6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning

Størrelse: px
Starte visningen fra side:

Download "6 Plasmadiagnostik 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning"

Transkript

1 49 6 Plasmadiagnostik Plasmadiagnostik er en fællesbetegnelse for de forskellige typer måleudstyr, der benyttes til måling af plasmaers parametre og egenskaber. I fusionseksperimenter er der behov for at måle mange af plasmaets parametre. I flæng kan nævnes: plasmaets tæthed, dets temperatur, elektriske strømme i plasmaet, bevægelser af plasmaet, elektriske og magnetiske felter, plasmaets renhed m.m. De fleste af disse størrelser ændrer sig både i tid og rum, så målingerne skal udføres både som funktioner af tiden og på flere steder i plasmaet. Målinger på plasmaer er ofte komplicerede, fordi man ikke kan placere måleprober i plasmaet. De ville jo smelte i det varme plasma, og de ville også påvirke plasmaet og ændre dets parametre. Man er derfor henvist til enten at måle på partikler eller elektromagnetisk stråling, der af sig selv kommer ud fra plasmaet, eller man må sende stråler igennem plasmaet og måle, hvordan plasmaet påvirker disse stråler. Ud fra disse målinger må man så beregne plasmaets egenskaber. Ethvert varmt legeme udsender elektromagnetisk stråling. Denne varmestråling afhænger af legemets temperatur, størrelse og farve. Et varmt plasma udsender også elektromagnetisk stråling, hvis styrke afhænger af dets temperatur, tæthed og størrelse. Måling på strålingen fra et varmt plasma kan give oplysninger om dets tæthed, temperatur og sammensætning. Spektralanalyse af den udsendte stråling kan give oplysninger om magnetfeltet i plasmaet. Det skyldes, at plasmaet udsender specielt megen stråling med frekvenser omkring elektronernes gyrofrekvenser, se underafsnit Hvis plasmaet er så varmt, at der sker fusionsprocesser, dannes der neutroner. Neutronerne, der jo er elektrisk neutrale, farer lige gennem magnetfeltet og kan så detekteres uden for plasmaet. De fortæller os om plasmatætheden og temperaturen på det sted i plasmaet, hvorfra de kommer. En lysstråle, der sendes gennem et plasma, brydes på samme måde, som mange andre gennemsigtige legemer bryder lysstråler. Plasmaet har et brydningsindeks, som afhænger af dets tæthed, dets magnetfelt og frekvensen af det lys, der sendes gennem det. Brydningens størrelse, som kan måles ved interferens eller blot ved at måle ændringen af lysstrålens retning, når den går gennem plasmaet, giver oplysninger om plasmaets tæthed og dets magnetfelt. Inden for fusionsforskningen benyttes en række forskellige diagnostikker, som er baseret på mange forskellige fysiske principper. I stedet for blot at opremse og kort omtale et udvalg af disse diagnostikker vil vi koncentrere os om Thomsonspredning, som er en af de mest slagkraftige metoder til måling af et plasmas tæthed og temperatur. 6.1 Tætheds- og temperaturmålinger ved Thomsonspredning Når en lysstråle passerer et område, hvor der er en eller flere ladede partikler, vil en del af strålen blive spredt ud i andre retninger. Fysikken i denne Thomsonspredning er som følger: Lys er elektromagnetiske bølger, der udbreder sig med lyshastigheden c = m/s. Bølgerne kaldes elektromagnetiske, fordi det, der svinger, er elektriske og magnetiske felter. Begge svingende felter står vinkelret på udbredelsesretningen. Figur 6.1 viser et øjebliksbillede af en sådan bølge. Denne

2 50 bølge udbreder sig i x-retningen. Det svingende elektriske E-felt peger i y-retningen, og det svingende magnetiske B-felt peger i z-retningen. Bølgelængden l er afstanden mellem to bølgetoppe. Når bølgen har bevæget sig en bølgelængde, opnår vi igen nøjagtigt samme billede. Den tid, det tager for bølgen at bevæge sig en bølgelængde, kaldes perioden T, og den er altså givet ved T = 8/c. (6.1) Det tager tiden T mellem hver gang, en bølgetop passerer et fast sted på x-aksen. I løbet af et sekund passerer et vist antal bølgetoppe, <, som kaldes bølgens frekvens. Der gælder derfor Figur Øjebliksbillede af en elektromagnetisk bølge. < = 1/T. (6.2) Lad der i et punkt på x-aksen være placeret en ladet partikel, som føler et E-felt, der svinger i y- retningen med frekvensen <. Da partiklen er elektrisk ladet, påvirkes den af en kraft i y-retningen, der også svinger med frekvensen <, og den svinger derfor selv med denne frekvens. Bølgens magnetiske felt har en meget lille betydning for partiklens bevægelse, som vi derfor ser bort fra. En lige elektrisk leder, hvori elektrisk ladning bringes til at svinge frem og tilbage langs lederen med en frekvens, vil virke som en antenne og udsende elektromagnetisk stråling med denne frekvens. Den elektrisk ladede partikel, der svinger op og ned med frekvensen < under påvirkning af det elektriske felt, vil også virke som en antenne og udsende elektromagnetisk stråling med denne frekvens i alle retninger, men mest i retningerne vinkelret på partiklens svingningsretning. Jo større udsvingene er, og jo større den svingende ladning er, jo større er styrken af den udsendte stråling. Den udsendte stråling har samme frekvens som den, hvormed partiklen svinger. Partiklen tager energi fra bølgen og genudsender denne energi som spredt stråling. Dette er fysikken bag Thomsonspredning. Opgave 6.1. Betragt en ladet partikel med ladningen q og massen m, der befinder sig i en fast x-position, hvor den føler et elektrisk E y -felt, der svinger i tiden som E y sin(2b<t), se figur Find den kraft, der påvirker partiklen og opskriv bevægelsesligningen, dvs. Newtons anden lov, for partiklens bevægelse i y-retningen. 2. Vis at følgende udtyrk for hastigheden er i overensstemmelse med bevægelsesligningen v y = - q E y cos(2b<t)/ (2B< m) 3. Find ud fra ovenstående udtryk for v y partiklens y-position som funktion af tiden og bestem amplituden i partiklens svingning. 4. Diskutér hvorfor elektronerne er meget mere effektive til at sprede lys end ionerne.

3 51 For at forklare hvordan Thomsonspredning kan bruges til at måle et plasmas tæthed og temperatur, kan man sammenligne med et støvfuldt mørkt rum, hvori der falder en solstråle gennem et lille vindue. Når solstrålen rammer støvpartiklerne, reflekterer eller spreder de noget af lyset, og vi kan se dem. Jo flere partikler der er, des mere lys spredes. Styrken af det spredte lys er derfor et mål for tætheden af støvpartikler. Vi kan også se, hvordan de enkelte partikler bevæger sig rundt i det belyste område. Figur 6.2. Thomsonspredningsudstyr til måling af et plasmas tæthed og temperatur. a) tæthedsmåling, b) temperaturmåling.

4 52 Princippet i måling af plasmatæthed og temperatur ved brug af Thomsonspredning er vist på figur 6.2. Ligesom i eksemplet med solstrålen gennem et støvfyldt rum skal vi sende en kraftig lysstråle gennem plasmaet og så måle på det lys, der spredes af de ladede partikler. Lyskilden skal opfylde tre krav: 1. Den skal være meget kraftig for at give et tilstrækkeligt stort signal. Det skyldes, at kun en meget lille del af lyset spredes i plasmaet; resten går lige igennem. 2. Lysstrålen skal være meget smal for at give os en god rumlig opløsning. 3. For at opnå gode temperaturmålinger skal lyskilden være monokromatisk, dvs. den må kun udsende lys med en ganske bestemt bølgelængde. En laser er den eneste lyskilde, der kan opfylde alle disse krav. I praksis må man endog bruge de mest avancerede lasere for at opnå optimale målinger. Laserlyset sendes som en meget kortvarig puls ind gennem det måleområde i plasmaet, hvor man vil måle parametrene. Man benytter to detektorsystemer: et ret simpelt til tæthedsmålinger og et mere kompliceret til temperaturmålinger. For at måle tætheden fokuserer man med en almindelig linse en del af det spredte lys fra måleområdet på den lysfølsomme del af en lysdetektor. Den giver så et elektrisk signal, der er proportionalt med det indkommende lyssignal og dermed med tætheden, se a) på figur 6.2. Jo højere et plasmas temperatur er, des hurtigere bevæger dets partikler sig rundt mellem hinanden i deres termiske bevægelser. For at bestemme plasmaets temperatur skal vi altså kunne måle partiklernes termiske bevægelser. Det kan gøres ved hjælp af Thomsonspredning. Figur 6.3 viser det fysiske princip. Her ses igen det elektriske felt i en lysbølge med bølgelængden 8 o, der udbreder sig i x-retningen med lyshastigheden c. I x er placeret en ladet partikel P. Hvis P ikke bevæger sig, har vi set ovenfor, at den vil blive sat i lodrette svingninger med frekvensen < o = c/8 0 og udstråle spredt lys med bølgelængden 8 o. Det spredte lys har altså samme bølgelængde og frekvens som den indkommende lysbølge. Figur 6.3. Ladet partikel, der bevæger sig langs en elektromagnetisk bølges udbredelsesretning, svinger med en dopplerforskudt frekvens i forhold til bølgens frekvens. Vi tænker os nu, at P, når klokken er nul, befinder sig i x, og at den bevæger sig i x-retningen med en hastighed v. I løbet af en tid )t, vil P bevæge sig stykket )x = v)t og nå til positionen x = x +)x. I løbet af )t er positionen x = x passeret af )t< o bølgetoppe. Langs stykket )x befinder der sig )x/< o =v)t/< o bølgetoppe, som ikke har passeret P, da denne jo har bevæget sig væk fra x. I alt er P derfor i løbet af )t passeret af )t(< o - v/8 o ) = )t(c-v)/8 o bølgetoppe. P vil derfor, når den bevæger sig med hastigheden v i bølgens udbredelsesretning, føle et elektrisk felt, der svinger med frekvensen < = (c-v)/8 o = (1 v/c) < o. (6.3) Når P nu svinger op og ned med denne frekvens, vil den udsende elektromagnetisk stråling med denne frekvens. Hvis sådanne stråler detekteres i en retning, der er vinkelret på den retning, hvori partiklen

5 53 bevæger sig, har de en bølgelængde 8 som er givet ved 8 = c/< = 8 o / (1 v/c). (6.4) Vi ser altså, at en partikel, der bevæger sig i lysstrålens retning, vil svinge med en frekvens, der er lavere end lysstrålens, og den vil derfor selv udsende stråling vinkelret på sin bevægelsesretning med den lavere frekvens og altså med en længere bølgelængde. Hvis partiklen bevæger sig imod strålens udbredelsesretning, finder vi dens nye frekvens og bølgelængde blot ved at skifte fortegnet foran v/c i (6.3) og (6.4). I dette tilfælde får vi en frekvens, der er større end < o, og en bølgelængde, der er mindre end 8 o.. Disse ændringer i bølgelængde eller frekvens for lys, der udsendes fra bevægede partikler, er kendt under betegnelsen dopplereffekten eller dopplerforskydningen. Ser man på spredt stråling, der er udsendt i retninger, der ikke er vinkelret på den spredende partikels bevægelsesretning, får vi et ekstra bidrag til dopplerforskydningen, som skyldes at lysgiveren, her den spredende partikel, bevæger sig mod eller bort fra detektoren. Det er den samme effekt, som vi kender fra fx en ambulance under udrykning. Når den bevæger sig mod os, hører vi en tone fra dens horn, der har en højere frekvens, end den, vi hører, når den har passeret os og kører væk fra os. Da de ladede partikler i et plasma i deres termiske bevægelse farer rundt i alle retninger og med forskellig fart, får det spredte lys en spektralfordeling, der afhænger af plasmaets temperatur og den geometriske opstilling. Måling af spektralfordelingen giver oplysninger om, hvor hurtigt partiklerne bevæger sig og dermed om temperaturen. Jo bredere spektralfordelingen er, des højere er temperaturen. Figur 6.4 viser beregnede spektralfordelinger for lys med 8 0 = 694,3 nm, der er spredt vinkelret på den indfaldende stråle fra plasmaer med forskellige temperaturer, T kin. Figur 6.4. Beregnede spektre af Thomsonspredt lys med 8 o = 694,3 nm, der er spredt fra plasmaer med temperaturer T kin = 1, 3, 10 og 20 kev. Kurvernes forskydning mod lave bølgelængder ved høje temperaturer skyldes relativistiske effekter. Opgave 6.2. Denne opgaves formål er i meget korte træk at eftervise kvalitativt, at kurven for T kin = 3 kev på figur 6.4 er korrekt. Der sendes altså en laserpuls med 8 o = 694,3 nm gennem et 3 kev plasma. Strålen spredes af elektroner, der i deres termiske bevægelser flytter sig parallelt med strålen. At den kinetiske temperatur er er 3 kev, betyder, at de fleste elektroner bevæger sig frem eller tilbage langs strålen med kinetiske energier, der er mindre end 1,5 kev. De 1,5 kev repræsenterer altså bredden af energifordelingskurven. Beregn ud fra udtrykket m e v 2 /2 = 1,5 kev den tilsvarende bredde af hastighedsfordelingskurven, som jo er symmetrisk omkring v = 0. Endelig skal man ud fra formel (6.4) beregne bredden af spektralfordelingen af det spredte lys. Sammenlign med figur 6.4, og vis, at der er god overensstemmelse.

6 54 Spektralfordelingen kan måles med opstillingen, der er skitseret under b) på figur 6.2. Ved hjælp af en linse samler man igen spredt lys fra måleområdet og fokuserer det på en spektralanalysator, som kan være et simpelt prisme eller et optisk gitter. På tegningen er vist et gitter, som har den egenskab, at det deler det indkommende lys op efter bølgelængde og sender det ud i en vifte. Det langbølgede lys ligger i venstre side af viften, og det kortbølgede ligger i højre side. Efter at være gået gennem gitret rammer lyset en række lysdetektorer, som altså hver måler lysmængden i et snævert bølgelængdeområde. Ved hjælp af signalerne fra detektorerne kan man konstruere spektralfordelingen af det spredte lys. Sammenligning af målte spektralfordelinger med beregnede kurver, som dem på figur 6.4, gør det så muligt at bestemme plasmatemperaturen. Opgave 6.3. Denne opgave skal vise, hvorfor målinger, der er baseret på Thomsonspredning, kræver meget stærke lasere. Det hænger sammen med, at lys ikke udsendes i en kontinuerlig strøm, men altid i klumper, de såkaldte fotoner eller lyskvanter. For at få god statistik er det nødvendigt, at den del af måleudstyret, der måler det spredte lys, registrerer mange og helst flere hundrede fotoner fra hver puls. Se på et spredningseksperiment som fx det, der vises på figur 6.5, hvor der benyttes en rubinlaser med en samlet energi i de udsendte lyspulser på 1 J. Lysets bølgelængde er 8 0 = 694,3 nm. For at opnå en passende rumlig opløsning er måleområdet valgt som en lille cylinder med akse i den indfaldende stråles retning. Cylinderens volumen er 1 cm 3, idet dens akse er 1 cm lang, og dens tværsnitsareal er lig den indfaldende stråles tværsnitsareal, nemlig 1 cm Idet der mindes om, at fotonenergien af elektromagnetisk stråling med frekvensen < er h<, hvor Plancks konstant h = 6, Js, skal antallet af fotoner i den 1 J store puls beregnes. 2. Det opgives nu, at sandsynligheden for, at en foton spredes, når den bevæger sig et stykke L i et plasma med elektrontætheden n e, er 6, L n e. Se på et plasma, hvor n e er m -3, og beregn hvor mange af de fotoner, vi fandt i 1, der vil spredes i den 1 cm lange cylinder. 3. Som en ret god tilnærmelse vil vi nu antage, at fotonerne spredes isotropt, dvs. styrken af spredt stråling er ens i alle retninger. Den spredte stråling samles i et cirkulært hulspejl med en diameter på 0,7 m, som sidder i en afstand af 10 m fra det cylindriske måleområde, se figur 6.5. Beregn hvor mange spredte fotoner, der rammer dette spejl og sendes videre op til detektorsystemet. 4. Der tabes en del fotoner, hver gang lyset passerer et vindue eller reflekteres af et spejl. Antag at disse tab i alt er på 50 %. På loftet over JET måles det spredte lys vha. Detektorer. Sådanne detektorer har karakteristisk en effektivitet på 10 %, dvs. de detekterer kun 10 % af de fotoner, der rammer dem. Beregn hvor mange fotoner, der i alt detekteres, når man blot ønsker at måle tætheden i måleområdet. 5. Ved temperaturmålinger skal der foretages en spektralanalyse af det spredte lys. Det gøres ved at dele det op efter bølgelængde som vist på figur. 6.2 b), hvor en række detektorer modtager og måler lys med hver sin bølgelængde. Antag, at gitteret kun sender 10 % af den stråling, der falder på det, ud i lysviften, og at der er 10 detektorer, der hver modtager lige mange fotoner. Hvor mange fotoner detekterer hver detektor? Figur 6.5. Thomsonspredningsudstyr på JET. Udstyret er bygget af Risøs fusionsforskningsgruppe, og det har været benyttet på JET i en årrække. En rubinlaser er placeret på loftlaboratoriet højt over selve JET-eksperimentet. Laseren udsender korte pulser med bølgelængden 8 0 = 694,3 nm. Energien i en puls kan være op til 20 J. Denne energi kan deles op i en række (op til 20) mindre pulser, som kan udsendes med op til fire pulser pr. sekund. Pulserne sendes via senderspejlsystemet gennem loftet og ned mod maskinen. Lige over plasmakammeret sørger et spejlarrangement for, at der kan vælges mellem seks lodrette strålegange gennem plasmaet. Måleområderne ligger, hvor disse stråler skærer plasmaets vandrette midtplan. Der måles på det spredte lys, som fra måleområdet sendes vandret ud mod et opsamlingsspejlsystem, som samler lyset og sender det gennem et modtagerspejlsystem til noget måleudstyr, der også står på loftlaboratoriet. Måleudstyret består dels af en almindelig lysdetektor, der kan måle mængden af spredt lys og dermed bestemme plasmatætheden, og dels af et spektrometer, der analyserer det modtagne lys. Ud fra denne analyse bestemmes temperaturen i måleområdet.

7 sudstyr på JET 55

5 Plasmaopvarmning. Figur 5.1. De tre mest anvendte metoder til opvarmning af fusionsplasmaer.

5 Plasmaopvarmning. Figur 5.1. De tre mest anvendte metoder til opvarmning af fusionsplasmaer. Ohmsk opvarmning 45 5 Plasmaopvarmning Under diskussionen af fusionsprocesserne og Lawson-kriteriet i kapitel 3 så vi, at to krav skal opfyldes for at opnå et antændt fusionsplasma. Det ene er kravet om

Læs mere

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,

Læs mere

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008

Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Løsningsforslag til fysik A eksamenssæt, 23. maj 2008 Kristian Jerslev 22. marts 2009 Geotermisk anlæg Det geotermiske anlæg Nesjavellir leverer varme til forbrugerne med effekten 300MW og elektrisk energi

Læs mere

Partikelacceleratorer: egenskaber og funktion

Partikelacceleratorer: egenskaber og funktion Partikelacceleratorer: egenskaber og funktion Søren Pape Møller Indhold Partikelaccelerator maskine til atomare partikler med høje hastigheder/energier Selve accelerationen, forøgelse i hastighed, kommer

Læs mere

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken.

Til at beregne varmelegemets resistans. Kan ohms lov bruges. Hvor R er modstanden/resistansen, U er spændingsfaldet og I er strømstyrken. I alle opgaver er der afrundet til det antal betydende cifre, som oplysningen med mindst mulige cifre i opgaven har. Opgave 1 Færdig Spændingsfaldet over varmelegemet er 3.2 V, og varmelegemet omsætter

Læs mere

Protoner med magnetfelter i alle mulige retninger.

Protoner med magnetfelter i alle mulige retninger. Magnetisk resonansspektroskopi Protoners magnetfelt I 1820 lavede HC Ørsted et eksperiment, der senere skulle gå over i historiebøgerne. Han placerede en magnet i nærheden af en ledning og så, at når der

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 12. december, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 10 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 13 sider Skriftlig prøve, lørdag den 23. maj, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

MODUL 1-2: ELEKTROMAGNETISK STRÅLING

MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1-2: ELEKTROMAGNETISK STRÅLING MODUL 1 - ELEKTROMAGNETISKE BØLGER I 1. modul skal I lære noget omkring elektromagnetisk stråling (EM- stråling). I skal lære noget om synligt lys, IR- stråling, UV-

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

FYSIK I DET 21. ÅRHUNDREDE Laseren den moderne lyskilde

FYSIK I DET 21. ÅRHUNDREDE Laseren den moderne lyskilde FYSIK I DET 1. ÅRHUNDREDE Laseren den moderne lyskilde Kapitel Stof og stråling kan vekselvirke på andre måder end ved stimuleret absorption, stimuleret emission og spontan emission. Overvej hvilke. Opgave

Læs mere

Spektralanalyse. Jan Scholtyßek 09.11.2008. 1 Indledning 1. 2 Formål. 3 Forsøgsopbygning 2. 4 Teori 2. 5 Resultater 3. 6 Databehandling 3

Spektralanalyse. Jan Scholtyßek 09.11.2008. 1 Indledning 1. 2 Formål. 3 Forsøgsopbygning 2. 4 Teori 2. 5 Resultater 3. 6 Databehandling 3 Spektralanalyse Jan Scholtyßek 09..2008 Indhold Indledning 2 Formål 3 Forsøgsopbygning 2 4 Teori 2 5 Resultater 3 6 Databehandling 3 7 Konklusion 5 7. Fejlkilder.................................... 5 Indledning

Læs mere

1. Vibrationer og bølger

1. Vibrationer og bølger V 1. Vibrationer og bølger Vi ser overalt bevægelser, der gentager sig: Sætter vi en gynge i gang, vil den fortsætte med at svinge på (næsten) samme måde, sætter vi en karrusel i gang vil den fortsætte

Læs mere

Antennens udstrålingsmodstand hvad er det for en størrelse?

Antennens udstrålingsmodstand hvad er det for en størrelse? Antennens udstrålingsmodstand hvad er det for en størrelse? Det faktum, at lyset har en endelig hastighed er en forudsætning for at en antenne udstråler, og at den har en ohmsk udstrålingsmodstand. Den

Læs mere

Mikroskopet. Sebastian Frische

Mikroskopet. Sebastian Frische Mikroskopet Sebastian Frische Okularer (typisk 10x forstørrelse) Objektiver, forstørrer 4x, 10x el. 40x Her placeres objektet (det man vil kigge på) Kondensor, samler lyset på objektet Lampe Oversigt Forstørrelse

Læs mere

Diodespektra og bestemmelse af Plancks konstant

Diodespektra og bestemmelse af Plancks konstant Diodespektra og bestemmelse af Plancks konstant Fysik 5 - kvantemekanik 1 Joachim Mortensen, Rune Helligsø Gjermundbo, Jeanette Frieda Jensen, Edin Ikanović 12. oktober 28 1 Indledning Formålet med denne

Læs mere

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?:

7 QNL 2PYHQGWSURSRUWLRQDOLWHW +27I\VLN. 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: 1 Intro I hvilket af de to glas er der mest plads til vand?: Hvorfor?: Angiv de variable: Check din forventning ved at hælde lige store mængder vand i to glas med henholdsvis store og små kugler. Hvor

Læs mere

Teknikken er egentlig meget simpel og ganske godt illustreret på animationen shell 4-5.

Teknikken er egentlig meget simpel og ganske godt illustreret på animationen shell 4-5. Fysikken bag Massespektrometri (Time Of Flight) Denne note belyser kort fysikken bag Time Of Flight-massespektrometeret, og desorptionsmetoden til frembringelsen af ioner fra vævsprøver som er indlejret

Læs mere

Brydningsindeks af vand

Brydningsindeks af vand Brydningsindeks af vand Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 15. marts 2012 Indhold 1 Indledning 2 2 Formål

Læs mere

FYSIK C. Videooversigt. Intro video... 2 Bølger... 2 Den nære astronomi... 3 Energi... 3 Kosmologi... 4. 43 videoer.

FYSIK C. Videooversigt. Intro video... 2 Bølger... 2 Den nære astronomi... 3 Energi... 3 Kosmologi... 4. 43 videoer. FYSIK C Videooversigt Intro video... 2 Bølger... 2 Den nære astronomi... 3 Energi... 3 Kosmologi... 4 43 videoer. Intro video 1. Fysik C - intro (00:09:20) - By: Jesper Nymann Madsen Denne video er en

Læs mere

Dopplereffekt. Rødforskydning. Erik Vestergaard

Dopplereffekt. Rødforskydning. Erik Vestergaard Dopplereffekt Rødforskydning Erik Vestergaard 2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard 2012 Erik Vestergaard www.matematikfysik.dk 3 Dopplereffekt Fænomenet Dopplereffekt, som vi skal

Læs mere

Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015. Teoretisk prøve. Prøvetid: 3 timer

Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015. Teoretisk prøve. Prøvetid: 3 timer Dansk Fysikolympiade 2015 Udtagelsesprøve søndag den 19. april 2015 Teoretisk prøve Prøvetid: 3 timer Opgavesættet består af 15 spørgsmål fordelt på 5 opgaver. Bemærk, at de enkelte spørgsmål ikke tæller

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

Indledning 2. 1 Lysets energi undersøgt med lysdioder (LED) 2 1.1 Udstyr... 3 1.2 Udførelse... 3

Indledning 2. 1 Lysets energi undersøgt med lysdioder (LED) 2 1.1 Udstyr... 3 1.2 Udførelse... 3 Solceller og Spektre Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk August 2012 Indhold Formål 2 Indledning 2 1

Læs mere

Arbejdsopgaver i emnet bølger

Arbejdsopgaver i emnet bølger Arbejdsopgaver i emnet bølger I nedenstående opgaver kan det oplyses, at lydens hastighed er 340 m/s og lysets hastighed er 3,0 10 m/s 8. Opgave 1 a) Beskriv med ord, hvad bølgelængde og frekvens fortæller

Læs mere

Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum?

Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum? Hvorfor bevæger lyset sig langsommere i fx glas og vand end i det tomme rum? - om fysikken bag til brydningsindekset Artiklen er udarbejdet/oversat ud fra især ref. 1 - fra borgeleo.dk Det korte svar:

Læs mere

Øvelse i kvantemekanik Måling af Plancks konstant

Øvelse i kvantemekanik Måling af Plancks konstant Øvelse i kvantemekanik Måling af Plancks konstant Tim Jensen og Thomas Jensen 2. oktober 2009 Indhold Formål 2 2 Teoriafsnit 2 3 Forsøgsresultater 4 4 Databehandling 4 5 Fejlkilder 7 6 Konklusion 7 Formål

Læs mere

Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter

Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter Oktober 2012 Vejledende opgaver i kernestofområdet i fysik-a Elektriske og magnetiske felter Da læreplanen for fysik på A-niveau i stx blev revideret i 2010, blev kernestoffet udvidet med emnet Elektriske

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 11 sider Skriftlig prøve, lørdag den 22. august, 2015 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle hjælpemidler tilladt "Vægtning":

Læs mere

Partikelbevægelser i magnetfelter

Partikelbevægelser i magnetfelter Da fusion skal foregå ved en meget høj temperatur, 100 millioner grader, så der kan foregå en selvforsynende fusion, kræves der en metode til indeslutning af plasmaet, idet de materialer vi kender med

Læs mere

Fysik A. Studentereksamen. Onsdag den 25. maj 2016 kl. 9.00-14.00

Fysik A. Studentereksamen. Onsdag den 25. maj 2016 kl. 9.00-14.00 MINISTERIET FOR BØRN, UNDERVISNING OG LIGESTILLING STYRELSEN FOR UNDERVISNING OG KVALITET Fysik A Studentereksamen Onsdag den 25. maj 2016 kl. 9.00-14.00 Side i af 11 sider Billedhenvisninger Opgave i

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Theory Danish (Denmark)

Theory Danish (Denmark) Q3-1 Large Hadron Collider (10 point) Læs venligst de generelle instruktioner fra den separate konvolut, før du starter på denne opgave. Denne opgave handler om fysikken bag partikelacceleratorer LHC (Large

Læs mere

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger Fysikøvelse Erik Vestergaard www.matematikfysik.dk Musik og bølger Formål Hovedformålet med denne øvelse er at studere det fysiske begreb stående bølger, som er vigtigt for at forstå forskellige musikinstrumenters

Læs mere

Forsøg del 1: Beregning af lysets bølgelængde

Forsøg del 1: Beregning af lysets bølgelængde Forsøg del 1: Beregning af lysets bølgelængde Formål Formålet med denne forsøgsrække er, at vise mange aspekter inden for emnet lys med udgangspunkt i begrænset materiale. Formålet med forsøget er at beregne

Læs mere

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2...

Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... Introduktion til kvantemekanik Indhold En statistisk beskrivelse... 3 Bølgefunktionen... 4 Eksempel... 4 Opgave 1... 5 Tidsafhængig og tidsuafhængig... 5 Opgave 2... 6 Hvordan må bølgefunktionen se ud...

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 9 sider Skriftlig prøve, lørdag den 13. december, 2014 Kursus navn Fysik 1 Kursus nr. 10916 Varighed: 4 timer Tilladte hjælpemidler: Alle tilladte hjælpemidler på

Læs mere

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen

Strålingsintensitet I = Hvor I = intensiteten PS = effekten hvormed strålingen rammer en given flade S AS = arealet af fladen Strålingsintensitet Skal det fx afgøres hvor skadelig en given radioaktiv stråling er, er det ikke i sig selv relevant at kende aktiviteten af kilden til strålingen. Kilden kan være langt væk eller indkapslet,

Læs mere

Introduktion. Arbejdsspørgsmål til film

Introduktion. Arbejdsspørgsmål til film OPGAVEHÆFTE Introduktion Dette opgavehæfte indeholder en række forslag til refleksionsøvelser og aktiviteter, der giver eleverne mulighed for at forholde sig til nogle af de temaer filmen berører. Hæftet

Læs mere

Teoretiske Øvelser Mandag den 28. september 2009

Teoretiske Øvelser Mandag den 28. september 2009 Hans Kjeldsen hans@phys.au.dk 21. september 2009 Teoretiske Øvelser Mandag den 28. september 2009 Øvelse nr. 10: Solen vor nærmeste stjerne Solens masse-lysstyrkeforhold meget stort. Det vil sige, at der

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Mandag d. 11. juni 2012 kl. 9 00-13 00 Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Mandag d. 11. juni 2012 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Begge bølgetyper er transport af energi.

Begge bølgetyper er transport af energi. I 1. modul skal I lære noget omkring elektromagnetisk stråling(em-stråling). Herunder synligt lys, IR-stråling, Uv-stråling, radiobølger samt gamma og røntgen stråling. I skal stifte bekendtskab med EM-strålings

Læs mere

4 Plasmafysik, magnetisk indeslutning

4 Plasmafysik, magnetisk indeslutning Plasmafysik 35 4 Plasmafysik, magnetisk indeslutning Brændstoffet i en fusionsreaktor vil blive et meget varmt plasma bestående af deuteroner, tritoner og elektroner. Plasmaet holdes indesluttet i et magnetfelt

Læs mere

Standardmodellen og moderne fysik

Standardmodellen og moderne fysik Standardmodellen og moderne fysik Christian Christensen Niels Bohr instituttet Stof og vekselvirkninger Standardmodellen Higgs LHC ATLAS Kvark-gluon plasma ALICE Dias 1 Hvad beskriver standardmodellen?

Læs mere

Kasteparabler i din idræt øvelse 1

Kasteparabler i din idræt øvelse 1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal

Læs mere

Kulstofnanorør - småt gør stærk Side 20-23 i hæftet

Kulstofnanorør - småt gør stærk Side 20-23 i hæftet Kulstofnanorør - småt gør stærk Side 20-23 i hæftet SMÅ FORSØG OG OPGAVER Lineal-lyd 1 Lineal-lyd 2 En lineal holdes med den ene hånd fast ud over en bordkant. Med den anden anslås linealen. Det sker ved

Læs mere

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen

Elektromagnetisme 14 Side 1 af 10 Elektromagnetiske bølger. Bølgeligningen Elektromagnetisme 14 Side 1 af 1 Bølgeligningen Maxwells ligninger udtrykker den indbyrdes sammenhæng mellem de elektromagnetiske felter samt sammenhængen mellem disse felter og de feltskabende ladninger

Læs mere

Ordliste. Teknisk håndbog om magnetfelter og elektriske felter

Ordliste. Teknisk håndbog om magnetfelter og elektriske felter Ordliste Teknisk håndbog om magnetfelter og elektriske felter Afladning Atom B-felt Dielektrika Dipol Dosimeter E-felt Eksponering Elektricitetsmængde Elektrisk elementarladning Elektrisk felt Elektrisk

Læs mere

wwwdk Digital lydredigering på computeren grundlæggende begreber

wwwdk Digital lydredigering på computeren grundlæggende begreber wwwdk Digital lydredigering på computeren grundlæggende begreber Indhold Digital lydredigering på computeren grundlæggende begreber... 1 Indhold... 2 Lyd er trykforandringer i luftens molekyler... 3 Frekvens,

Læs mere

Brugervejledning for Senge- og dørvagt PIR2003

Brugervejledning for Senge- og dørvagt PIR2003 DENNE BRUGERVEJLEDNING GÆLDER FRA SOFTWARE VERSION 3.X Brugervejledning for Senge- og dørvagt PIR2003 KNOP ELEKTRONIK A/S Fabriksvej 20=7600 Struer=Mail: knop@knop.dk=web: www.knop.dk=tlf.: 9784 0444=Fax.:

Læs mere

At lede lyset på nanovejen Side 46-49 i hæftet

At lede lyset på nanovejen Side 46-49 i hæftet At lede lyset på nanovejen Side 46-49 i hæftet SMÅ FORSØG OG OPGAVER Lys og lyd TV gennem lysleder I en lysleder sendes signaler i form af lysimpulser. Derfor kan det være en overraskelse, at man kan sende

Læs mere

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer

Dansk Fysikolympiade 2007 Landsprøve. Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar. Prøvetid: 3 timer Dansk Fysikolympiade 2007 Landsprøve Prøven afholdes en af dagene tirsdag den 9. fredag den 12. januar Prøvetid: 3 timer Opgavesættet består af 6 opgaver med tilsammen 17 spørgsmål. Svarene på de stillede

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 -juni 2016 Institution Hotel- og Restaurantskolen Uddannelse Fag og niveau Lærer(e) Hold HTX Gastro-science

Læs mere

Forsøg til Lys. Fysik 10.a. Glamsdalens Idrætsefterskole

Forsøg til Lys. Fysik 10.a. Glamsdalens Idrætsefterskole Fysik 10.a Glamsdalens Idrætsefterskole Henrik Gabs 22-11-2013 1 1. Sammensætning af farver... 3 2. Beregning af Rødt laserlys's bølgelængde... 4 3. Beregning af Grønt laserlys's bølgelængde... 5 4. Måling

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Øvelsesvejledning: δ 15 N og δ 13 C for negle.

Øvelsesvejledning: δ 15 N og δ 13 C for negle. AMS 4C Daterings Laboratoriet Institut for Fysik og Astronoi Øvelsesvejledning: δ 5 N og δ 3 C for negle. Under besøget skal I udføre tre eksperientelle øvelser : Teltronrør - afbøjning af ladede partikler

Læs mere

Beskrivelse af det enkelte undervisningsforløb

Beskrivelse af det enkelte undervisningsforløb Beskrivelse af det enkelte undervisningsforløb Termin juni 2016 Institution Uddannelse Horsens Hf & VUC Hfe Fag og niveau Fysik C (stx-bekendtgørelse) Lærer(e) Hold Lærebøger Hans Lindebjerg Legard FyC2

Læs mere

Lysets fysik Optiske fibre P0 projekt

Lysets fysik Optiske fibre P0 projekt Lysets fysik Optiske fibre P0 projekt Forsidebillede: En oplyst plexiglasleder hvorpå gruppens navn er skrevet [1] Titel: Optiske fibre Tema: Lysets fysik Projektperiode: 01/09 18/09 2015 Projektgruppe:

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Røntgenspektrum fra anode

Røntgenspektrum fra anode Røntgenspektrum fra anode Elisabeth Ulrikkeholm June 24, 2016 1 Formål I denne øvelse skal I karakterisere et røntgenpektrum fra en wolframanode eller en molybdænanode, og herunder bestemme energien af

Læs mere

Solen - Vores Stjerne

Solen - Vores Stjerne Solen - Vores Stjerne af Christoffer Karoff, Aarhus Universitet På et sekund udstråler Solen mere energi end vi har brugt i hele menneskehedens historie. Uden Solen ville der ikke findes liv på Jorden.

Læs mere

Kapitel 8. Magnetiske felter - natur, måleenheder m.v. 1 Wb = 1 Tesla = 10.000 Gauss m 2 1 µt (mikrotesla) = 10 mg (miligauss)

Kapitel 8. Magnetiske felter - natur, måleenheder m.v. 1 Wb = 1 Tesla = 10.000 Gauss m 2 1 µt (mikrotesla) = 10 mg (miligauss) Kapitel 8 Magnetiske felter - natur, måleenheder m.v. Natur Enhver leder hvori der løber en strøm vil omgives af et magnetfelt. Størrelsen af magnetfeltet er afhængig af strømmen, der løber i lederen og

Læs mere

Fysik A - B Aarhus Tech. Niels Junge. Bølgelærer

Fysik A - B Aarhus Tech. Niels Junge. Bølgelærer Fysik A - B Aarhus Tech Niels Junge Bølgelærer 1 Table of Contents Bølger...3 Overblik...3 Harmoniske bølger kendetegnes ved sinus form samt følgende sammenhæng...4 Udbredelseshastighed...5 Begrebet lydstyrke...6

Læs mere

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter.

Kræfter og Energi. Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. Kræfter og Energi Jacob Nielsen 1 Nedenstående sammenhæng mellem potentiel energi og kraft er fundamental og anvendes indenfor mange af fysikkens felter. kraften i x-aksens retning hænger sammen med den

Læs mere

Fysik A. Studentereksamen

Fysik A. Studentereksamen Fysik A Studentereksamen 2stx131-FYS/A-03062013 Mandag den 3. juni 2013 kl. 9.00-14.00 Side 1 af 10 Side 1 af 10 sider Billedhenvisninger Opgave 1 http://www.flickr.com/photos/39338509 @N00/3105456059/sizes/o/in/photostream/

Læs mere

Formler til den specielle relativitetsteori

Formler til den specielle relativitetsteori Formler til den specielle relativitetsteori Jeppe Willads Petersen 25. oktober 2009 Jeg har i dette dokument forsøgt at samle de fleste af de formler, vi har brugt i forbindelse med den specielle relativitetsteori,

Læs mere

AT3000 Kabelsøger & Signalgenerator

AT3000 Kabelsøger & Signalgenerator AT3000 Kabelsøger & Signalgenerator El-nr. 87 98 327 411 Elma AT3000 side 2 Forord R-3000 og G-3000 er det perfekte søgeudstyr til lokalisering af nedgravede kabler og rør. Den robuste konstruktion sikrer

Læs mere

Elektromagnetisme 14 Side 1 af 9 Elektromagnetiske bølger. Bølgeligningen

Elektromagnetisme 14 Side 1 af 9 Elektromagnetiske bølger. Bølgeligningen Elektromagnetisme 14 Side 1 af 9 Bølgeligningen Maxwells ligninger udtrykker den indbyrdes sammenhæng mellem de elektromagnetiske felter. I det flg. udledes en ligning, der opfyldes af hvert enkelt felt.

Læs mere

Lysets kilde Ny Prisma Fysik og kemi 9 - kapitel 8 Skole: Navn: Klasse:

Lysets kilde Ny Prisma Fysik og kemi 9 - kapitel 8 Skole: Navn: Klasse: Lysets kilde Ny Prisma Fysik og kemi 9 - kapitel 8 Skole: Navn: Klasse: Opgave 1 Der findes en række forskellige elektromagnetiske bølger. Hvilke bølger er elektromagnetiske bølger? Der er 7 svarmuligheder.

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

LA 90L / LA 180L. Betjeningsvejledning

LA 90L / LA 180L. Betjeningsvejledning L 90L / L 80L da etjeningsvejledning L 80L 7 3a 5 6 4 3b 8 d b c b a a C L 80 L L 90 L D D >,8m > ft 90 Y Y m 3 3 ft E E E3 F Y D ± 5 D X D3 G,8m ft G G3 S > 5 m > 6 3 ft G4 G5 3 3 da etjeningsvejledning

Læs mere

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE

KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE KØBENHAVNS UNIVERSITET NATURVIDENSKABELIG BACHELORUDDANNELSE Fysik 2, Klassisk Mekanik 2 Skriftlig eksamen 23. januar 2009 Tilladte hjælpemidler: Medbragt litteratur, noter og lommeregner Besvarelsen må

Læs mere

Fysik A. Studentereksamen

Fysik A. Studentereksamen Fysik A Studentereksamen stx132-fys/a-15082013 Torsdag den 15. august 2013 kl. 9.00-14.00 Side 1 af 9 sider Side 1 af 9 Billedhenvisninger Opgave 1 U.S. Fish and wildlife Service Opgave 2 http://stardust.jpl.nasa.gov

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

Tværfagligt undervisningsprojekt om nordlys

Tværfagligt undervisningsprojekt om nordlys Tværfagligt undervisningsprojekt om nordlys Carsten Skovgård Andersen, Bellahøj Skole, Børn af Galileo, ca.bel@ci.kk.dk Jeg har skrevet projektet som en eksamensopgave på et fjernstudie i nordlys på Universitetet

Læs mere

TEORETISKE MÅL FOR EMNET:

TEORETISKE MÅL FOR EMNET: TEORETISKE MÅL FOR EMNET: Kende begreberne ampltude, frekvens og bølgelængde samt vde, hvad begreberne betyder Kende (og kende forskel på) tværbølger og længdebølger Kende lysets fart Kende lysets bølgeegenskaber

Læs mere

Danmarks Tekniske Universitet

Danmarks Tekniske Universitet Danmarks Tekniske Universitet Side 1 af 8 sider Skriftlig prøve, den 24. maj 2005 Kursus navn: Fysik 1 Kursus nr.: 10022 Tilladte hjælpemidler: Alle hjælpemidler tilladt. "Vægtning": Besvarelsen vægtes

Læs mere

Skriftlig Eksamen i Moderne Fysik

Skriftlig Eksamen i Moderne Fysik Moderne Fysik 10 Side 1 af 7 Navn: Storgruppe: i Moderne Fysik Spørgsmål 1 Er følgende udsagn sandt eller falsk? Ifølge Einsteins specielle relativitetsteori er energi og masse udtryk for det samme grundlæggende

Læs mere

Harmoniske Svingninger

Harmoniske Svingninger Harmoniske Svingninger Frank Villa 16. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Teori om lysberegning

Teori om lysberegning Indhold Teori om lysberegning... 1 Afstandsreglen (lysudbredelse)... 2 Lysfordelingskurve... 4 Lyspunktberegning... 5 Forskellige typer belysningsstyrke... 10 Beregning af belysningsstyrken fra flere lyskilder...

Læs mere

Fysik A. Studentereksamen

Fysik A. Studentereksamen Fysik A Studentereksamen 1stx131-FYS/A-27052013 Mandag den 27. maj 2013 kl. 9.00-14.00 Side 1 af 10 sider Side 1 af 10 Billedhenvisninger Opgave 1 http://www.allsolarfountain.com/ftnkit56 Opgave 2 http://www1.appstate.edu/~goodmanj/elemscience/

Læs mere

Studieretningsprojekter i Speciel Relativitetsteori Oktober 2010. Studieretningsprojekter i Speciel Relativitetsteori

Studieretningsprojekter i Speciel Relativitetsteori Oktober 2010. Studieretningsprojekter i Speciel Relativitetsteori Studieretningsprojekter i Speciel Relativitetsteori 1 Indhold: Øvelse 1: Måling af lysets hastighed med roterende spejl, s. 3 Øvelse 2: Myonens levetid, s. 6 Øvelse 3: Måling af lysets hastighed med pulseret

Læs mere

Atomure og deres anvendelser

Atomure og deres anvendelser Atomure og deres anvendelser Af Anders Brusch og Jan W. Thomsen, Niels Bohr Institutet, Københavns Universitet De mest præcise målinger i fysikken laves i dag ved hjælp af atomure, hvor man kan undersøge

Læs mere

Tjekspørgsmål til Laseren den moderne lyskilde

Tjekspørgsmål til Laseren den moderne lyskilde Tjekspørgsmål til Laseren den moderne lyskilde Kapitel 2. Sådan opstår laserlyset 1. Bølgemodellen for lys er passende, når lys bevæger sig fra et sted til et andet vekselvirker med atomer 2. Partikel/kvantemodellen

Læs mere

Laboratorieøvelse Kvantefysik

Laboratorieøvelse Kvantefysik Formålet med øvelsen er at studere nogle aspekter af kvantefysik. Øvelse A: Heisenbergs ubestemthedsrelationer En af Heisenbergs ubestemthedsrelationer handler om sted og impuls, nemlig at (1) Der gælder

Læs mere

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi

A KURSUS 2014 ATTENUATION AF RØNTGENSTRÅLING. Diagnostisk Radiologi : Fysik og Radiobiologi A KURSUS 2014 Diagnostisk Radiologi : Fysik og Radiobiologi ATTENUATION AF RØNTGENSTRÅLING Erik Andersen, ansvarlig fysiker CIMT Medico, Herlev, Gentofte, Glostrup Hospital Attenuation af røntgenstråling

Læs mere

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl

Aalborg Universitet. Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik. Tirsdag d. 27. maj 2014 kl Aalborg Universitet Skriftlig eksamen i Grundlæggende Mekanik og Termodynamik Tirsdag d. 27. maj 2014 kl. 9 00-13 00 Ved bedømmelsen vil der blive lagt vægt på argumentationen (som bør være kort og præcis),

Læs mere

Eksamen i fysik 2016

Eksamen i fysik 2016 Eksamen i fysik 2016 NB: Jeg gør brug af DATABOG fysik kemi, 11. udgave, 4. oplag & Fysik i overblik, 1. oplag. Opgave 1 Proptrækker Vi kender vinens volumen og masse. Enheden liter omregnes til kubikmeter.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommereksamen 2016 Institution Thy-Mors HF & VUC Uddannelse Fag og niveau Lærer(e) Hold STX Fysik A Knud Søgaard

Læs mere

Ny vejledning om måling af støj fra vejtrafik

Ny vejledning om måling af støj fra vejtrafik Ny vejledning om måling af støj fra vejtrafik Lene Nøhr Michelsen Trafiksikkerhed og Miljø Niels Juels Gade 13 1059 København K lmi@vd.dk Hugo Lyse Nielsen Transportkontoret Strandgade 29 1410 København

Læs mere

31500: Billeddiagnostik og strålingsfysik. Jens E. Wilhjelm et al., DTU Elektro Danmarks Tekniske Universitet. Dagens forelæsning

31500: Billeddiagnostik og strålingsfysik. Jens E. Wilhjelm et al., DTU Elektro Danmarks Tekniske Universitet. Dagens forelæsning 31500: Billeddiagnostik og strålingsfysik Jens E. Wilhjelm et al., DTU Elektro Danmarks Tekniske Universitet Dagens forelæsning Røntgen Computed tomografi (CT) PET MRI Diagnostisk ultralyd Oversigter Kliniske

Læs mere

Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM)

Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM) Gymnasieøvelse i Skanning Tunnel Mikroskopi (STM) Institut for Fysik og Astronomi Aarhus Universitet, Sep 2006. Lars Petersen og Erik Lægsgaard Indledning Denne note skal tjene som en kort introduktion

Læs mere

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor

Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Modtaget dato: (forbeholdt instruktor) Godkendt: Dato: Underskrift: Eksperimentelle øvelser, øvelse nummer 3 : Røntgenstråling målt med Ge-detektor Kristian Jerslev, Kristian Mads Egeris Nielsen, Mathias

Læs mere

Generel information om Zurc tavleinstrumenter

Generel information om Zurc tavleinstrumenter Generel information om Zurc tavleinstrumenter Blødtjernsinstrumenter Blødtjernsinstrumentet er beregnet til måling af vekselstrøm og -spænding i frekvensområdet 15-100Hz. Det viser den effektive strømværdi

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2014 Studenterkurset

Læs mere

Enkelt og dobbeltspalte

Enkelt og dobbeltspalte Enkelt og dobbeltsalte Jan Scholtyßek 4.09.008 Indhold 1 Indledning 1 Formål 3 Teori 3.1 Enkeltsalte.................................. 3. Dobbeltsalte................................. 3 4 Fremgangsmåde

Læs mere

!! Spørgsmål b) Hvad er 1/hældningen af hhv de grønne og røde verdenslinjer? De grønne linjer: Her er!

!! Spørgsmål b) Hvad er 1/hældningen af hhv de grønne og røde verdenslinjer? De grønne linjer: Her er! Logbog uge 41 Laboratorievejledning: http://www.nbi.dk/%7ebearden/beardweb/teaching/fys1l2008/uge41/uge41- vejledning.html I denne uge så vi igen på den specielle relativitetsteori. Vi lagde ud med pole-barn-paradokset,

Læs mere