Morten Frydenberg 26. april 2004
|
|
|
- Adam Lund
- 9 år siden
- Visninger:
Transkript
1 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen. studieår Test og sikkerhedsinterval for en parameter. Kategoriske forklarende variable med mere to kategorier. Logistisk regression med en kontinuert forklarende variabel. Hvad vil vi se på? Analysere den kumulerede incidens af hjertesygdom. Tidsperiode: Opfølgningsperioden efter us.! Risikopopulation: 363 personer uden CHD ved. us. Risikofaktorer/indikatorer: Systolisk blodtryk: over/under 60 mmhg. Rygning: ja/nej. Alder: I år og :,, over 56 år. Køn. ln ( odds ( SYS60, SEX = β0 + β SYS60 + β2 ln ( odds( SBP 60, kvinde ln ( SYS60 ln ( SEX SYS60 odds ( SY S60,SEX = odds (,2 ( ( SYS60 MALE SEX Model antagelse: Ingen effektmodifikation/interaktion mellem køn og blodtryk. 3 a SYS60( SEX( B S.E. Wald df Sig. Exp(B a. Variable(s entered on step : SYS60, SEX. Hypotesen : SYS60 = forkastes! Hypotesen : SEX = forkastes! 60 SYS SEX odds ( SBP 60, kvinde 4 /METHOD=ENTER sys60 sex /CONTRAST (sys60=indicator( /CONTRAST (sex=indicator. Hvordan passer modellen til data? Hvad er de fittede kumulerede incidenser? På basis af : ln ( odds ( SYS60, SEX = β0 + β SYS60 + β2 ln ( odds ( SYS60, SEX = SYS kan man beregne: odds = exp ( ln ( odds odds p = + odds Fra den logistisk regressionsanalyse Data SEX SYS60 ln(odds odds kum.inc. kum.inc. male > male <= female > female <= Rimelig god overensstemmelse! Modellen fitter godt! Antagelsen om ingen effektmodifikation synes ok! Næste gang vil vi se på et test for ingen effektmodifikation! 5 Sikkerhedsintervaller (CI (Wolf/Wald- methods Ingen estimater uden sikkerhedsintervaller! (Approksimativt 95% CI: Estimat ±.96 s.e. Syg Rask +Exp a b -Exp c d 95% CI for : Først 95% CI for ln(: a = d b c s. e. ( ln( = a b c d ( ( ln ( ±.96 s. e. ln Dernæst tag eksponentialfunktionen til disse grænser. 6 MPH og Cand San Logistisk regression SPSS
2 a Beregning af sikkerhedsintervaller i hånden. 95% grænser 95% grænser Parameter β s.e. nedre øvre nedre øvre SYS SEX Fra output Estimat ±.96 s.e. Exp I SPSS : Tilføj /PRINT CI(95 i syntaksen Output: SYS60( SEX( a. Variable(s entered on step : SYS60, SEX. Nyt Bemærk: Intet CI for ( ln(odds i referencegruppen 7 Alder og risiko for hjertesygdom: inddeler i :,, over 56 år. CHDEVER yes ( no (0 Total kum.incidens ln(odds ln( ( ref ( ( ( Total Fire parametre skal bestemmes. Fire mulige valg af reference gruppe. Vi vælger som reference gruppe. De fire parameter er så: ln(odds i reference gruppen. Tre log( relativt til referencegruppen 8 Der er brug for tre dummy variable: AKAT= hvis = og 0 ellers AKAT2= hvis =2 og 0 ellers AKAT3= hvis =3 og 0 ellers Modellen : ln ( odds ( = β0 + β AKAT + β2 AKAT2 + β3 AKAT3 Giver følgende: ln ( odds ( = 0 = β0 + β 0 + β2 0 + β3 0 = β0 ln ( odds ( = = β0 + β + β2 0 + β3 0 = β0 + β ln ( odds ( = 2 = β0 + β 0 + β2 + β3 0 = β0 + β2 ln ( odds ( = 3 = β0 + β 0 + β2 0 + β3 = β0 + β3 9 ln ( odds ( = β0 + β AKAT + β2 AKAT2 + β3 AKAT3 ln ( odds ( = 0 = β0 + β 0 + β2 0 + β3 0 = β0 ln ( odds ( = = β0 + β + β2 0 + β3 0 = β0 + β ln ( odds ( = 2 = β0 + β 0 + β2 + β3 0 = β0 + β2 ln ( odds ( = 3 = β + β 0 + β 0 + β = β + β β = ln ( odds ( = ln ( odds ( = 0 = ln ( mod 0 β 2 = ln ( odds ( = 2 ln ( odds ( = 0 = ln ( 2 mod 0 β 3 = ln ( odds ( = 3 ln ( odds ( = 0 = ln ( 3 mod 0 0 I praksis SPSS klarer det for os! /CONTRAST (age4=indicator( /PRINT CI(95. Output: =0 er reference Frequency ( (2 ( = bliver kaldt ( =2 bliver kaldt (2 kun 0 er =3 bliver kaldt (3 a Estimaterne i SPSS: Test for hypotesen: alle alderskoefficienten er 0 dvs ingen association mellem alder og hjertesygdom. ( (2 ( a. Variable(s entered on step :. Som ved direkte beregning. er relativt til =0 P- værdi for hypotese samme risiko blandt og årrige. 2 MPH og Cand San Logistisk regression SPSS 2
3 Plot af estimeret ln(odds Kan vi finde en simplere sammenhæng?? 3 En simplifikation: Alle trinene lige store Dvs. lineær sammenhæng med : 4 ln(odds = ln ( odds ( = β0 + β β = ln ( odds ( = ln ( odds ( = 0 = ln ( mod 0 β = ln ( odds ( = 2 ln ( odds ( = = ln ( 2 mod β = ln ( odds ( = 3 ln ( odds ( = 2 = ln ( 3 mod 2 Dvs β = ln( forskel på I SPSS /PRINT CI(95. Obs ingen indicator linie! 5 6 Output fra SPSS Intet Categorical Variables Coding for ln ( odds ( = ˆ β = ln ( forskel på ln odds ( = 0 ( forskel på ln(odds ln ( odds ( = odds ( = = Det så da meget pænt ud! Kan denne forsimpling testet? 7 Forskel i -2log lik.=0.858 for 2 parametre mindre 8 Ja! V.h.a. et likelihood ratio test!! Output fra første model ( kategorisk; 4 parametre: Model Summary Output fra anden model ( kontinuert ; 2 parametre : Model Summary -2 Log Cox & Snell Nagelkerke likelihood R Square R Square Log Cox & Snell Nagelkerke likelihood R Square R Square Store værdier kritiske Ingen forskel på modellerne (dvs lige store spring Forskel i -2log lik er χ²-fordelt med 2 frihedsgrader Antal frihedsgrader Kritisk værdi 5% meget mindre end 5.99: p>5% (p=65% Forskel i -2 Log Likelihood =0.858 Forskel i antal parametre 4-2=2 MPH og Cand San Logistisk regression SPSS 3
4 En anden simplifikation af aldersafhængigheden: ln ( odds ( AGE = β0 + β AGE Bemærk: AGE og ikke!! Lineær afhængighed af (den ikke-grupperede alder. I SPSS β = ( ln Forskel på år β 0 = ln ( odds ( AGE = 0 Nonsens! Det ser vi på om lidt! /METHOD=ENTER age /PRINT CI(95. 9 a AGE a. Variable(s entered on step : AGE. Forskel på 4 år p( β 4 exp( 0 4 = =.0658 =.30 ex ˆ Aldersgrupper i spænder over ca. 4 år Forskel på år Forskel i gruppe = a En mere fornuftig ; brug: AGEC50=AGE-50 AGEC50 ln ( odds ( AGE = β + β ( AGE 50 β = 0 ( ( odds ( ln Forskel på år β 0 = ln AGE = 50 Det giver mening! a. Variable(s entered on step : AGEC50. Uændret ln ( odds ( AGE = 50 odds ( AGE = 50 ln ( odds ( AGE = ( AGE 50 ( AGE 50 odds( AGE = ln(odds ln ( odds ( AGE = ( AGE 50 = Valg af en anden reference gruppe Reference =0. /CONTRAST (age4=indicator( /PRINT CI(95. Frequency ( (2 ( Hvad hvis vi hellere vil sammenligne med de årrige? Reference =. Mindste værdie er reference 23 /CONTRAST (age4=indicator(2 /PRINT CI(95. = er reference 2. værdi af dvs = er reference. Frequency ( (2 ( =0 bliver kaldt ( =2 bliver kaldt (2 kun 0 er =3 bliver kaldt (3 24 MPH og Cand San Logistisk regression SPSS 4
5 a ( (2 ( ( a. Variable(s entered on step :. ln od ds ( = mod mod Test for: samme risiko for de som de årrige Sammenligning med før: mod mod = = = mod mod =.2308 = = mod SYS60 korrigeret for køn og alder : 3 modeller ( (2 (3 SEX( SYS60( SEX( SYS60( AGEC50 SEX( SYS60( MPH og Cand San Logistisk regression SPSS 5
Morten Frydenberg 14. marts 2006
Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen
Lineær og logistisk regression
Faculty of Health Sciences Lineær og logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Dagens program Lineær regression
Logistisk regression. Statistik Kandidatuddannelsen i Folkesundhedsvidenskab
Logistis regression Statisti Kandidatuddannelsen i Folesundhedsvidensab Multipel logistis regression Antagelser: Binære observationer (Y i, i=,.,n) f.es Ja/Nej Høj/Lav Død/Levende Kodet: / 0 Y i uafhængige
Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable
Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Sammenhæng
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse
Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede
12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse
. september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression
Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk
Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.
Morten Frydenberg Biostatistik version dato:
Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard
Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.
1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004
Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april
Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et
Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.
Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Mantel-Haenszel analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Mantel-Haenszel analyser Mantel-Haenszel analyser Sidst lærte vi om stratificerede analyser. I dag kigger vi på et specialtilfælde: både exposure
Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression
Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende
OR stiger eksponentielt med forskellen i BMI. kompliceret model svær at forstå og analysere
Epidemiologi og biostatistik. Uge 5, torsdag 5. september 003 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)
Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:
Morten Frydenberg Biostatistik version dato:
Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,
Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts
Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med
OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model
Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske
Statistik II 4. Lektion. Logistisk regression
Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:
Logistisk regression
Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] 21. marts 2013 Dagens program Chi-i-anden (χ 2 )-testet Sandsynligheder,
Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.
Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes
Logistisk regression
Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected] Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/
Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable
Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P
Logistisk Regression - fortsat
Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative
Statistik og Sandsynlighedsregning 2. IH kapitel 12. Overheads til forelæsninger, mandag 6. uge
Statistik og Sandsynlighedsregning 2 IH kapitel 12 Overheads til forelæsninger, mandag 6. uge 1 Fordelingen af én (1): Regressionsanalyse udfaldsvariabel responsvariabel afhængig variabel Y variabel 2
9. Chi-i-anden test, case-control data, logistisk regression.
Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU [email protected], 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π
24. februar Analyse af overlevelsesdata (ventetidsdata) Ikke parametrisk statistiske test : Det statistiske modelbegreb Modelselektion
. februar 00 Ikke parametrisk statistiske test : Ideen bag Epidemiologi og biostatistik. Uge, mandag. februar 00 Morten Frydenberg, Institut for Biostatistik. To grupper: Mann-Whitney / Wilcoxon testet
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression
Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives
Dag 6: Interaktion. Overlevelsesanalyse
Dag 6: Interaktion. Overlevelsesanalyse How does CHD depend on gender and hypertension? Males: hypertension chd01 Females: Frequency Row Pct 0 1 Total ---------+--------+--------+ 0 352 95 447 78.75 21.25
Korrelation Pearson korrelationen
-9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen
MPH specialmodul Epidemiologi og Biostatistik
MPH specialmodul Epidemiologi og Biostatistik Kvantitative udfaldsvariable 23. maj 2011 www.biostat.ku.dk/~sr/mphspec11 Susanne Rosthøj (Per Kragh Andersen) 1 Kapitelhenvisninger Andersen & Skovgaard:
Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar
Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved
MPH specialmodul i epidemiologi og biostatistik. SAS. Introduktion til SAS. Eksempel: Blodtryk og fedme
MPH specialmodul i epidemiologi og biostatistik. SAS Introduktion til SAS. Display manager (programmering) Vinduer: program editor (med syntaks-check) log output reproducerbart (program teksten kan gemmes
Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model
Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ
Multipel Lineær Regression
Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer
Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression
Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder
Løsning til opgave i logistisk regression
Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator
Statistik kommandoer i Stata opdateret 22/ Erik Parner
Statistik kommandoer i Stata opdateret 22/4 2008 Erik Parner Indledning... 1 Simple beskrivelser... 1 Data manipulation... 1 Estimation af proportioner... 2 Estimation af rater... 2 Estimation af Relativ
MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.
MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene
Faculty of Health Sciences. Basal Statistik. Logistisk regression mm. Lene Theil Skovgaard. 5. marts 2018
Faculty of Health Sciences Basal Statistik Logistisk regression mm. Lene Theil Skovgaard 5. marts 2018 1 / 22 APPENDIX vedr. SPSS svarende til diverse slides: To-gange-to tabeller, s. 3 Plot af binære
Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)
Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up
Opgavebesvarelse, logistisk regression
Opgavebesvarelse, logistisk regression Data ligger i rop.xls på kursushjemmesiden: http://staff.pubhealth.ku.dk/ jufo/courses/logistic/ Når du har gemt data på din computer, kan det indlæses i SAS med
1. februar Lungefunktions data fra tirsdags Gennemsnit l/min
Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud
Logistisk regression
Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Module 4: Ensidig variansanalyse
Module 4: Ensidig variansanalyse 4.1 Analyse af én stikprøve................. 1 4.1.1 Estimation.................... 3 4.1.2 Modelkontrol................... 4 4.1.3 Hypotesetest................... 6 4.2
Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.
Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)
Statistik og skalavalidering. Opgave 1
Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk
Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)
Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: [email protected] Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??
Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser
Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf
Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1
Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner
Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation
Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele
Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning
Anvendt Statistik Lektion 8. Multipel Lineær Regression
Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke
2 Logaritme- og eksponentialfunktion 6
Indhold 1 Kontingenstabeller 2 1.1 Krydstabeller....................................... 2 1.2 Forventede under nulhypotesen............................. 4 1.3 Ki-kvadrat test......................................
Postoperative komplikationer
Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.
Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008
Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet [email protected] www.biostat.ku.dk/~bxc
1 Hb SS Hb Sβ Hb SC = , (s = )
PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.
Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1
Basal Statistik Logistisk Regression Judith L. Jacobsen, PhD. Lene Theil Skovgaard http://staff.pubhealth.ku.dk/~lts/basal13_ [email protected] Dagens Tekst Logistisk regression Binære data Logit transformation
Regressionsanalyser. Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer.
Regressionsanalyser Hvad er det statistiske problem? Primære og sekundære problemer. Metodeproblemer. Hvilke faglige problemer kan man løse vha. regressionsanalyser? 1 Regressionsanalyser Det primære problem
Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:
1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14
Introduktion til overlevelsesanalyse
Faculty of Health Sciences Introduktion til overlevelsesanalyse Kaplan-Meier estimatoren Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet [email protected]
Økonometri: Lektion 5. Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol
Økonometri: Lektion 5 Multipel Lineær Regression: Interaktion, log-transformerede data, kategoriske forklarende variable, modelkontrol 1 / 35 Veksekvirkning: Motivation Vi har set på modeller som Price
Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se
Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller
Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test
1 Kontingenstabeller Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test 2 Logaritme- og eksponentialfunktion 3 Logistisk regression Sammenligning af odds for 2 grupper
Statistik II 1. Lektion. Analyse af kontingenstabeller
Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression
Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006
Dagens program Økonometri 1 Kvalitative variable 8. marts 2006 Kvalitative variabler som forklarende variabler i en lineær regressionsmodel (Wooldridge kap. 7.1-7.4) Kvalitative variabler generelt Dummy
Anvendt Statistik Lektion 7. Simpel Lineær Regression
Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot
Statistik Lektion 16 Multipel Lineær Regression
Statistik Lektion 6 Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk
Epidemiologi og Biostatistik
Kapitel 1, Kliniske målinger Epidemiologi og Biostatistik Introduktion til skilder (varianskomponenter) måleusikkerhed sammenligning af målemetoder Mogens Erlandsen, Institut for Biostatistik Uge, torsdag
Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17
nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse
Module 12: Mere om variansanalyse
Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........
Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab
D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab Eksamensnummer: 16, 23
Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at
Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af
1 Multipel lineær regression
Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R
Statistiske Modeller 1: Kontingenstabeller i SAS
Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.
Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet
Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,
Modul 11: Simpel lineær regression
Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 11: Simpel lineær regression 11.1 Regression uden gentagelser............................. 1 11.1.1 Oversigt....................................
1 Multipel lineær regression
1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet
