9. Chi-i-anden test, case-control data, logistisk regression.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "9. Chi-i-anden test, case-control data, logistisk regression."

Transkript

1 Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU Chi-i-anden test, case-control data, logistisk regression. 1

2 bronkitis data hoster om natten som 14 årig bronkitis som 5 årig ja nej total ja nej total Hvis π ja = π nej = π ville vi estimere p =

3 Opgave 0 data fra artikel om dødelighed efter udskrivelse. Group 0: patients discharged on day of prediction of risk Group 1: patients who stayed additional 24 hours Alive (%) Died (%) total Group (72) 230 (28) 811 Group (87) 19 (13) 145 Hvis der er samme risiko π 0 = π 1 = π hvad ville vi da estimere den til at være. Daly et al. Reduction in mortality after inappropriate early discharge from intensive care unit: logistic regression triage model, BMJ 2001;322:

4 Obs. vs. forv. hoster om natten som 14 årig bronkitis som 5 årig ja nej total ja nej total Ville forvente at p = ud af de 273 hostede om natten som 14-årige. 4

5 Tilsvarende ville vi forvente at 1046 p = ud af de 1046 hostede om natten som 14-årige. Forventet antal i en givet celle beregnes som rækkesum søjlesum total 5

6 Opgave 1 data fra artikel om dødelighed efter udskrivelse. Group 0: patients discharged on day of prediction of risk Group 1: patients who stayed additional 24 hours Alive (%) Died (%) total Group (72) 230 (28) 811 Group (87) 19 (13) 145 Beregn den forventede tabel. Daly et al. Reduction in mortality after inappropriate early discharge from intensive care unit: logistic regression triage model, BMJ 2001;322:

7 χ 2 test Sammenligner observerede antal med forventede antal under nulhypotesen. Test for H 0 : π ja = π nej observeret forventet 1 2 total 1 O 11 O 12 E 11 E 12 2 O 21 O 22 E 21 E 22 total χ 2 = (O 11 E 11 ) 2 E 11 + (O 12 E 12 ) 2 E 12 + (O 21 E 21 ) 2 E 21 + (O 22 E 22 ) 2 Store værdier: data passer dårligt med H 0 χ 2 -fordeling med 1 frihedsgrad. Kan beregne og slå p-værdi op (tabel A5). E 22 7

8 χ 2 test - bronkitis data χ 2 = ( ) observeret forventet bronkitis ja nej total ja nej total ( ) ( ) ( ) = 12.1 Kan slå p-værdi op i tabel A5 (χ 2 -fordeling med 1 frihedsgrad) p <

9 Opgave 2 dødelighed efter udskrivelse. Group 1: patients who stayed additional 24 hours Group 2: patients who stayed additional 48 hours Alive (%) Died (%) total Group (87) 19 (13) 145 Group 2 86 (83) 17 (17) 103 forventede antal under nulhypotesen: Alive Died total Group Group Beregn χ 2 testet. Daly et al. Reduction in mortality after inappropriate early discharge from intensive care unit: logistic regression triage model, BMJ 2001;322:

10 χ 2 test i 2 2 tabeller status population ja nej total ssh 1 a b n 1 π 1 2 c d n 2 π 2 total s 1 s 2 N Nulhypotese - ingen association H 0 : π 1 = π 2 (ækvivalent med H 0 : OR = 1 og med H 0 : RR = 1): nemmere formel χ 2 = (ad bc)2 N n 1 n 2 s 1 s 2 χ 2 -fordelt med 1 frihedsgrad. 10

11 Opgave 2 revisited dødelighed efter udskrivelse. Group 1: patients who stayed additional 24 hours Group 2: patients who stayed additional 48 hours Alive (%) Died (%) total Group (87) 19 (13) 145 Group 2 86 (83) 17 (17) 103 Beregn χ 2 testet med den nemme formel og sammenlign med resultatet fra tidligere. Daly et al. Reduction in mortality after inappropriate early discharge from intensive care unit: logistic regression triage model, BMJ 2001;322:

12 R C tabel (dvs. R rækker og C søjler) Forventet antal i celle i j beregnes som Teststørrelse række sum(i) søjle sum(j) E ij = Total χ 2 = alle celler (O ij E ij ) 2 E ij (ingen nem formel). Under nulhypotesen χ 2 -fordelt med frihedsgrader. (R 1) (C 1) (I en 2 2 tabel er R = C = 2, dvs. (2 1) (2 1) = 1 frihedsgrad.) 12

13 Odds anden måde at udtrykke sandsynlighed kan regne frem og tilbage O = p/(1 p) og p = O/(1 + O). Tre ækvivalente formuleringer H 0 : π 1 = π 2 H 0 : RR = π 1 π 2 = 1 H 0 : OR = π 1/(1 π 1 ) π 2 /(1 π 2 ) = 1 Odds giver nemmere beregninger, men er sværere at forstå. Nødvendigt at bruge odds til: (i) case-control, (ii) logistisk regression 13

14 For at regne på odds transformeres med logaritmen Test af nulhypotesen H 0 : OR = 1 kan laves som z-test: Vi tester H 0 : β = log(or) = 0 Test z = β/s.e.(β). Slå op i Tabel A1. Bemærk s.e.(β) = s.e.(log(or)) Vi bruger altid den naturlige logaritme ( ln ). 14

15 Case-control data Data indsamlet ved at man har nogen cases og derefter indsamler data på sammenlignelige kontroller (typisk 5 gange så mange). Man kan ikke beregne ikke beregne risikoestimater. Man kan beregne OR præcis som hvis data havde været indsamlet som et kohorte studium. Fordel: nemmere at få mange cases (og dermed større styrke) end i kohortestudie Ulemper: ingen ordning hen over tid (først eksponering siden sygdom) kan kun estimere OR. Mulig bias (f.eks. forsk. information for cases og kontroller). 15

16 Case-control data Hele populationen case control total exposed A B A+B unexposed C D C+D total A+C B+D A+B+C+D Sampler cases med hyppighed f 1, kontroller med hyppighed f 2. Typisk er f 1 > f 2. Den forventede værdi af samplet bliver case control total exposed f 1 A f 2 B f 1 A+f 2 B unexposed f 1 C f 2 D f 1 C+f 2 D total f 1 (A+C) f 2 (B+D) f 1 (A+C)+f 2 (B+D) 16

17 Den forventede værdi af odds-ratio i case-control studiet er f 1 f 2 AD f 1 f 2 BC = AD BC Bemærk risiko hos eksponerede er A/(A + B). I case-control studiet får vi f 1 A/(f 1 A + f 2 C) risiko hos ikke-eksp. C/(C + D). I case-control studiet får vi f 1 C/(f 1 C + f 2 D). 17

18 logistisk regression 2. sem: binomialfordeling (risiko) 1. sem: normalfordeling (middelværdi) π svarer til MEAN p = d/n svarer til x s.e.(p) svarer til s.e.( x) = SEM 2 2 tabel svarer til t-test logistisk regression svarer til lineær regression 18

19 Eksempel: lungefunktion hos peruvianske børn FEV1 normalfordeling, middelværdi, t-test, lineær regression. respsymp= { 1, symptomer; 0, ellers. vi vil sige noget om en risiko/sandsynlighed p = P (respsymp = 1), vi ved at 0 < p < 1, men observerer kun respsymp = 0 eller respsymp = 1. 19

20 20

21 Transformation 0 < p < 1 0 < p 1 p < p < log( 1 p ) < ssh odds log(odds) p/(1 p) log(p/(1 p)) p p/(1 p) 21

22 Transformation Regner på log(odds) skalaen for at lave regression p = 0.01 ODDS = p 1 p = p = 0.05 ODDS = p 1 p = p = 0.10 ODDS = p 1 p = p = 0.50 ODDS = p 1 p = p log(odds) = log( 1 p ) = 4.60 p log(odds) = log( 1 p ) = 2.95 p log(odds) = log( 1 p ) = 2.20 p log(odds) = log( 1 p ) = 0 22

23 Data En linie for hvert barn. En søjle for hver variabel id fev1 age height sex Y = respsymp 1 1,56 9,59 124, ,18 7,49 111, ,87 9,86 135, ,49 8,59 119, ,62 8,97 120, : Y i = 1, hvis barn i har haft symptomer, Y i = 0 ellers. 23

24 Logistisk regression Modellen er givet ved dvs. kan regne tilbage log(odds i ) = β 0 + β 1 alder i P (Y log( i = 1) 1 P (Y i = 1) ) = β 0 + β 1 alder i P (Y i = 1) = exp(β 0 + β 1 alder i ) 1 + exp(β 0 + β alder i ) 24

25 Prædiktion for alder=7,8 er sandsynligheden π 7 = exp(β 0 + β 1 7) 1 + exp(β 0 + β 1 7) og π 8 = exp(β 0 + β 1 8) 1 + exp(β 0 + β 1 8). Effekten af alder så β = log(or) OR = (π 8/(1 π 8 )) (π 7 /(1 π 7 )) = = exp(β 1). 25

26 Opgave 3 Artikel om apnø. Søvn-apnø og andre variables effekt på hypertension, logistisk regression: hvordan køn påvirker (logaritmen til) odds Variable Estimate (95% CI) OR Intercept ( to ) Sex (male) ( to 0.383) 1.17 Lav et 95% sikkerhedsinterval for OR. Beregn en p-værdi ud fra sikkerhedsintervallet. Lavie et al. Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study, BMJ 2000;320: Vi bruger altid den naturlige logaritme ( ln ). 26

27 Alder og risiko for malaria Hvis der er data nok og der inddeles i aldersgrupper kunne vi f.eks. se dette ALDER ANTAL MALARIA : kun muligt med mange data. Problem med afrunding. 27

28 Sandsynlighed, odds, log-odds ALDER ANTAL MALARIA SSH ODDS LOG(ODDS) : 28

29 29

30 Logistisk regression - alder og risiko for malaria Stikprøve (n=303) fra en population i Sudan indeholder oplysning om forekomst af klinisk malaria og alder. Definer Y i = { 1, person i har malaria, 0, person i er rask, og beskriv P (Y i = 1) ved regressionsmodellen: log(odds i ) = β 0 + β 1 alder i β beskriver hvordan ssh ændrer sig med alder på logit-skalaen 30

31 Som før kan vi regne tilbage P (Y i = 1) = exp(β 0 + β 1 alder i ) 1 + exp(β 0 + β 1 alder i ), OR for en x + 1 årig mod en x årig er exp(β): β > 0: ssh øges β < 0: ssh falde β 0 beskriver ssh for malaria hos en person med alder 0: p = exp(β 0 + 0) 1 + exp(β 0 + 0), hvilket jo ikke giver særlig meget mening. 31

32 Estimaterne (beregnet på computer) bliver Parameter Estimate Std Err INTERCEPT ALDER (dvs. β 0 = og β 1 = 0.737) Alder har beskyttende effekt, odds ratio er exp( ) = 0.47, dvs. når alder øges med 1, falder odds med 53%. 95% SI for β 1 = log(or) er [ ), ] = [ 1.034, 0.446]. 95% SI for OR er givet ved [exp( 1.034), exp( 0.446)] = [0.35, 0.64]. 32

33 Vi kan udregne konsekvenser af modellen baseret på vores estimater - prædiktere risikoen for at få malaria som 6 årig: P (Y i = 1) = exp(β 0 + β 1 6) 1 + exp(β 0 + β 1 6) exp( ) = 1 + exp( ) = Kan teste nulhypotesen om at der ikke er sammenhæng mellem alder og malariarisiko: H 0 : β 1 = 0 Z = = 4.93 (slå op i Tabel A1, p <

34 Opgave 4 Søvn-apnø og hypertension 0/1 variabel, logistisk regression: hvordan apnoea-hypopnoea index påvirker (logaritmen til) odds Variable Estimate (95% CI) OR Intercept ( to ) Apnoea-hypopnoea index (10 events) (0.275 to 0.456) 1.37 Beregn prædikteret ssh for hypertension for værdi 1 af apnoeahypopnoen index. Hvordan ændrer det sig hvis værdien er 2? Vi bruger altid den naturlige logaritme ( ln ). 34

35 Malaria Vi ved nu at alder påvirker risikoen. Hvis vi skal teste om der er en effekt af køn har vi to muligheder 1. Er der effekt af køn? 2. Er der effekt af køn kontrolleret for effekten af alder? Sammenhæng mellem køn og risiko + - n ssh OR drenge piger Hvad hvis vi inddeler i aldersgrupper 35

36 Opdelt i aldersgrupper + - n ssh OR drenge piger drenge piger drenge piger drenge piger altså: effekten er lidt mindre indenfor aldersgrupper 36

37 Multipel logistisk regression Vi kan korrigere for effekt af andre variable Udvid logistisk regression log(odds i ) = β 0 + β 1 alder i ved at tilføje flere forklarende variable log(odds i ) = β 0 + β 1 alder i + β 2 køn i 37

38 For 2 2 tabel er logistisk regression bare det samme som før hoster ja nej total p odds /273=0.095 p/(1-p)=26/247= /1046=0.042 p/(1-p)=44/1002= Variable: Y i viser om barn i hoster. Eksponering X i er bronkitis. Datasæt med 1319 linier. H 0 : π 1 = π 2 H 0 : RR = 1 H 0 : OR = 1 38

39 Estimater for β 0 og β 1 (beregnet i SPSS) bliver Altså: β 0 = og β 1 =0.874, dette passer med exp(-3.126)/(1+exp(-3.126))=0.042 exp( )/(1+exp( ))=0.095 videre ses = s.e.(β 1 ) = s.e.(log(or)) =

40 Test af nulhypotesen H 0 : OR = 1 kan laves som z-test: Vi tester H 0 : β = log(or) = 0 Test z = β/s.e.(β) = 0.874/0.257 = Slå op i Tabel A1. 40

Logistisk regression

Logistisk regression Logistisk regression http://biostat.ku.dk/ kach/css2 Thomas A Gerds & Karl B Christensen 1 / 18 Logistisk regression I dag 1 Binær outcome variable død : i live syg : rask gravid : ikke gravid etc 1 prædiktor

Læs mere

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min

4. september 2003. π B = Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 28. august 2003 Morten Frydenberg, Institut for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (udfra

Læs mere

Besvarelse af opgavesættet ved Reeksamen forår 2008

Besvarelse af opgavesættet ved Reeksamen forår 2008 Besvarelse af opgavesættet ved Reeksamen forår 2008 10. marts 2008 1. Angiv formål med undersøgelsen. Beskriv kort hvordan cases og kontroller er udvalgt. Vurder om kontrolgruppen i det aktuelle studie

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Simpel og multipel logistisk regression

Simpel og multipel logistisk regression Faculty of Health Sciences Logistisk regression Simpel og multipel logistisk regression 16. Maj 2012 Analyse af en binær responsvariabel. syg/rask, død/levende, ja/nej... Ud fra en eller flere forklarende

Læs mere

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model

Multipel regression. M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Multipel regression M variable En afhængig (Y) M-1 m uafhængige / forklarende / prædikterende (X 1 til X m ) Model Y j 1 X 1j 2 X 2j... m X mj j eller m Y j 0 i 1 i X ij j BEMÆRK! j svarer til individ

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Caerphilly studiet Design og Data Biostatistik uge 14 mandag Morten Frydenberg, Afdeling for Biostatistik Poisson regression En primær tidsakse og ikke stykkevise konstante rater Cox proportional hazard

Læs mere

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp

Læs mere

Morten Frydenberg 25. april 2006

Morten Frydenberg 25. april 2006 . gang: Introduktion til Logistisk Regression Morten Frydenberg 26 Afdeling for Biostatistik, Århus Universitet MPH. studieår specialmodul 4 Cand. San. uddannelsen. studieår Hvorfor logistisk regression

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

3 typer. Case-kohorte. Nested case-kontrol. Case-non case (klassisk case-kontrol us.)

3 typer. Case-kohorte. Nested case-kontrol. Case-non case (klassisk case-kontrol us.) EPIDEMIOLOGI CASE-KONTROL STUDIER September 2011 Søren Friis Institut for Epidemiologisk Kræftforskning Kræftens Bekæmpelse Case kontrol studie 3 typer Case-kohorte Nested case-kontrol Case-non case (klassisk

Læs mere

Præcision og effektivitet (efficiency)?

Præcision og effektivitet (efficiency)? Case-kontrol studier PhD kursus i Epidemiologi Københavns Universitet 18 Sep 2012 Søren Friis Center for Kræftforskning, Kræftens Bekæmpelse Valg af design Problemstilling? Validitet? Præcision og effektivitet

Læs mere

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes

25. april Probability of Developing Coronary Heart Disease in 6 years. Women (Aged 35-70) 160 No Yes 25. april 2. gang: Introduktion til Logistisk Regression Morten Frydenberg 22 Institut for Biostatistik, Århus Universitet MPH. studieår specialmodul Cand. San. uddannelsen. studieår Hvorfor logistisk

Læs mere

Postoperative komplikationer

Postoperative komplikationer Løsninger til øvelser i kategoriske data, oktober 2008 1 Postoperative komplikationer Udgangspunktet for vurdering af den ny metode må være en nulhypotese om at der er samme komplikationshyppighed, 20%.

Læs mere

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min

1. februar Lungefunktions data fra tirsdags Gennemsnit l/min Epidemiologi og biostatistik Uge, torsdag 3. februar 005 Morten Frydenberg, Afdeling for Biostatistik. og hoste estimation sikkerhedsintervaller antagelr Normalfordelingen Prædiktion Statistisk test (ud

Læs mere

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper.

Det kunne godt se ud til at ikke-rygere er ældre. Spredningen ser ud til at være nogenlunde ens i de to grupper. 1. Indlæs data. * HUSK at angive din egen placering af filen; data framing; infile '/home/sro00/mph2016/framing.txt' firstobs=2; input id sex age frw sbp sbp10 dbp chol cig chd yrschd death yrsdth cause;

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 16. april 2015 l Dias nummer 1 Sidste gang

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Århus 8. april 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 10: 13. april Opgave 1 ( gruppe 1: sp 1-4, gruppe 5: sp 5-9 og gruppe 6: 10-14) I denne opgaveser vi på et

Læs mere

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006 I dag: To stikprøver fra en normalfordeling, ikke-parametriske metoder og beregning af stikprøvestørrelse Eksempel: Fiskeolie

Læs mere

Morten Frydenberg Biostatistik version dato:

Morten Frydenberg Biostatistik version dato: Tye og Tye 2 fejl Statistisk styrke Biostatistik uge 2 mandag Morten Frydenberg, Afdeling for Biostatistik Styrkeovervejelser i lanlægning af et studie Logistisk regression Præterm fødsel, rygning, alder,

Læs mere

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004

Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Statistikøvelse Kandidatstudiet i Folkesundhedsvidenskab 28. September 2004 Formål med Øvelsen: Formålet med øvelsen er at analysere om risikoen for død er forbundet med to forskellige vacciner BCG (mod

Læs mere

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Normalfordelingen. Statistik og Sandsynlighedsregning 2 Normalfordelingen Statistik og Sandsynlighedsregning 2 Repetition og eksamen Erfaringsmæssigt er normalfordelingen velegnet til at beskrive variationen i mange variable, blandt andet tilfældige fejl på

Læs mere

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller

Chi-i-anden Test. Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Repetition Goodness of Fit Uafhængighed i Kontingenstabeller Chi-i-anden Test Chi-i-anden test omhandler data, der har form af antal eller frekvenser. Antag, at n observationer kan inddeles

Læs mere

Korrelation Pearson korrelationen

Korrelation Pearson korrelationen -9- Eidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Korrelation Kliniske målinger - Kliniske målinger og variationskilder - Estimation af størrelsen

Læs mere

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se

Resumé: En statistisk analyse resulterer ofte i : Et estimat θˆmed en tilhørende se Epidemiologi og biostatistik. Uge, torsdag 5. februar 00 Morten Frydenberg, Institut for Biostatistik. Type og type fejl Statistisk styrke Nogle speciale metoder: Normalfordelte data : t-test eksakte sikkerhedsintervaller

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Kursus i anvendt onkologisk statistik og forskningsmetodik Dag 2. Jon K. Bjerregaard

Kursus i anvendt onkologisk statistik og forskningsmetodik Dag 2. Jon K. Bjerregaard Kursus i anvendt onkologisk statistik og forskningsmetodik Dag 2 Jon K. Bjerregaard Dag 2 09.00 12.00 Opfriskning fra sidst Gennemgang af artikler Sammenligning af en eller flere grupper Overlevelsesanalyse

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere. Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Stratificerede analyser Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Stratificerede analyser Dødsstraf-eksempel Betyder morderens farve noget for risikoen for dødsstraf? 1 Dødsstraf-eksempel: data Variable: Dødsstraf

Læs mere

Konfidensinterval for µ (σ kendt)

Konfidensinterval for µ (σ kendt) Program 1. Repetition: konfidens-intervaller. 2. Hypotese test 3. Type I og type II fejl, p-værdi 4. En og to-sidede tests 5. Test for middelværdi (kendt varians) 6. Test for middelværdi (ukendt varians)

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Kursushjemmeside: www.biostat.ku.dk/~sr/forskningsaar/regression2012/

Læs mere

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner

Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Statistik kommandoer i Stata opdateret 16/3 2009 Erik Parner Indledning... 1 Hukommelse... 1 Simple beskrivelser... 1 Data manipulation... 2 Estimation af proportioner... 2 Estimation af rater... 2 Estimation

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration Faculty of Life Sciences Program Modelkontrol og prædiktion Claus Ekstrøm E-mail: ekstrom@life.ku.dk Test af hypotese i ensidet variansanalyse F -tests og F -fordelingen. Multiple sammenligninger. Bonferroni-korrektion

Læs mere

Analyse af binære responsvariable

Analyse af binære responsvariable Analyse af binære responsvariable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet 23. november 2012 Har mænd lettere ved at komme ind på Berkeley? UC Berkeley

Læs mere

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts

Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Århus 27. februar 2011 Morten Frydenberg Epidemiologi og Biostatistik Opgaver i Biostatistik Uge 4: 2. marts Epibasic er nu opdateret til version 2.02 (obs. der er ikke ændret ved arket C-risk) Start med

Læs mere

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff

Kursus 02402 Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff Kursus 02402 Introduktion til Statistik Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, (7.7-7.8,8.1-8.5) Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks

Læs mere

Opgavebesvarelse, Basalkursus, uge 3

Opgavebesvarelse, Basalkursus, uge 3 Opgavebesvarelse, Basalkursus, uge 3 Opgave 1: Udskrivning af astma patienter (DGA s. 273) I en randomiseret undersøgelse foretaget af Storr et. al. (Lancet, i, 1987) sammenlignes effekten af en enkelt

Læs mere

Epidemiologiske associationsmål

Epidemiologiske associationsmål Epidemiologiske associationsmål Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 21. april 2016 l Dias nummer 1 Sidste gang

Læs mere

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt,

Eks. 1: Kontinuert variabel som i princippet kan måles med uendelig præcision. tid, vægt, Statistik noter Indhold Datatyper... 2 Middelværdi og standardafvigelse... 2 Normalfordelingen og en stikprøve... 2 prædiktionsinteval... 3 Beregne andel mellem 2 værdier, eller over og unden en værdi

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2 -test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2 -test [ki-i-anden-test] 1 Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination

Læs mere

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer)

SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI Cand.Scient.San, 2. semester 20. februar 2015 (3 timer) D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N SKRIFTLIG EKSAMEN I BIOSTATISTIK OG EPIDEMIOLOGI

Læs mere

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet

Eksamen ved. Københavns Universitet i. Kvantitative forskningsmetoder. Det Samfundsvidenskabelige Fakultet Eksamen ved Københavns Universitet i Kvantitative forskningsmetoder Det Samfundsvidenskabelige Fakultet 14. december 2011 Eksamensnummer: 5 14. december 2011 Side 1 af 6 1) Af boxplottet kan man aflæse,

Læs mere

Kvantitative Metoder 1 - Forår 2007. Dagens program

Kvantitative Metoder 1 - Forår 2007. Dagens program Dagens program Hypoteser: kap: 10.1-10.2 Eksempler på Maximum likelihood analyser kap 9.10 Test Hypoteser kap. 10.1 Testprocedure kap 10.2 Teststørrelsen Testsandsynlighed 1 Estimationsmetoder Kvantitative

Læs mere

Program for Kursus 2 Mål: Ansvarlige: Kursus 2 Dag 1

Program for Kursus 2 Mål: Ansvarlige: Kursus 2 Dag 1 Program for Kursus 2 Mål: Kursisterne får kendskab til diverse redskaber, som er forberedende til deres egne projekter. Ansvarlige: Rikke Guldberg, AUH, delkursusleder og underviser Ulrik Schiøler Kesmodel,

Læs mere

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/?? Dagens Temaer k normalfordelte obs. rækker i proc glm. Test for lineær regression Test for lineær regression - via proc glm p. 1/?? Proc glm Vi indlæser data i datasættet stress, der har to variable: areal,

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik.

Eksempel: PEFR. Epidemiologi og biostatistik. Uge 1, tirsdag. Erik Parner, Institut for Biostatistik. Epidemiologi og biostatistik. Uge, tirsdag. Erik Parner, Institut for Biostatistik. Generelt om statistik Dataanalysen - Deskriptiv statistik - Statistisk inferens Sammenligning af to grupper med kontinuerte

Læs mere

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel

Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Epidemiologi. Hvad er det? Øjvind Lidegaard og Ulrik Kesmodel Rigshospitalet Århus Sygehus Epidemiologi. Hvad er det? Definition Læren om sygdommes udbredelse og årsager Indhold To hovedopgaver: Deskriptiv

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.

Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25. Hjemmeopgave Basal statistik for lægevidenskabelige forskere, forår 2014 Udleveret 4. marts, afleveres senest ved øvelserne i uge 13 (25.-27 marts) Garvey et al. interesserer sig for sammenhængen mellem

Læs mere

Statistik Lektion 17 Multipel Lineær Regression

Statistik Lektion 17 Multipel Lineær Regression Statistik Lektion 7 Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x

Læs mere

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester

ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER IT & Sundhed, 2. semester D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T B l e g d a m s v e j 3 B 2 2 0 0 K ø b e n h a v n N ORDINÆR EKSAMEN I EPIDEMIOLOGISKE METODER

Læs mere

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Kursus 02402 Introduktion til Statistik Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup). 7.4-7.6 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220

Læs mere

Løsning til øvelsesopgaver dag 4 spg 5-9

Løsning til øvelsesopgaver dag 4 spg 5-9 Løsning til øvelsesopgaver dag 4 spg 5-9 5: Den multiple model Vi tilføjer nu yderligere to variable til vores model : Køn og kolesterol SBP = a + b*age + c*chol + d*mand hvor mand er 1 for mænd, 0 for

Læs mere

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse

Øvelser i epidemiologi og biostatistik, 12. april 2010 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse Øvelser i epidemiologi og biostatistik, 12. april 21 Ebeltoft-projektet: Analyse af alkoholrelaterede data mm. Eksempel på besvarelse 1. Belys ud fra data ved 5 års follow-up den fordom, at der er flere

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler:

Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: Kære MPH-studerende Ved undervisningen i epidemiologi/statistik den 8. og 10. november 2011 vil vi lægge hovedvægten på en fælles diskussion af følgende fire artikler: 1. E.A. Mitchell et al. Ethnic differences

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard

Studiedesign. Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Rikke Guldberg Ulrik Schiøler Kesmodel Øjvind Lidegaard Studiedesign Økologiske studier Tværsnitsstudier Case-kontrolstudier Kohortestudier Randomiserede studier Hvorfor er det vigtigt at

Læs mere

c) For, er, hvorefter. Forklar.

c) For, er, hvorefter. Forklar. 1 af 13 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 7 ØVELSER ØVELSE 1 c) ØVELSE 2 og. Forklar. c) For, er, hvorefter. Forklar. ØVELSE 3 c) ØVELSE 4 90 % konfidensinterval: 99 % konfidensinterval:

Læs mere

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. Program 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test. 1/19 Konfidensinterval for µ (σ kendt) Estimat ˆµ = X bedste bud

Læs mere

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model

OR stiger eksponentielt med forskellen i BMI komplicet model svær at forstå og analysere simpel model Epidemiologi og biostatistik. Uge 5, torsdag. marts 1 Morten Frydenberg, Institut for Biostatistik. 1 Analyse af overlevelsesdata (ventetidsdata) Censurering (højre + andet) Kaplan-Meyer kurver Det statistiske

Læs mere

2 Logaritme- og eksponentialfunktion 6

2 Logaritme- og eksponentialfunktion 6 Indhold 1 Kontingenstabeller 2 1.1 Krydstabeller....................................... 2 1.2 Forventede under nulhypotesen............................. 4 1.3 Ki-kvadrat test......................................

Læs mere

Kommentarer til øvelser i basalkursus, 2. uge

Kommentarer til øvelser i basalkursus, 2. uge Kommentarer til øvelser i basalkursus, 2. uge Opgave 2. Vi betragter målinger af hjertevægt (i g) og total kropsvægt (målt i kg) for 10 normale mænd og 11 mænd med hjertesvigt. Målingerne er taget ved

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Uafhængighedstestet Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Uafhængighedstestet Eksempel: Bissau data Data kommer fra Guinea-Bissau i Vestafrika: 5273 børn blev undersøgt da de var yngre end 7 mdr og blev

Læs mere

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008

Test og sammenligning af udvalgte regressionsmodeller Berit Christina Olsen forår 2008 Indholdsfortegnelse 1 INDLEDNING OG PROBLEMSTILLING... 2 1.1 OVERVÆGT SOM CASE... 2 2 ANALYSEFORBEREDELSER... 4 2.1 HEPRO-UNDERSØGELSEN... 4 2.2 DEN AFHÆNGIGE VARIABEL VIGTIGHED AF ÆNDRINGEN AF VÆGT...

Læs mere

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test

Statistik Lektion 20 Ikke-parametriske metoder. Repetition Kruskal-Wallis Test Friedman Test Chi-i-anden Test Statistik Lektion 0 Ikkeparametriske metoder Repetition KruskalWallis Test Friedman Test Chiianden Test Run Test Er sekvensen opstået tilfældigt? PPPKKKPPPKKKPPKKKPPP Et run er en sekvens af ens elementer,

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003

MPH Introduktionsmodul: Epidemiologi og Biostatistik 23.09.2003 Opgave 1 (mandag) Figuren nedenfor viser tilfælde af mononukleose i en lille population bestående af 20 personer. Start og slut på en sygdoms periode er angivet med. 20 15 person number 10 5 1 July 1970

Læs mere

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer:

Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: 1 IHD-Lexis 1.1 Spørgsmål 1 Man indlæser en såkaldt frequency-table i SAS ved følgende kommandoer: data ihdfreq; input eksp alder pyrs cases; lpyrs=log(pyrs); cards; 0 2 346.87 2 0 1 979.34 12 0 0 699.14

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Statistik for MPH: 7

Statistik for MPH: 7 Statistik for MPH: 7 3. november 2011 www.biostat.ku.dk/~pka/mph11 Attributable risk, bestemmelse af stikprøvestørrelse (Silva: 333-365, 381-383) Per Kragh Andersen 1 Fra den 6. uges statistikundervisning:

Læs mere

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning

Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Lægevidenskabelig Embedseksamen, 6. semester Forår 2009 Epidemiologi og Biostatistik Rettevejledning Opgave 1. Angiv studiets formål, design og hvilke associationsmål, der bruges. Beskriv hovedresultaterne

Læs mere

Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test

Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test 1 Kontingenstabeller Krydstabeller Forventede under nulhypotesen Ki-kvadrat test Residualanalyse Eksakt test 2 Logaritme- og eksponentialfunktion 3 Logistisk regression Sammenligning af odds for 2 grupper

Læs mere

Maple 11 - Chi-i-anden test

Maple 11 - Chi-i-anden test Maple 11 - Chi-i-anden test Erik Vestergaard 2014 Indledning I dette dokument skal vi se hvordan Maple kan bruges til at løse opgaver indenfor χ 2 tests: χ 2 - Goodness of fit test samt χ 2 -uafhængighedstest.

Læs mere

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model Reminder: Hypotesetest for én parameter Antag vi har model Økonometri: Lektion 4 F -test Justeret R 2 Aymptotiske resultater y = β 0 + β 1 x 2 + β 2 x 2 + + β k x k + u. Vi ønsker at teste hypotesen H

Læs mere

Statistik i basketball

Statistik i basketball En note til opgaveskrivning jerome@falconbasket.dk 4. marts 200 Indledning I Falcon og andre klubber er der en del gymnasieelever, der på et tidspunkt i løbet af deres gymnasietid skal skrive en større

Læs mere

Basal statistik. 30. januar 2007

Basal statistik. 30. januar 2007 Basal statistik 30. januar 2007 Deskriptiv statistik Typer af data Tabeller Grafik Summary statistics Lene Theil Skovgaard, Biostatistisk Afdeling Institut for Folkesundhedsvidenskab, Københavns Universitet

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Note til styrkefunktionen

Note til styrkefunktionen Teoretisk Statistik. årsprøve Note til styrkefunktionen Først er det vigtigt at gøre sig klart, at når man laver statistiske test, så kan man begå to forskellige typer af fejl: Type fejl: At forkaste H

Læs mere

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene

Læs mere

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test

Multipel Lineær Regression. Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel Lineær Regression Polynomiel regression Ikke-lineære modeller og transformation Multi-kolinearitet Auto-korrelation og Durbin-Watson test Multipel lineær regression x,x,,x k uafhængige variable

Læs mere

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011

Hyppigheds- og associationsmål. Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Hyppigheds- og associationsmål Kim Overvad Afdeling for Epidemiologi Institut for Folkesundhed Aarhus Universitet Februar 2011 Læringsmål Incidens Incidens rate Incidens proportion Prævalens proportion

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk 21. marts 2013 Dagens program Chi-i-anden (χ 2 )-testet Sandsynligheder,

Læs mere

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar

Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Århus 6. februar 2014 Morten Frydenberg Statistik FSV 4. semester 2014 Øvelser Uge 2: 11. februar Til disse øvelser har I brug for fishoil1.dta, der indeholder data fra det fiskeolie forsøg vi så på ved

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

Løsning til opgave i logistisk regression

Løsning til opgave i logistisk regression Løsning til øvelser i logistisk regression, november 2008 1 Løsning til opgave i logistisk regression 1. Først indlæses data, og vi kan lige sørge for at danne en dummy-variable for cml, som indikator

Læs mere

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013

Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 Vejledende besvarelse af hjemmeopgave i Basal statistik for lægevidenskabelige forskere, forår 2013 I forbindelse med reagensglasbehandling blev 100 par randomiseret til to forskellige former for hormonstimulation.

Læs mere

Studiedesigns: Case-kontrolundersøgelser

Studiedesigns: Case-kontrolundersøgelser Studiedesigns: Case-kontrolundersøgelser Mads Kamper-Jørgensen, lektor, maka@sund.ku.dk Afdeling for Social Medicin, Institut for Folkesundhedsvidenskab It og sundhed l 12. maj 2016 l Dias nummer 1 Sidste

Læs mere

CBS Evaluering og Akkreditering

CBS Evaluering og Akkreditering CBS Evaluering og Akkreditering Michael Møller Nielsen Undersøgelse af bachelorstuderendes studieresultater herunder frafald, studieforsinkelse og karakterer ved 1. årsprøve Baseret på 1. års studerende

Læs mere