre P0 projekt Lysets fysik Optiske fibre P0 projekt Forsidebillede: En oplyst plexiglasleder hvorpå gruppens navn er skrevet [1] Titel: Optiske fibre Tema: Lysets fysik Projektperiode: 01/09 18/09 2015 Projektgruppe:

Læs mere

Kompendium om brug af kondensator til tidsudmåling i elektronik

Kompendium om brug af kondensator til tidsudmåling i elektronik /9-4 Kompendium om brug af kondensator til tidsudmåling i elektronik Når der i elektronikken skal bruges en tids-udmåling, benyttes ofte den tid, det tager at oplade eller aflade en kondensator til en

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Opgaver til Maple kursus 2012

Opgaver til Maple kursus 2012 Opgaver til Maple kursus 2012 Jonas Camillus Jeppesen, jojep07@student.sdu.dk Martin Gyde Poulsen, gyde@nqrd.dk October 7, 2012 1 1 Indledende opgaver Opgave 1 Udregn følgende regnestykker: (a) 2342 +

Læs mere

AGV Kursus August 1999

AGV Kursus August 1999 AGV Kursus August 1999 Dato: 26.08.99 Morten Nielsen Daniel Grolin Michael Krag Indledning: Princippet bag en AGV (Autonomous Guided Vehicle) er at få et køretøj til at bevæge sig rundt i nogle omgivelser,

Læs mere

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?.

Jeg ville udfordre eleverne med en opgave, som ikke umiddelbar var målbar; Hvor høj er skolens flagstang?. Hvor høj er skolens flagstang? Undersøgelsesbaseret matematik 8.a på Ankermedets Skole i Skagen Marts 2012 Klassen deltog for anden gang i Fibonacci Projektet, og der var afsat ca. 8 lektioner, fordelt

Læs mere

ROSKILDE TEKNISKE GYMNASIUM 2. ÅR MAT. A & IT B MARTS 2014. Mini SRP - Projekt. Afkøling. Af Lars-Emil Jakobsen & Jacob Ruager.

ROSKILDE TEKNISKE GYMNASIUM 2. ÅR MAT. A & IT B MARTS 2014. Mini SRP - Projekt. Afkøling. Af Lars-Emil Jakobsen & Jacob Ruager. ROSKILDE TEKNISKE GYMNASIUM 2. ÅR MAT. A & IT B MARTS 2014 Mini SRP - Projekt Afkøling Af Lars-Emil Jakobsen & Jacob Ruager. Logo af Java, redigeret i Paint af Lars-Emil Snefnug, redigeret i Paint af Lars-Emil

Læs mere

Operationsforstærkere

Operationsforstærkere OPamps 1/12215 Kompendium / noter til: Operationsforstærkere Links til afsnit: Generelt, Splitsupply, Impedanskonverter, Delta_Ui_Fejl, Noninverting_Amp, Inverting_Amp, Summationsforstærker, Single_Supply,

Læs mere

Projekt 6.1 Rygtespredning - modellering af logistisk vækst

Projekt 6.1 Rygtespredning - modellering af logistisk vækst Projekt 6.1 Rygtespredning - modellering af logistisk vækst (Projektet anvender værktøjsprogrammet TI Nspire) Alle de tilstedeværende i klassen tildeles et nummer, så med 28 elever i klassen uddeles numrene

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 14/15 Hf

Læs mere