Seminariernes Matematiklærerforening: Matematisk krystallografi Quasi-krystaller - aperiodiske fladeudfyldninger

Størrelse: px
Starte visningen fra side:

Download "Seminariernes Matematiklærerforening: Matematisk krystallografi Quasi-krystaller - aperiodiske fladeudfyldninger"

Transkript

1 Seminariernes Matematiklærerforening: Matematisk krystallografi Quasi-krystaller - aperiodiske fladeudfyldninger Johan P. Hansen Institut for Matematiske Fag, Aarhus Universitet 9. september 2004

2 Diamonds Are A Girl S Best Friend, Marilyn Monroe A kiss on the hand may be quite contimental But diamonds are a girl s best friend A kiss may be grand but won t pay the rental On your humble flat, or help you at the automat Men grow cold as girls grow old And we all lose our charms in the end But square-cut or pear-shaped These rocks don t lose their shape Diamonds are a girl s best friend 1

3 Matematik former paradigmer Uddrag af en kronik Matematik er en smuk videnskab af Nils A. Baas, Johan P. Hansen og Ib Madsen i Politiken den 4. juni Matematik er et fag i sig selv, men det giver også et sprog og værktøjer til at beskrive, forme, analysere og løse problemer i andre fag. Det er næsten unødvendigt at fremhæve, at matematik er centralt i næsten al videnskab og erkendelse. 2

4 Disposition Paradigmet: Den geometriske grundstruktur for et krystal er et gitter. Matematisk krystallografi, krystalkriteriet. Quasi-krystaller (1984) kan ikke rummes indefor ovenståend begrebsramme! Aperiodiske fliselægninger - et nyt paradigme for den geometriske grundstruktur for krystaller? 3

5 Krystaller - før

6 periodisk konfiguration i rummet / gitter studeres ved Røntgenbilleder symmetrier af gitteret symmetrier af Røntgenbilledet 5

7 Før der 17. århundrede: ingen (geometrisk) teori for krystaller. Kepler (1611): Den geometriske struktur af snefnug (hexagonal). I slutningen af det 18. århundrede etableredes opfattelse af krystaller som gitre med translationssymmetri, et paradigme var skabt: Et krystal er/var per definition et periodisk gentaget mønster (translations symmetri) - sådan har det været de sidste 200 år (indtil 1984). 6

8 Siden 1912 er krystaller studeret ved Røntgen diffraktionsmønstre siden suppleret med elektron- og neutrondiffraktionsmønstre. Bølger der møder en forhindring bryder, intefererer og rekombinerer. Røntgenlys har en bølgelængde, der matcher den atomare størrelse i krystaller. Brydningen beskrives matematisk ved hjælp af Fouriertransformation 7

9 Quasi-krystaller - efter 1984 Billeder som dette gav anledning til overskrifts-fysik. 8

10 En legering af aluminium og mangesium, dannet ved hurtig afkøling, har et Røntgenbillede med en ulovlig symmetri (en 10-folds rotation)! Shechtman, Blech, Gratias, Cahn: Metallic phase with long-range orientational order and no translation symmetry, Physical Review Letters (1984) Vol 53,

11 Det krystallografiske kriterium 2-, 3-, 4-, og 6-folds rotationer: eneste lovlige symmetrier af rumgitre. paradigmet: gitteret er den geometriske grundstruktur for et krystal er for snævert Opdagelse gav anledning til overskrifts-fysik. Legeringen kunne snart laves i en række laboratorier verden over. Mange andre ikke-krystallinske krystaller (quasi-krystaller) blev fundet. Det blev snart klart, at ikke-periodiske metalfaser ikke er sjældenheder, men meget udbredte. 10

12 Matematisk krystallografi Felix Klein s Erlangen program(1872): Geometriske objekter skal klassificeres ved egenskaber invariante under transformationer Geometri: studer gruppen af transformationer, der lader det geometriske objekt invariant Birger Iversen, Lectures on CHRYSTALLOGRAPHIC GROUPS, Aarhus Universitet, Matematisk Institut, Lecture Notes Series 1990/91 No. 60, revised Feb. 1995, J A. Gallian, Contemporary Abstract Algebra, D. D. Heath and Compagny, Lexington, Massachusetts,

13 Euclidsk geometri Relevante transformationer: afstandsbevarende afbildninger. 12

14 Afstandsbevarende afbildninger af planen: translationer spejlinger rotationer glidespejlinger 13

15 Tapet/krystal - periodisk udfyldning korteste translation translationerne udgør et gitter (i planen udspændt af de 2 korteste translationer) (gruppen af symmetrier) virker på gitteret af translationer 14

16 Hvilke rotationer af gitre er lovlige? Sætning Det krystallografiske kriterium. En rotation af et plant eller rumligt gitter har orden 2, 3, 4 eller 6. 15

17 Bevis. Lad v være en korteste translation af gitteret. Lad f være en rotation gennem 2π N omkring et punkt (en akse). Vektoren v f(v) er en translation af gitteret, der ikke kan være kortere end v, hvorfor 2π N 2π 6 og dermed er N 6. Lad f være en rotation gennem 2π 5. Vektoren v f(v) + f 1 (-v) er en translation af gitteret, der er kortere end v, hvorfor vi har en modstrid. 16

18 17

19 Klassifikationen: 17 plane krystallografiske grupper 230 rumlige krystallografiske grupper (1891) - Fedorov og Schoenflies Henvisninger: Strikt matematiske behandling se Birger Iversen (loc.cit.) Mere beskrivende behandling se Gallian (loc. cit.) 18

20 Aperiodiske fliselægninger To hjørner, der møder hinanden, skal enten begge være hvide eller begge sorte. To kanter der mødes skal begge enten være med pil eller uden pil. Hvis to kanter, der mødes har pile, skal begge pile pege i samme retning. 19

21 20

22 Postscript Penrose fliselægger: cass/courses/m308-02b/projects/schweber/penrose.html Bruger substitutionsmetoden til at tegne Penrose fliselægninger. Bruger 4 triangulære fliser TL, TR, tl og tr, som laves ved at dele den tynde rombe langs dens korte diagonal og den tykke rombe langs dens lange diagonal. Pilene langs kanterne anviser parringsregler. 21

23 22

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 Statistisk rotationssymmetri! Hver tyk rhombe forekommer i netop 10 forskellige orienteringer (ligesom hver tynd rhombe gør) Hver orientering forekommer lige hyppigt (Indenfor en stor cirkel tælles antallet med en given orientering, antallet deles med cirklens areal. Dette tal har en græseværdi, der er den samme for alle 10 orienteringer) frekvensen er invariant under 10-folds rotation 33

34 Røntgenbillede af fliselægning Optiske mønstre, der produceres ved at gennemlyse en maske bestående af en plade med huller er en 2-dimensional analog til Røntgenbilleder af krystaller. I den udleverede artikel Tilings, Diffraction, and Quasicrystals af Marjorie Senechal og i hendes bog Quasicrystals and Geometry redegøres for, hvordan man matematisk udregner diffraktionsmønstret. Der er endda henvisninger til et C- program, der gør det. Placeres hullerne i hjørnerne af Penrose eksemplet fås et billede (som ved Røntgenbilledet af et quasi-krystal) med 10-folds rotationssymmetri. 34

35 35

36 Sammenligning 36

37 Historiske bemærkninger Hao Wang : Findes der endelig mange fliser, så kopier kan dække planen, men kun aperiodisk? R. Berger : JA, flere end fliser skal bruges D. Myers : Der findes endelig mange fliser, så kopier kan dække planen, men kun ikke-rekurssivt? Proving theorems by pattern recognition II Bell Systems Tech. J. 40 (1961),1-41 The undecidability of the domino problem, Mem. Amer. Math. Soc., no. 66 (1966) Nonrecursive tilings of the plane, II, J. Symbol Logic 39 (1974),

Symmetrier og Mønstre Symmetri, molekylær gastronomi og livets kemi, Karl Anker Jørgensen, Kemi Symmetri og netværk i biologiens verden, Jens Mogens O

Symmetrier og Mønstre Symmetri, molekylær gastronomi og livets kemi, Karl Anker Jørgensen, Kemi Symmetri og netværk i biologiens verden, Jens Mogens O Offentlige foredrag i naturvidenskab nat.au.dk/foredrag Det Naturvidenskabelige Fakultet, Aarhus Universitet Folkeuniversitetet i Århus Symmetrier og mønstre Symmetrier og Mønstre Symmetri, molekylær gastronomi

Læs mere

Symmetri i natur, kunst og matematik

Symmetri i natur, kunst og matematik Institut for matematiske fag Aalborg Universitet 1.2.2013 Indholdsoversigt 1. Polygoner, platoniske legemer og deres symmetri 2. Flytninger og symmetrigrupper 3. Arkitektur og symmetri: da Vincis sætning

Læs mere

Symmetri i natur, kunst og matematik

Symmetri i natur, kunst og matematik Institut for matematiske fag Aalborg Universitet 1.2.2012 Indholdsoversigt 1. Polygoner, platoniske legemer og deres symmetri 2. Flytninger og symmetrigrupper 3. Arkitektur og symmetri: da Vincis sætning

Læs mere

Symmetri i natur, kunst og matematik

Symmetri i natur, kunst og matematik Institut for matematiske fag Aalborg Universitet Nørresundby Gymnasium, 5.12.07 Indholdsoversigt 1. Indledning og lysbilleder 2. Polygoner, platoniske legemer og deres symmetri 3. Flytninger og symmetrigrupper

Læs mere

Om begrebet relation

Om begrebet relation Om begrebet relation Henrik Stetkær 11. oktober 2005 Vi vil i denne note diskutere det matematiske begreb en relation, herunder specielt ækvivalensrelationer. 1 Det abstrakte begreb en relation Som ordet

Læs mere

Krystallografi er den eksperimentelle videnskab der anvendes til bestemmelse af atomernes positioner I faste stoffer.

Krystallografi er den eksperimentelle videnskab der anvendes til bestemmelse af atomernes positioner I faste stoffer. Krystallografi er den eksperimentelle videnskab der anvendes til bestemmelse af atomernes positioner I faste stoffer. Kilde: Wikipedia INTRO? Sildenafil, trade name VIAGRA TM, chemical name 5-[2-ethoxy-5-(4-methylpiperazin-1-ylsulfonyl)phenyl]-1-

Læs mere

Brug og Misbrug af logiske tegn

Brug og Misbrug af logiske tegn Brug og Misbrug af logiske tegn Frank Nasser 20. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Ræsonnement og tankegang. Modellering MULTI 6 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning og skrivning Eleven kan anvende forskellige strategier til matematisk problemløsning

Læs mere

1 F Flytningsgeometri F Flytningsgeometri

1 F Flytningsgeometri F Flytningsgeometri 1 lytningsgeometri lytningsgeometri 2 At undersøge mønstre i kunst, arkitektur, flisebelægninger og dekorationer giver mulighed for en undersøgende tilgang til geometrien i det hele taget. Læreren har

Læs mere

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru.

Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8. 2011 L&R Uddannelse A/S Vognmagergade 11 DK-1148 København K Tlf: 43503030 Email: info@lru. 1.1 Introduktion: Euklids algoritme er berømt af mange årsager: Det er en af de første effektive algoritmer man kender i matematikhistorien og den er uløseligt forbundet med problemerne omkring de inkommensurable

Læs mere

Matroider Majbritt Felleki

Matroider Majbritt Felleki 18 Rejselegatsformidlingsaktivitet Matroider Majbritt Felleki Den amerikanske matematiker Hassler Whitney fandt i 1935 sammenhænge mellem sætninger i grafteori og sætninger i lineær algebra. Dette førte

Læs mere

Gaudí og den hexagonale form - et oplæg

Gaudí og den hexagonale form - et oplæg Når man bevæger sig op ad Passeig de Gracia fra Plaça Catalunya, så møder blikket som noget af det første den helt unikke fliselægning af hexagoner. Fliselægningen på Passeig de Gracia stammer idémæssigt

Læs mere

F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING

F I N N H. K R I S T I A N S E N DET GYLDNE SNIT TES REGNING MED REGNEARK KUGLE SIMULATIONER G Y L D E N D A L LANDMÅLING F I N N H. K R I S T I A N S E N 6 DET GYLDNE SNIT 4 TES REGNING MED REGNEARK KUGLE G Y L D E N D A L SIMULATIONER 5 LANDMÅLING Faglige mål: Demonstrere viden om matematikanvendelse samt eksempler på matematikkens

Læs mere

Figurer med ligesidede trekanter deltaedere

Figurer med ligesidede trekanter deltaedere Figurer med ligesidede trekanter deltaedere I denne aktivitet arbejdes der med den mindste regulære polygon vi har, nemlig den ligesidede trekant. Polygon betyder mangekant. Trekanten er mindst på den

Læs mere

Lineær Programmering i GeoGebra Side 1 af 8

Lineær Programmering i GeoGebra Side 1 af 8 Lineær Programmering i GeoGebra Side 1 af 8 Grundlæggende find selv flere funktioner, fx i GG s indbyggede hjælpefunktion. Vær opmærksom på at grænsefladen i GeoGebra ændrer sig med tiden, da værktøjet

Læs mere

Matematiklærerdag 2008

Matematiklærerdag 2008 Matematiklærerdag 2008 Klaus Thomsen Institut for Matematiske Fag Det Naturvidenskabelige Fakultet Aarhus Universitet March 27, 2008 Matematik og kemi. Matematik og kemi. Intelligente tællemetoder - frit

Læs mere

Viètes formel Jens Siegstad

Viètes formel Jens Siegstad 6 Viètes formel Jens Siegstad Vi skal i denne artikel vise Viètes formel. Theorem 1 (Viètes formel) π = = a k + + hvor a n = + a n 1 for n > 1 og a 1 =. +... Ovenstående formel blev vist i 1593 af Francois

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2013 Institution Campus Vejle, VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik A Pia Kejlberg

Læs mere

Matematik Færdigheds- og vidensmål (Geometri og måling )

Matematik Færdigheds- og vidensmål (Geometri og måling ) Matematik Færdigheds- og vidensmål (Geometri og måling ) Kompetenceområde Klassetrin Faser 1 Eleven kan kategorisere Efter klassetrin Eleven kan anvende geometriske begreber og måle Eleven kan kategorisere

Læs mere

Forord 3 Strukturen i denne bog 6

Forord 3 Strukturen i denne bog 6 Indhold i Epsilon Forord 3 Strukturen i denne bog 6 Introduktion til del I. De naturlige tal 10 1 Børns talbegreber og regneoperationer omkring de første skoleår 12 Tal og det at tælle 15 Det indledende

Læs mere

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU)

Kaos og fraktaler i dynamiske systemer. Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) Kaos og fraktaler i dynamiske systemer Bodil Branner Institut for Matematik Danmarks Teniske Universitet (DTU) UNF Matematik Camp 2010 Oversigt tre simple eksempler på klassiske fraktaler deterministiske

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Kompetenceområde Efter klassetrin Efter 6. klassetrin Efter 9. klassetrin Matematiske kompetencer handle hensigtsmæssigt i situationer med handle med overblik i sammensatte situationer med handle med dømmekraft

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 5 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning Opmærksomhedspunkt Eleven kan anvende ræsonnementer i undersøgende arbejde

Læs mere

Fraktaler Mandelbrots Mængde

Fraktaler Mandelbrots Mængde Fraktaler Mandelbrots Mængde Foredragsnoter Af Jonas Lindstrøm Jensen Institut For Matematiske Fag Århus Universitet Indhold Indhold 1 1 Indledning 3 2 Komplekse tal 5 2.1 Definition.......................................

Læs mere

Korncirkler og matematik

Korncirkler og matematik Korncirkler og matematik I den følgende opgave vil jeg undersøge om korncirkler indeholder matematiske figurer nærmere bestemt det gyldne snit, det gyldne rektangel og den gyldne spiral. Før jeg starter

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 April 2016 Institution VUC Vest, Esbjerg afdeling Uddannelse Fag og niveau Lærer(e) Hold Hf Netundervisning

Læs mere

Lineær algebra: Lineære afbildninger. Standardmatricer

Lineær algebra: Lineære afbildninger. Standardmatricer Lineær algebra: Lineære afbildninger. Standardmatricer Institut for Matematiske Fag Aalborg Universitet 2011 Lineære afbildninger En afbildning T : R n R m fra definitionsmængden R n ind i dispositionsmængden

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2016 Institution Uddannelse Fag og niveau Lærer(e) Hold Rybners HTX Esbjerg HTX Matematik B Shihua Wang

Læs mere

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering

Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI. Problembehandling. Modellering MULTI 4 Forenklede Fælles Mål Oversigt over Forenklede Fælles Mål i forbindelse med kapitlerne i MULTI Kapitel 1 Faglig læsning undersøgende arbejde Eleven kan læse og skrive enkle tekster med og om matematik

Læs mere

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015

Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 Den mundtlige prøve i matematik og forenklede Fælles Mål Odense 20. April 2015 153 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14+ 15 + 16 + 17 153 = 1! + 2! + 3! + 4! + 5! 153 = 1 3 + 5

Læs mere

Vektorer og lineær regression. Peter Harremoës Niels Brock

Vektorer og lineær regression. Peter Harremoës Niels Brock Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2017 Institution Uddannelse Fag og niveau Lærer(e) Rybners HTX Esbjerg HTX Matematik A Helle Kruchov

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Eksempler på temaopgaver i matematik indenfor geometri

Eksempler på temaopgaver i matematik indenfor geometri Eksempler på temaopgaver i matematik indenfor geometri Med udgangspunkt i begrebsafklaringen fra dokumentet Matematik og den ny skriftlighed gives her fem eksempler på, hvordan de forskellige opgavetyper,

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet.

Når vi forbereder et nyt emne eller område vælger vi de metoder, materialer og evalueringsformer, der egner sig bedst til forløbet. MATEMATIK Delmål for fagene generelt. Al vores undervisning hviler på de i Principper for skole & undervisning beskrevne områder (- metoder, materialevalg, evaluering og elevens personlige alsidige udvikling),

Læs mere

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal

Decimaltal, brøker og procent Negative tal Potens, rødder og pi Reelle og irrationale tal Navn: Nr.: Klasse: Prøvedato: mat6 Noter: Kompetencemål efter 6. klassetrin Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser Tal og algebra Tal Titalssystem Decimaltal, brøker

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Geometriske eksperimenter

Geometriske eksperimenter I kapitlet arbejder eleverne med nogle af de egenskaber, der er knyttet til centrale geometriske figurer og begreber (se listen her under). Set fra en emneorienteret synsvinkel handler kapitlet derfor

Læs mere

Eksempel på den aksiomatisk deduktive metode

Eksempel på den aksiomatisk deduktive metode Eksempel på den aksiomatisk deduktive metode Et rigtig godt eksempel på et aksiomatisk deduktivt system er Euklids Elementer. Euklid var græker og skrev Elemeterne omkring 300 f.kr. Værket består af 13

Læs mere

Det Gyldne Snit og Feng Shui

Det Gyldne Snit og Feng Shui Det Gyldne Snit og Feng Shui Det gyldne eller guddommelige snit anvendes meget indenfor Feng Shui. Det indgår i smukke omgivelser og smukke ting. Det giver ro dybt ind i sjælen at se på ting, som opfylder

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15

LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 LÆRINGSMÅL PÅ NIF MATEMATIK 2014-15 Mål for undervisningen i Matematik på NIF Følgende er baseret på de grønlandske læringsmål, tilføjelser fra de danske læringsmål står med rød skrift. Læringsmål Yngstetrin

Læs mere

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion

6 Geometri. Faglige mål. Areal og overflade. Cirkler og ellipser. Konstruktion 6 Geometri Faglige mål Kapitlet Geometri tager udgangspunkt i følgende faglige mål: Areal og overflade: kunne foretage beregninger af sammensatte arealer og sammensætte formler til beregning af disse.

Læs mere

Geometriske konstruktioner: Ovaler og det gyldne snit

Geometriske konstruktioner: Ovaler og det gyldne snit Matematik Geometriske konstruktioner: Ovaler og det gyldne snit Ole Witt-Hansen, Køge Gymnasium Ovaler og det gyldne snit har fundet anvendelse i arkitektur og udsmykning siden oldtiden. Men hvordan konstruerer

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Jeg er den største. Vagn Lundsgaard Hansen. Annoncering af en konkurrence

Jeg er den største. Vagn Lundsgaard Hansen. Annoncering af en konkurrence Normat 2/1998 71 Jeg er den største Vagn Lundsgaard Hansen Institut for Matematik Danmarks Tekniske Universitet Bygning 303 DK 2800 Lyngby V.L.Hansen@mat.dtu.dk Optimalitetsbetragtninger optræder i næsten

Læs mere

************************************************************************

************************************************************************ Projektet er todelt: Første del har fokus på Euklids system og består af introduktionen, samt I og II. Anden del har fokus på Hilberts system fra omkring år 1900 og består af III sammen med bilagene. Man

Læs mere

Første konstruktion af Cantor mængden

Første konstruktion af Cantor mængden DYNAMIK PÅ CANTOR MÆNGDEN KLAUS THOMSEN Første konstruktion af Cantor mængden For de fleste der har hørt on Cantor-mængden, er den blevet defineret på flg måde: I = 0 I = I = 0 0 OSV Cantor mængden C er

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske

Læs mere

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015

FFM Matematik pop-up eftermiddag. CFU, UCC 11. Maj 2015 FFM Matematik pop-up eftermiddag CFU, UCC 11. Maj 2015 Formål Deltagerne har: Kendskab til Forenklede Fælles Måls opbygning Kendskab til tankegangen bag den målstyrede undervisning i FFM Kendskab til læringsmål

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Faglige delmål og slutmål i faget Matematik. Trin 1

Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål og slutmål i faget Matematik. Trin 1 Faglige delmål for matematik i 1. og 2. klasse. Undervisningen skal lede frem mod, at eleverne efter 2. klasse har tilegnet sig kundskaber og færdigheder,

Læs mere

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv

Naturvidenskab. En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab En fællesbetegnelse for videnskaberne om naturen, dvs. astronomi, fysik, kemi, biologi, naturgeografi, biofysik, meteorologi, osv Naturvidenskab defineres som menneskelige aktiviteter, hvor

Læs mere

Primtal - hvor mange, hvordan og hvorfor?

Primtal - hvor mange, hvordan og hvorfor? Johan P. Hansen 1 1 Institut for Matematiske Fag, Aarhus Universitet Gult foredrag, EULERs Venner, oktober 2009 Disposition 1 EUKLIDs sætning. Der er uendelig mange primtal! EUKLIDs bevis Bevis baseret

Læs mere

Årsplan for matematik i 2. klasse 2013-14

Årsplan for matematik i 2. klasse 2013-14 Årsplan for matematik i 2. klasse 2013-14 Klasse: 2. Fag: Matematik Lærer: Ali Uzer Lektioner pr. uge: 5(mandag, tirsdag, onsdag, torsdag, fredag) Formål for faget matematik Formålet med undervisningen

Læs mere

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal

Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Læringsmiddel Geogebra: Rombens sammen mellem omkreds og areal Link Mål Kompetence mål: Modellering Færdighedsmål Eleven kan vurdere egne og andres modelleringsprocesser Videns mål Eleven har viden om

Læs mere

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål:

Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formål: Skolens formål med faget matematik følger beskrivelsen af formål i folkeskolens Fælles Mål: Formålet med undervisningen i matematik er, at eleverne bliver i forstå og anvende matematik i sammenhænge,

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydningsloven Når en bølge, fx en lysbølge, rammer en grænseflade mellem to stoffer, vil bølgen normalt blive spaltet i to: Noget af bølgen kastes tilbage (spejling), hvor udfaldsvinklen u

Læs mere

Matematik interne delprøve 09 Tesselering

Matematik interne delprøve 09 Tesselering Frederiksberg Seminarium Opgave nr. 60 Matematik interne delprøve 09 Tesselering Line Købmand Petersen 30281023 Hvad er tesselering? Tesselering er et mønster, der består af en eller flere figurer, der

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2017 Institution Uddannelse Fag og niveau Lærer(e) Hold Rybners HTX Esbjerg HTX Matematik B Vicki Jacob

Læs mere

Bilag J - Beregning af forventet uheldstæthed på det tosporede vejnet i åbent land Andersen, Camilla Sloth

Bilag J - Beregning af forventet uheldstæthed på det tosporede vejnet i åbent land Andersen, Camilla Sloth Aalborg Universitet Bilag J - Beregning af forventet uheldstæthed på det tosporede vejnet i åbent land Andersen, Camilla Sloth Publication date: 2014 Document Version Også kaldet Forlagets PDF Link to

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014-2017 Institution Uddannelse Fag og niveau Lærer(e) Rybners HTX Esbjerg HTX Matematik A Henrik Lambæk

Læs mere

Årsplan for matematik i 0.kl. Herborg Friskole 2013/2014

Årsplan for matematik i 0.kl. Herborg Friskole 2013/2014 Uge Emne Trinmål for faget Læringsmål for emnet 33 Opstart 34 - Relationer 35 36-38 39-40 41 42 43-48 Tallene 1-10 Geometriske figurer Aktiv Rundt i Danmark Tale om sprog Lægge mærke til naturfaglige fra

Læs mere

To BE i NUTID. we are vi er

To BE i NUTID. we are vi er To BE i NUTID. To be = at være. Bøjning i nutid. Ental Flertal 1.person I am jeg er we are vi er 2.person you are du er you are I (De) er 3.person he is han er they are de er she is hun er it is den/det

Læs mere

1gma_tændstikopgave.docx

1gma_tændstikopgave.docx ulbh 1gma_tændstikopgave.docx En lille simpel opgave med tændstikker Læg 10 tændstikker op på en række som vist Du skal nu danne 5 krydser med de 10 tændstikker, men du skal overholde 3 regler: 1) når

Læs mere

Trekanter. Frank Villa. 8. november 2012

Trekanter. Frank Villa. 8. november 2012 Trekanter Frank Villa 8. november 2012 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold 1 Introduktion 1 1.1

Læs mere

Undervisningsbeskrivelse for hold h1mac4b5

Undervisningsbeskrivelse for hold h1mac4b5 Undervisningsbeskrivelse for hold h1mac4b5 Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution KVUC Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Matematik

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål

Matematik. Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Matematik Matematikundervisningen tager udgangspunkt i Folkeskolens Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 14 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold stx Matematik niveau A Knud Søgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Gert Friis Nielsen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold STX Matematik A Jesper

Læs mere

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne

Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Fagårsplan 12/13 Fag: Matematik Klasse: 6.a Lærer: LBJ Fagområde/ emne Umulige figurer Periode Mål Eleverne skal: At opdage muligheden for og blive fascineret af gengivelse af det umulige. At få øvelse

Læs mere

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent

Nye Fælles Mål og årsplanen. Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Nye Fælles Mål og årsplanen Thomas Kaas, Lektor og Kirsten Søs Spahn, pæd. konsulent Interview Find en makker, som du ikke kender i forvejen Stil spørgsmål, så du kan fortælle os andre om vedkommende ift.:

Læs mere

Andreas Nielsen Kalbyrisskolen 2009

Andreas Nielsen Kalbyrisskolen 2009 Andreas Nielsen Kalbyrisskolen 2009 Matematiske kompetencer. Matematiske emner (tal og algebra, geometri, statistik og sandsynlighed). Matematik i anvendelse. Matematiske arbejdsmåder. Tankegangskompetence

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Flytninger og mønstre

Flytninger og mønstre Flytninger og mønstre KTIVITET ESKRIV MØNSTRE FLYTNINGER OG MØNSTRE 7 I dette kapitel skal du arbejde med flytninger og mønstre i planen. Der findes mønstre overalt omkring os. Det er indenfor kunst og

Læs mere

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α )

GEOMETRI-TØ, UGE 8. X = U xi = {x i } = {x 1,..., x n }, U α, U α = α. (X \ U α ) GEOMETRI-TØ, UGE 8 Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave 1. Lad X være en mængde og T familien af alle delmængder

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Matematik: Videnskaben om det uendelige. Anden forelæsning: Indivisibler

Matematik: Videnskaben om det uendelige. Anden forelæsning: Indivisibler Matematik: Videnskaben om det uendelige Anden forelæsning: Indivisibler Klaus Frovin Jørgensen 20. september, 2010 1 / 24 Den græske matematik Endelige geometriske objekter er matematikkens objekter Kun

Læs mere

Årsplan 2015/2016. Uge 33-43. Tal - Eleven har viden om regningsarternes hierarki. Mundtlig evaluering Skriftlige prøver Kan kan næsten cirkel

Årsplan 2015/2016. Uge 33-43. Tal - Eleven har viden om regningsarternes hierarki. Mundtlig evaluering Skriftlige prøver Kan kan næsten cirkel Kompetencemål: - Eleven kan handle med dømmekraft i komplekse situationer med matematik - Eleven kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser - Eleven kan forklare geometriske

Læs mere

Logik. Af Peter Harremoës Niels Brock

Logik. Af Peter Harremoës Niels Brock Logik Af Peter Harremoës Niels Brock December 2009 1 Indledning Disse noter om matematisk logik er en videreudbygning af det, som står i bogen MAT A [1]. Vi vil her gå lidt mere systematisk frem og være

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering.

Faglig årsplan 2010-2011 Skolerne i Oure Sport & Performance. Emne Tema Materialer. Læringsmål Faglige aktiviteter. Evaluering. Fag: Matematik Hold: 27 Lærer: Jesper Svejstrup Pedersen Undervisnings-mål 9 klasse Læringsmål Faglige aktiviteter Emne Tema Materialer ITinddragelse Evaluering 32-37 i arbejdet med geometri at benytte

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Ølopgaver i lineær algebra

Ølopgaver i lineær algebra Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer

Læs mere

Undervisningsplan Udarbejdet af Kim Plougmann Povlsen d. 2015.01.19 Revideret af

Undervisningsplan Udarbejdet af Kim Plougmann Povlsen d. 2015.01.19 Revideret af Undervisningsplan Udarbejdet af Kim Plougmann Povlsen d. 2015.01.19 Revideret af Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Termin hvori undervisningen afsluttes:

Læs mere

Andre måder at lære matematik på!

Andre måder at lære matematik på! 24-10-2011 side 1 Andre måder at lære matematik på! Mette Hjelmborg CFU Hjørring 15-11-2011 24-10-2011 side 2 Andre måder at lære matematik på! Kurset henvender sig til lærere, der gerne vil have inspiration

Læs mere

Knuder, lænker og fletninger.

Knuder, lænker og fletninger. Regionalmøde Esbjerg 2012 Aalborg Universitet Hvorfor dette emne? Der er god matematik i knuder. Der er flotte billeder. Der er splinternye anvendelser i biologi/kemi. Gymnasieelever kan arbejde med knuder.

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I

ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I ÅRSPLAN MATEMATIK 2. KLASSE 2016/17 I de enkelte undervisningsforløb indgår der mål fra både de matematiske kompetencer og fra de 3 stofområder: Matematiske kompetencer Eleven kan handle hensigtsmæssigt

Læs mere