Logistisk regression

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Logistisk regression"

Transkript

1 Logistisk regression Test af antagelsen om lineære effekter Modelkonstruktion og modelsøgning Hvilke variable og hvilke interaktioner skal inkluderes i regressionsmodellerne? 1

2 Logistiske regressionsmodeller med kvantitative variable Y = arbejdsløs X = intelligens målt 25 år tidligere 2

3 Fordeling af intelligensprøveresultat Normalfordelt: 95 % konfidensområde 20,92-52,68 3

4 Den logistiske regressionsmodel P(Arbejdsløs Intelligens) = e 1 + e α+β x α+β x Dvs. P(Arbejdsløs Intelligens) = e 1 + e x x 4

5 Tolkning af modellen Et trin op ad intelligensskalaen: Risikoen på odds skalaen reduceres med faktoren Risikoen på logit skalaen reduceres med point 5

6 Sandsynlighed for arbejdsløshed som funktion af intelligens Bemærk, at kurven krummer lidt 6

7 Logit-værdi for arbejdsløshed som funktion af intelligens En ret linie. Effekten af intelligens målt på logitskalaen er lineær. 7

8 Er det en troværdig beskrivelse af effekten? Hvis effekten på logitskalaen er en kontinuert funktion, f(x), af intelligensen kan man altid skrive den som en potensrække f(x) = α + β 1 x + β 2 x 2 + β 3 x β n x n +. Den logistiske regressionsmodel antager, at β 2 = β 3 = β 4 = = 0 Det behøver naturligvis ikke at være rigtigt 8

9 Kontrol af linearitet i logistiske regressionsmodeller Beregn nye variable, X 2 = X 2, X 3 = X 3,, etc., og inkluder dem i den logistiske regressionsmodel P(Arbejdsløs Intelligens) = e 1 + e 2 3 1x 2x 3x α+β +β +β 2 3 1x 2x 3x α+β +β +β 9

10 Analysen Signifikant effekt af både 2. og 3. gradsledet Effekten er altså ikke lineær 10

11 Estimerede sandsynligheder 11

12 Effekt målt på logitskalaen 12

13 Modeller med interaktioner Det hierarkiske princip for interaktioner i regressionsmodeller Hvis en model indeholder interaktionen mellem et vist antal variable, skal den også indeholde interaktionsparametre svarende til hver delmængde af disse variable inklusiv parametre for hovedvirkningen for disse variable. 13

14 En model med interaktion mellem tre variable, A, B og C skal indeholde følgende parametre: 1) Trefaktor-interaktionerne, β abc. 2) Samtlige tofaktor-interaktioner, β ab, β ac og β bc. 3) Alle hovedvirkninger, β a, β b og β c. 4) Konstantleddet, α. 14

15 Et eksempel : Hvilke faktorer har betydning om man bliver arbejdsløs? Potentielle faktorer: 1) K = Køn 2) U = Uddannelse opdelt i fem kategorier, LVU, MVU, KVU, Erhvervsrettet, Restgruppen 3) F = Familiesocialgruppe under opvækst 4) O = Opvækstområde (urbanisering) opdelt i fire kategorier, København, Provinsby, Mindre by og Landkommune 5) I = Intelligens målt i syvende klasse. 15

16

17 Antal rigtige Fordeling af intelligensprøveresultat i syvende klasse 17

18 Valg og prioritering af variable. 1) De primære variable er de uafhængige variable, som er af særlig faglig interesse. Sammenhængene mellem de primære variable og den afhængige variabel er de primære sammenhænge. 2) De sekundære variable er variable, hvis eneste funktion er at optræde som kontrolvariable. Sammenhængene mellem den afhængige variabel og de sekundære variable omtales som sekundære sammenhænge.. 18

19 Unødvendige kontrolvariable En sekundær variabel, Z, er uden betydning som kontrolvariabel i en logistisk regressionsanalyse, hvis samtlige parametre med reference til Z er lig med nul Sådanne variable bør derfor ekskluderes. 19

20 Overordnet analysestrategi 1) Modellens primære struktur drejer sig om alt det, der har direkte reference til de faglige problemer, der skal belyses. 2) Modellens sekundære struktur er alt det ved modellen, der ikke henviser til disse problemer. Den sekundære struktur kan på denne måde omfatte alt fra modelegenskaber, der kan motiveres ud fra den teoretiske referenceramme, over helt åbne spørgsmål, til antagelser, der er motiveret af ønsket om at komme til at arbejde med enkle modeller, der i det mindste fungerer i praksis. 20

21 To analysefaser: Indledende modelkonstruktion Analyse af primære problemstillinger 21

22 1) Indledende modelkonstruktion - Definition af startmodel. Startmodellen bør indeholde hele den primære modelstruktur og så meget af den sekundære struktur, som det i praksis er muligt at arbejde med. - Modelsøgning. Trinvis søgning efter en model med en mere enkel sekundær struktur. - Modelkontrol. Kontrol af, at der ikke er åbenlyse tegn på at modellen er udtryk for overforenkling. 22

23 2) Analyse af primære problemstillinger. - Test af primære hypoteser. Bemærk, at disse test kan resultere i at nogle af de primære variable skal fjernes fra modellen. - Modelkontrol. - Estimation og tolkning af primære parametre. I praksis sker dette sammen med beregningerne af teststørrelserne for de primære hypoteser. De har dog først interesse, hvis modelkontrollen har vist, at der ikke ser ud til at være problemer med modellen. 23

24

25 Modelnotation og model formler for hierarkiske modeller En modelformel = en række additive model-led, der angiver, hvilke uafhængige variable, der indgår i modellen, og hvilke interaktioner, der er mellem effekten af disse variable. Interaktioner angives som produkter af variable ved hjælp af operatoren *. A+B*C = e P(Y=1 A=a,B=b,C=c) = 1 + A+B+C = P(Y=1 A=a,B=b,C=c) = α + β a+ β b+ β c+ β bc e e 1 + a b c bc α + β a+ β b+ β c+ β bc e a b c bc α + β a+ β b+ β c a b c α + β a+ β b+ β c a b c 25

26 Modeluniverset Model Model Kommentar nr. 1 A*B*C Trefaktor interaktion den mest komplicerede model. 2 A*B+A*C +B*C Ingen trefaktor, men samtlige tofaktor interaktioner. 3 A*B+A*C Ingen interaktion mellem B og C. 4 A*B+B*C Ingen interaktion mellem A og C. 5 A*C+B*C Ingen interaktion mellem A og B. 6 A*B+C Alle variable har betydning. Kun interaktion mellem A og B. 7 A*C+B Alle variable har betydning. Kun interaktion mellem A og C. 8 A+B*C Alle variable har betydning. Kun interaktion mellem B og C. 9 A*B C er uden betydning. Interaktion mellem A og B. 10 A*C B er uden betydning. Interaktion mellem A og C. 11 B*C A er uden betydning. Interaktion mellem B og C. 12 A+B+C Alle variable har betydning. Ingen interaktioner. 13 A+B C er uden betydning. Ingen interaktion. 14 A+C B er uden betydning. Ingen interaktion. 15 B+C A er uden betydning. Ingen interaktion. 16 A A er den eneste variabel, der har betydning. 17 B ditto 18 C ditto 19 - Hverken A, B eller C har betydning. En model, M 0, siges at være indlejret i en anden model, M 1, hvis M 1 dels indeholder alle de parametre, som M 0 indeholder og dels indeholder nogle parametre, der ikke indgår i M 0. 26

27 Indlejringer af modeller i model-universet defineret ved tre variable, A, B og C. Model nr. Model Indlejret * i 1 A*B*C - 2 A*B+A*C+B*C 1 3 A*B+A*C 1,2 4 A*B+B*C 1,2 5 A*C+B*C 1,2 6 A*B+C 1,2,3,4 7 A*C+B 1,2,3,5 8 A+B*C 1,2,4,5 9 A*B 1-4,6 10 A*C 1-3,5,7 11 B*C 1-2,4-5,8 12 A+B+C 1-5, A+B 1-8,9,12 14 A+C 1-8,10,12 15 B+C 1-8,11,12 16 A 1-10,12,13,14 17 B 1-9,11,12,13,15 18 C 1-8,10-12,14, ,

28 Modelsøgning Mættet model Start model Sand model tom model 28

29 A*B*C A*B+A*C+B*C A*B+A*C A*B+B*C A*C+B*C A*B+C A*C+B A+B*C A*B A*C B*C A+B+C A+B A+C B+C A B C - 29

30

31 Elimination af Første trin af modelsøgning med modellen K*U+K*F+K*O+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I 2 +I 3 som startmodel ny model Χ 2 df p K*U K*F+K*O+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I 2 +I K*F K*U+K*O+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I 2 +I K*O K*U+K*F+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I 2 +I K*I K*U+K*F+K*O+U*F+U*O+U*I+F*O+F*I+O*I+I 2 +I U*F K*U+K*F+K*O+K*I+U*O+U*I+F*O+F*I+O*I+I 2 +I U*O K*U+K*F+K*O+K*I+U*F+U*I+F*O+F*I+O*I+I 2 +I U*I K*U+K*F+K*O+K*I+U*F+U*O+F*O+F*I+O*I+I 2 +I F*O K*U+K*F+K*O+K*I+U*F+U*O+U*I+F*I+O*I+I 2 +I F*I K*U+K*F+K*O+K*I+U*F+U*O+U*I+F*O+O*I+I 2 +I O*I K*U+K*F+K*O+K*I+U*F+U*O+U*I+F*O+F*I+I 2 +I I 2 K*U+K*F+K*O+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I I 3 K*U+K*F+K*O+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I

32 Andet trin af modelsøgning. Den aktuelle model er K*U+K*O+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I 2 +I 3. Elimination ny model LR df p af K*U K*O+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I 2 +I K*O K*U+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I 2 +I K*I K*U+K*O+U*F+U*O+U*I+F*O+F*I+O*I+I 2 +I U*F K*U+K*O+K*I+U*O+U*I+F*O+F*I+O*I+I 2 +I U*O K*U+K*O+K*I+U*F+U*I+F*O+F*I+O*I+I 2 +I U*I K*U+K*O+K*I+U*F+U*O+F*O+F*I+O*I+I 2 +I F*O K*U+K*O+K*I+U*F+U*O+U*I+F*I+O*I+I 2 +I F*I K*U+K*O+K*I+U*F+U*O+U*I+F*O+O*I+I 2 +I O*I K*U+K*O+K*I+U*F+U*O+U*I+F*O+F*I+I 2 +I I 2 K*U+K*O+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I I 3 K*U+K*O+K*I+U*F+U*O+U*I+F*O+F*I+O*I+I

33 Oversigt over interaktioner og hovedvirkninger, der blev elimineret fra modellen for arbejdsløshed blandt 32-årige. Trin model-led LR df p 1 K*F F*U O*I U*O K*O K*I K*U F*O F*I F Slutmodellen: K+O+U*I+I 2 +I 3 33

34 Forløbet af modelsøgningen Oversigt over beregnede signifikanssandsynligheder Trin Led K*U * K*F.862 * K*O * K*I * U*F * U*O * U*I ** F*O * F*I * O*I * I I O K F * U

35 Modelsøgningen slutter med en model, hvor 1) effekten af intelligens ikke kan beskrives ved en logitlineær model, 2) der optræder én interaktion mellem uddannelse og intelligens, 3) effekten af familiesocialgruppe helt er elimineret. 35

36

37 Estimater af parametre i to modeller. β 1, β 2 og β 3 er parametrene for henholdsvis I (intelligens), I 2 og I 3 model interaktion inkluderet interaktion ekskluderet parameter estimat stand.fejl estimat stand.fejl α Køn β mand β kvinde Opv.område β kbh β provinsby β mindre by β land Uddannelse β LVU β MVU β KVU β Erhv.udd β restgruppe Intelligens β β β Interaktion Udd*intel. β LVU,Int β MVU,int β KVU,Int β Erhv,Int β Rest,Int

38 4,0 Samlet effekt af uddannelse og intelligens 3,5 3,0 2,5 2,0 1,5 Uddannelse Restgruppe Erhvervsfaglig uddannelse KVU MVU 1, LVU Antal rigtige Samlet effekt af intelligens og uddannelse beregnet af en model uden interaktion mellem de to variable. 38

39 0,0 Samlet effekt af uddannelse og intelligens -,5-1,0-1,5-2,0-2,5-3,0-3,5 Uddannelse Restgruppe Erhvervsfaglig uddannelse KVU MVU -4, LVU Antal rigtige Samlet effekt af intelligens og uddannelse beregnet af en model med interaktion mellem de to variable. 39

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable

Statistik II Lektion 3. Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Statistik II Lektion 3 Logistisk Regression Kategoriske og Kontinuerte Forklarende Variable Setup: To binære variable X og Y. Statistisk model: Konsekvens: Logistisk regression: 2 binære var. e e X Y P

Læs mere

Statistik og skalavalidering. Opgave 1

Statistik og skalavalidering. Opgave 1 Statistik og skalavalidering Opgave 1 Opgavens formål: Denne opgave har, ligesom det vil være tilfældet for de fleste andre øvelsesopgaver på dette kursus, flere forskellige formål. For det første et praktisk/teknisk

Læs mere

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression

Statikstik II 2. Lektion. Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Statikstik II 2. Lektion Lidt sandsynlighedsregning Lidt mere om signifikanstest Logistisk regression Sandsynlighedsregningsrepetition Antag at Svar kan være Ja og Nej. Sandsynligheden for at Svar Ja skrives

Læs mere

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller

Opsamling Modeltyper: Tabelanalyse Logistisk regression Generaliserede lineære modeller Log-lineære modeller Opsamling Modeltyper: Tabelanalyse Logistisk regression Binær respons og kategorisk eller kontinuerte forklarende variable. Generaliserede lineære modeller Normalfordelt respons og kategoriske forklarende

Læs mere

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab. Eksamensopgave E05. Socialklasse og kronisk sygdom Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab Eksamensopgave E05 Socialklasse og kronisk sygdom Data: Tværsnitsundersøgelse fra 1986 Datamaterialet indeholder: Køn, alder, Højest opnåede

Læs mere

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab

Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab D E T S U N D H E D S V I D E N S K A B E L I G E F A K U L T E T K Ø B E N H A V N S U N I V E R S I T E T Eksamen i statistik 2010 Kandidatuddannelsen i folkesundhedsvidenskab Eksamensnummer: 16, 23

Læs mere

Synopsis til eksamen i Statistik

Synopsis til eksamen i Statistik Synopsis til eksamen i Statistik Kandidatuddannelsen i Folkesundhedsvidenskab Københavns Universitet december 2010 Eksamensnummer: 12 Antal anslag: 23.839 (svarende til 9,9 normalsider) - 1 - Indholdsfortegnelse

Læs mere

Statistik II 4. Lektion. Logistisk regression

Statistik II 4. Lektion. Logistisk regression Statistik II 4. Lektion Logistisk regression Logistisk regression: Motivation Generelt setup: Dikotom(binær) afhængig variabel Kontinuerte og kategoriske forklarende variable (som i lineær reg.) Eksempel:

Læs mere

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x)

Regneregler for middelværdier M(X+Y) = M X +M Y. Spredning varians og standardafvigelse. 1 n VAR(X) Y = a + bx VAR(Y) = VAR(a+bX) = b²var(x) Formelsamlingen 1 Regneregler for middelværdier M(a + bx) a + bm X M(X+Y) M X +M Y Spredning varians og standardafvigelse VAR(X) 1 n n i1 ( X i - M x ) 2 Y a + bx VAR(Y) VAR(a+bX) b²var(x) 2 Kovariansen

Læs mere

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression

Multipel Linear Regression. Repetition Partiel F-test Modelsøgning Logistisk Regression Multipel Linear Regression Repetition Partiel F-test Modelsøgning Logistisk Regression Test for en eller alle parametre I jagten på en god statistisk model har vi set på følgende to hypoteser og tilhørende

Læs mere

Statistik II 1. Lektion. Analyse af kontingenstabeller

Statistik II 1. Lektion. Analyse af kontingenstabeller Statistik II 1. Lektion Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller Logistisk regression

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA)

Anvendt Statistik Lektion 9. Variansanalyse (ANOVA) Anvendt Statistik Lektion 9 Variansanalyse (ANOVA) 1 Undersøge sammenhæng Undersøge sammenhænge mellem kategoriske variable: χ 2 -test i kontingenstabeller Undersøge sammenhæng mellem kontinuerte variable:

Læs mere

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ

Normalfordelingen. Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: 1 2πσ Normalfordelingen Det centrale er gentagne målinger/observationer (en stikprøve), der kan beskrives ved den normale fordeling: f(x) = ( ) 1 exp (x µ)2 2πσ 2 σ 2 Frekvensen af observationer i intervallet

Læs mere

Statistik & Skalavalidering

Statistik & Skalavalidering å Statistik & Skalavalidering Synopsis til mundtlig eksamen d. 24. januar 2011 K ø b e n h a v n s U n i v e r s i t e t K a n d i d a t u d d a n n e l s e n i F o l k e s u n d h e d s v i d e n s k

Læs mere

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres.

Log-lineære modeller. Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Log-lineære modeller Analyse af symmetriske sammenhænge mellem kategoriske variable. Ordinal information ignoreres. Kontingenstabel Contingency: mulighed/tilfælde Kontingenstabel: antal observationer (frekvenser)

Læs mere

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4

INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF POPULATIONEN... 4 Indholdsfortegnelse INDLEDNING...2 DATAMATERIALET... 2 KARAKTERISTIK AF OULATIONEN... 4 DELOGAVE 1...5 BEGREBSVALIDITET... 6 Differentiel item funktionsanalyser...7 Differentiel item effekt...10 Lokal

Læs mere

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere.

Overlevelse efter AMI. Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Køn og alder betragtes som confoundere. Overlevelse efter AMI Hvilken betydning har følgende faktorer for risikoen for ikke at overleve: Diabetes VF (Venticular fibrillation) WMI (Wall motion index) CHF (Cardiac Heart Failure) Køn og alder betragtes

Læs mere

Eksamen i Statistik og skalavalidering

Eksamen i Statistik og skalavalidering Eksamen i Statistik og skalavalidering 2009-studieordning Til aflevering d. 22. december 2010 Efterårssemestret 2010, Kandidatuddannelsen i Folkesundhedsvidenskab Opgaven er udarbejdet af: Eksamensnummer

Læs mere

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17

Analysestrategi. Lektion 7 slides kompileret 27. oktober 200315:24 p.1/17 nalysestrategi Vælg statistisk model. Estimere parametre i model. fx. lineær regression Udføre modelkontrol beskriver modellen data tilstrækkelig godt og er modellens antagelser opfyldte fx. vha. residualanalyse

Læs mere

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller.

Vi vil analysere effekten af rygning og alkohol på chancen for at blive gravid ved at benytte forskellige Cox regressions modeller. Løsning til øvelse i TTP dag 3 Denne øvelse omhandler tid til graviditet. Et studie vedrørende tid til graviditet (Time To Pregnancy = TTP) inkluderede 423 par i alderen 20-35 år. Parrene blev fulgt i

Læs mere

SYNOPSIS TIL EKSAMEN I STATISTIK OG SKALAVALIDERING

SYNOPSIS TIL EKSAMEN I STATISTIK OG SKALAVALIDERING SYNOPSIS TIL EKSAMEN I STATISTIK OG SKALAVALIDERING Kandidatuddanelsen i Folkesundhedsvidenskab Københavns Universitet, 2010 EKSAMENSNUMMER: 7 & 40 Antal anslag: 23.576 December 2010 INDHOLDSFORTEGNELSE

Læs mere

Anvendt Statistik Lektion 8. Multipel Lineær Regression

Anvendt Statistik Lektion 8. Multipel Lineær Regression Anvendt Statistik Lektion 8 Multipel Lineær Regression 1 Simpel Lineær Regression (SLR) y Sammenhængen mellem den afhængige variabel (y) og den forklarende variabel (x) beskrives vha. en SLR: ligger ikke

Læs mere

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen)

Program. Logistisk regression. Eksempel: pesticider og møl. Odds og odds-ratios (igen) Faculty of Life Sciences Program Logistisk regression Claus Ekstrøm E-mail: ekstrom@life.ku.dk Odds og odds-ratios igen Logistisk regression Estimation og inferens Modelkontrol Slide 2 Statistisk Dataanalyse

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Institut for Biostatistik. Regressionsanalyse Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Institut for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression Regressionsanalyse Regressionsanalyser

Læs mere

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse

12. september Epidemiologi og biostatistik. Forelæsning 4 Uge 3, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Regressionsanalyse . september 5 Epidemiologi og biostatistik. Forelæsning Uge, torsdag. Niels Trolle Andersen, Afdelingen for Biostatistik. Lineær regressionsanalyse - Simpel lineær regression - Multipel lineær regression

Læs mere

Benchmarking af kommunernes sagsbehandling antagelser, metode og resultater

Benchmarking af kommunernes sagsbehandling antagelser, metode og resultater Benchmarking af kommunernes sagsbehandling antagelser, metode og resultater Anna Amilon Materiel vurdering Ved vurderingen af en afgørelses materielle indhold vurderes afgørelsens korrekthed i forhold

Læs mere

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk

Epidemiologi og biostatistik. Uge 3, torsdag. Erik Parner, Afdeling for Biostatistik. Eksempel: Systolisk blodtryk Eksempel: Systolisk blodtryk Udgangspunkt: Vi ønsker at prædiktere det systoliske blodtryk hos en gruppe af personer. Epidemiologi og biostatistik. Uge, torsdag. Erik Parner, Afdeling for Biostatistik.

Læs mere

Statistik Lektion 4. Variansanalyse Modelkontrol

Statistik Lektion 4. Variansanalyse Modelkontrol Statistik Lektion 4 Variansanalyse Modelkontrol Eksempel Spørgsmål: Er der sammenhæng mellem udetemperaturen og forbruget af gas? Y : Forbrug af gas (gas) X : Udetemperatur (temp) Scatterplot SPSS: Estimerede

Læs mere

Tema. Dagens tema: Indfør centrale statistiske begreber.

Tema. Dagens tema: Indfør centrale statistiske begreber. Tema Dagens tema: Indfør centrale statistiske begreber. Model og modelkontrol Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. konfidensintervaller Vi tager udgangspunkt i Ex. 3.1 i

Læs mere

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode

Oversigt. 1 Gennemgående eksempel: Højde og vægt. 2 Korrelation. 3 Regressionsanalyse (kap 11) 4 Mindste kvadraters metode Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Oversigt 1 Gennemgående eksempel: Højde og vægt 2 Korrelation 3 Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse

Læs mere

Statistiske principper

Statistiske principper Statistiske principper 1) Likelihood princippet - Maximum likelihood estimater - Likelihood ratio tests - Deviance 2) Modelbegrebet - Modelkontrol 3) Sufficient datareduktion 4) Likelihood inferens i praksis

Læs mere

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt.

Sammenhængsanalyser. Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. Sammenhængsanalyser Et eksempel: Sammenhæng mellem rygevaner som 45-årig og selvvurderet helbred som 51 blandt mænd fra Københavns amt. rygevaner som 45 årig * helbred som 51 årig Crosstabulation rygevaner

Læs mere

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller

Statistik II 1. Lektion. Sandsynlighedsregning Analyse af kontingenstabeller Statistik II 1. Lektion Sandsynlighedsregning Analyse af kontingenstabeller Kursusbeskrivelse Omfang 5 kursusgange (forelæsning + opgaveregning) 5 kursusgange (mini-projekt) Emner Analyse af kontingenstabeller

Læs mere

Forelæsning 11: Kapitel 11: Regressionsanalyse

Forelæsning 11: Kapitel 11: Regressionsanalyse Kursus 02402 Introduktion til Statistik Forelæsning 11: Kapitel 11: Regressionsanalyse Per Bruun Brockhoff DTU Compute, Statistik og Dataanalyse Bygning 324, Rum 220 Danmarks Tekniske Universitet 2800

Læs mere

Statistiske Modeller 1: Kontingenstabeller i SAS

Statistiske Modeller 1: Kontingenstabeller i SAS Statistiske Modeller 1: Kontingenstabeller i SAS Jens Ledet Jensen October 31, 2005 1 Indledning Som vist i Notat 1 afsnit 13 er 2 log Q for et test i en multinomialmodel ækvivalent med et test i en poissonmodel.

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Logistisk Regression - fortsat

Logistisk Regression - fortsat Logistisk Regression - fortsat Likelihood Ratio test Generel hypotese test Modelanalyse Indtil nu har vi set på to slags modeller: 1) Generelle Lineære Modeller Kvantitav afhængig variabel. Kvantitative

Læs mere

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse. Tema Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. (Fx. x. µ) Hypotese og test. Teststørrelse. (Fx. H 0 : µ = µ 0 ) konfidensintervaller

Læs mere

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006

Økonometri 1. Kvalitative variabler. Kvalitative variabler. Dagens program. Kvalitative variable 8. marts 2006 Dagens program Økonometri 1 Kvalitative variable 8. marts 2006 Kvalitative variabler som forklarende variabler i en lineær regressionsmodel (Wooldridge kap. 7.1-7.4) Kvalitative variabler generelt Dummy

Læs mere

Multipel Lineær Regression

Multipel Lineær Regression Multipel Lineær Regression Trin i opbygningen af en statistisk model Repetition af MLR fra sidst Modelkontrol Prædiktion Kategoriske forklarende variable og MLR Opbygning af statistisk model Specificer

Læs mere

Eksamen i Statistik for biokemikere. Blok

Eksamen i Statistik for biokemikere. Blok Eksamen i Statistik for biokemikere. Blok 2 2007. Vejledende besvarelse 22-01-2007, Niels Richard Hansen Bemærkning: Flere steder er der givet en argumentation (f.eks. baseret på konfidensintervaller)

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvalitative egenskaber og dummyvariabler Kvantitative metoder 2 Dummyvariabler 28. marts 2007 Vi har (hovedsagligt) set på kvantitative variabler (løn, priser, forbrug, indkomst, )... Men hvad med kvalitative

Læs mere

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele

Anvendt Statistik Lektion 5. Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Anvendt Statistik Lektion 5 Sammenligning af to grupper * Sammenligning af middelværdier * Sammenligning af andele Motiverende eksempel Antal minutter brugt på rengøring/madlavning: Rengøring/Madlavning

Læs mere

Morten Frydenberg 14. marts 2006

Morten Frydenberg 14. marts 2006 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik 1 RESUME: 2 2. gang: 2006 Institut for Biostatistik, Århus Universitet MPH 1. studieår Specialmodul 4 Cand. San. uddannelsen

Læs mere

Statistik og skalavalidering Synopsis. Eksamensnumre 15, 33 og 45

Statistik og skalavalidering Synopsis. Eksamensnumre 15, 33 og 45 Statistik og skalavalidering Synopsis Københavns Universitet Folkesundhedsvidenskab, 7. semester Typografiske enheder: 22.615 December 2010 Indholdsfortegnelse 1.0 Indledning... 3 1.1 Karakteristika af

Læs mere

Morten Frydenberg 26. april 2004

Morten Frydenberg 26. april 2004 Introduktion til Logistisk Regression Morten Frydenberg, Inst. f. Biostatistik RESUME: 2 2. gang: 2002 Institut for Biostatistik, Århus Universitet MPH. studieår Specialmodul 4 Cand. San. uddannelsen.

Læs mere

Logistisk regression

Logistisk regression Logistisk regression Anvendt statistik Anders Tolver Jensen Institut for Grundvidenskab og Miljø Onsdag d. 25/2-2009 ATJ (IGM KU-LIFE) Logistisk regression Anvendt statistik 25/2-2009 1 / 12 (Multinomial)

Læs mere

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser

Mantel-Haenszel analyser. Stratificerede epidemiologiske analyser Mantel-Haensel analyser Stratificerede epidemiologiske analyser 1 Den epidemiologiske synsvinkel: 1) Oftest asymmetriske (kausale) sammenhænge (Eksposition Sygdom/død) 2) Risikoen vurderes bedst ved hjælp

Læs mere

Synopsis til kursus i Statistik og skalavalidering på Folkesundhedsvidenskab

Synopsis til kursus i Statistik og skalavalidering på Folkesundhedsvidenskab Synopsis til kursus i Statistik og skalavalidering på Folkesundhedsvidenskab Eksamensnr. 26, 41 og 11 Anslag (uden tabeller og figurer): 23.933 1 1. Indledning...3 2. Deskriptiv statistik...3 3. Indledende

Læs mere

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser

Uge 43 I Teoretisk Statistik, 21. oktober Forudsigelser Uge 43 I Teoretisk Statistik,. oktober 3 Simpel lineær regressionsanalyse Forudsigelser Fortolkning af regressionsmodellen Ekstreme observationer Transformationer Sammenligning af to regressionslinier

Læs mere

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable

Faculty of Health Sciences. Logistisk regression: Kvantitative forklarende variable Faculty of Health Sciences Logistisk regression: Kvantitative forklarende variable Susanne Rosthøj Biostatistisk Afdeling Institut for Folkesundhedsvidenskab Københavns Universitet sr@biostat.ku.dk Sammenhæng

Læs mere

1 Hb SS Hb Sβ Hb SC = , (s = )

1 Hb SS Hb Sβ Hb SC = , (s = ) PhD-kursus i Basal Biostatistik, efterår 2006 Dag 6, onsdag den 11. oktober 2006 Eksempel 9.1: Hæmoglobin-niveau og seglcellesygdom Data: Hæmoglobin-niveau (g/dl) for 41 patienter med en af tre typer seglcellesygdom.

Læs mere

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1

Økonometri 1. Dummyvariabler 13. oktober Økonometri 1: F10 1 Økonometri 1 Dummyvariabler 13. oktober 2006 Økonometri 1: F10 1 Dagens program Dummyvariabler i den multiple regressionsmodel (Wooldridge kap. 7.3-7.6) Dummy variabler for kvalitative egenskaber med flere

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression Indhold 1 Multipel lineær regression 2 1.1 Regression med 2 eksponeringsvariable......................... 2 1.2 Fortolkning og estimation................................ 3 1.3 AnovaTabel og multipel R

Læs mere

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven.

3.600 kg og den gennemsnitlige fødselsvægt kg i stikprøven. PhD-kursus i Basal Biostatistik, efterår 2006 Dag 1, onsdag den 6. september 2006 Eksempel: Sammenhæng mellem moderens alder og fødselsvægt I dag: Introduktion til statistik gennem analyse af en stikprøve

Læs mere

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06)

Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Afdeling for Biostatistik Bo Martin Bibby 23. november 2006 Løsning til eksamensopgaven i Basal Biostatistik (J.nr.: 1050/06) Vi betragter 4699 personer fra Framingham-studiet. Der er oplysninger om follow-up

Læs mere

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen

Velkommen til kurset. Teoretisk Statistik. Lærer: Niels-Erik Jensen 1 Velkommen til kurset Teoretisk Statistik Lærer: Niels-Erik Jensen Plan for i dag: 1. Eks: Er euro'en skæv? 4. Praktiske informationer 2. Eks: Regressionsmodel (kap. 1) 5. Lidt om kursets indhold 3. Hvad

Læs mere

1 Multipel lineær regression

1 Multipel lineær regression 1 Multipel lineær regression Regression med 2 eksponeringsvariable Fortolkning og estimation AnovaTabel og multipel R 2 Ensidet variansanalyse: Dummy kodning Kovariansanalyse og effektmodifikation Tosidet

Læs mere

Konfidensintervaller og Hypotesetest

Konfidensintervaller og Hypotesetest Konfidensintervaller og Hypotesetest Konfidensinterval for andele χ -fordelingen og konfidensinterval for variansen Hypoteseteori Hypotesetest af middelværdi, varians og andele Repetition fra sidst: Konfidensintervaller

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22 Dagens Emner Likelihood teori Lineær regression (intro) p. 1/22 Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 ) = ( 1 2πσ 2)n/2 e 1 2σ 2 P n (x i µ) 2 er tætheden som

Læs mere

Fokus på Forsyning. Datagrundlag og metode

Fokus på Forsyning. Datagrundlag og metode Fokus på Forsyning I notatet gennemgås datagrundlaget for brancheanalysen af forsyningssektoren sammen med variable, regressionsmodellen og tilhørende tests. Slutteligt sammenfattes analysens resultater

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1

Økonometri 1. Inferens i den lineære regressionsmodel 2. oktober Økonometri 1: F8 1 Økonometri 1 Inferens i den lineære regressionsmodel 2. oktober 2006 Økonometri 1: F8 1 Dagens program Opsamling om asymptotiske egenskaber: Asymptotisk normalitet Asymptotisk efficiens Test af flere lineære

Læs mere

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom.

MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. MPH specialmodul i biostatistik og epidemiologi SAS-øvelser vedr. case-control studie af malignt melanom. For at I skal kunne regne på tallene fra undersøgelsen har vi taget en delmængde af variablene

Læs mere

9. Chi-i-anden test, case-control data, logistisk regression.

9. Chi-i-anden test, case-control data, logistisk regression. Biostatistik - Cand.Scient.San. 2. semester Karl Bang Christensen Biostatististisk afdeling, KU kach@biostat.ku.dk, 35327491 9. Chi-i-anden test, case-control data, logistisk regression. http://biostat.ku.dk/~kach/css2014/

Læs mere

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1

Økonometri 1. Inferens i den lineære regressionsmodel 25. september Økonometri 1: F6 1 Økonometri 1 Inferens i den lineære regressionsmodel 25. september 2006 Økonometri 1: F6 1 Oversigt: De næste forelæsninger Statistisk inferens: hvorledes man med udgangspunkt i en statistisk model kan

Læs mere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere

Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Indvandrere og efterkommere i foreninger er frivillige i samme grad som danskere Bilag I afrapportering af signifikanstest i tabeller i artikel er der benyttet følgende illustration af signifikans: * p

Læs mere

Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1

Basal Statistik Logistisk Regression. Dagens Tekst E Sædvanlig Linear Regression (Repetition) Basal Statistik - Logistisk regression 1 Basal Statistik Logistisk Regression Judith L. Jacobsen, PhD. Lene Theil Skovgaard http://staff.pubhealth.ku.dk/~lts/basal13_ jlj@statcon.dk Dagens Tekst Logistisk regression Binære data Logit transformation

Læs mere

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge

Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Appendiks A. Entreprenørskabsundervisning i befolkningen, specielt blandt unge Redegørelsen ovenfor er baseret på statistiske analyser, der detaljeres i det følgende, et appendiks for hvert afsnit. Problematikken

Læs mere

Introduktion til GLIMMIX

Introduktion til GLIMMIX Introduktion til GLIMMIX Af Jens Dick-Nielsen jens.dick-nielsen@haxholdt-company.com 21.08.2008 Proc GLIMMIX GLIMMIX kan bruges til modeller, hvor de enkelte observationer ikke nødvendigvis er uafhængige.

Læs mere

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER

UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER UNDERVISNINGSEFFEKT-MODELLEN 2006 METODE OG RESULTATER Undervisningseffekten udregnes som forskellen mellem den forventede og den faktiske karakter i 9. klasses afgangsprøve. Undervisningseffekten udregnes

Læs mere

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00

Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Skriftlig Eksamen ST501: Science Statistik Mandag den 11. juni 2007 kl. 15.00 18.00 Forskningsenheden for Statistik IMADA Syddansk Universitet Alle skriftlige hjælpemidler samt brug af lommeregner er tilladt.

Læs mere

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger

Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Analyse af bivirkninger på besætningsniveau efter vaccination med inaktiveret BlueTongue Virus (BTV) serotype 8 i danske malkekvægsbesætninger Af Karen Helle Sloth og Flemming Skjøth, AgroTech Sammendrag

Læs mere

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression

ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression ! ØVELSER Statistik, Logistikøkonom Lektion 8 og 9: Simpel og multipel lineær regression Eksempel 1 AT OPSTILLE EN SIMPEL LINEÆR REGRESSIONSMODEL - GENNEMGÅS AF JAKOB Et stort lager måler løbende sine

Læs mere

Center for Statistik. Multipel regression med laggede responser som forklarende variable

Center for Statistik. Multipel regression med laggede responser som forklarende variable Center for Statistik Handelshøjskolen i København MPAS Tue Tjur November 2006 Multipel regression med laggede responser som forklarende variable Ved en tidsrække forstås i almindelighed et datasæt, der

Læs mere

02402 Løsning til testquiz02402f (Test VI)

02402 Løsning til testquiz02402f (Test VI) 02402 Løsning til testquiz02402f (Test VI) Spørgsmål 4. En ejendomsmægler ønsker at undersøge om hans kunder får mindre end hvad de har forlangt, når de sælger deres bolig. Han har regisreret følgende:

Læs mere

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data

Program. t-test Hypoteser, teststørrelser og p-værdier. Hormonkonc.: statistisk model og konfidensinterval. Hormonkoncentration: data Faculty of Life Sciences Program t-test Hypoteser, teststørrelser og p-værdier Claus Ekstrøm E-mail: ekstrom@life.ku.dk Resumé og hængepartier fra sidst. Eksempel: effekt af foder på hormonkoncentration

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression: Definitioner For en binær (0/) variabel Y antager vi P(Y)p P(Y0)-p Eksempel: Bil til arbejde vs alder

Læs mere

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression

Logistisk Regression. Repetition Fortolkning af odds Test i logistisk regression Logistisk Regression Repetition Fortolkning af odds Test i logistisk regression Logisitks Regression: Repetition Y {0,} binær afhængig variabel X skala forklarende variabel π P( Y X x) Odds(Y X x) π /(-π

Læs mere

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger

Teoretisk Statistik, 2. december 2003. Sammenligning af poissonfordelinger Uge 49 I Teoretisk Statistik, 2. december 2003 Sammenligning af poissonfordelinger o Generel teori o Sammenligning af to poissonfordelinger o Eksempel Opsummering om multinomialfordelinger Fishers eksakte

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 / 43 Indledning Sammenligning af middelværdien i to grupper indenfor en stikprøve kan

Læs mere

Kapitel 12 Variansanalyse

Kapitel 12 Variansanalyse Kapitel 12 Variansanalyse Peter Tibert Stoltze stat@peterstoltzedk Elementær statistik F2011 Version 7 april 2011 1 Indledning 2 Ensidet variansanalyse 3 Blokforsøg 4 Vekselvirkning 1 Indledning 2 Ensidet

Læs mere

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test]

Anvendt Statistik Lektion 6. Kontingenstabeller χ 2- test [ki-i-anden-test] Anvendt Statistik Lektion 6 Kontingenstabeller χ 2- test [ki-i-anden-test] Kontingenstabel Formål: Illustrere/finde sammenhænge mellem to kategoriske variable Opbygning: En celle for hver kombination af

Læs mere

Fagplan for statistik, efteråret 2015

Fagplan for statistik, efteråret 2015 Side 1 af 7 M Fagplan for statistik, efteråret 20 Litteratur Kenneth Hansen & Charlotte Koldsø (HK): Statistik I økonomisk perspektiv, Hans Reitzels Forlag 2012, 2. udgave, ISBN 9788741256047 HypoStat

Læs mere

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at Likelihood teori Lineær regression (intro) Dagens Emner Likelihood-metoden M : X i N(µ,σ 2 ) hvor µ og σ 2 er ukendte Vi har, at L(µ,σ 2 1 ) = ( 2πσ 2)n/2 e 1 2 P n (xi µ)2 er tætheden som funktion af

Læs mere

To-sidet varians analyse

To-sidet varians analyse To-sidet varians analyse Repetition En-sidet ANOVA Parvise sammenligninger, Tukey s test Model begrebet To-sidet ANOVA Tre-sidet ANOVA Blok design SPSS ANOVA - definition ANOVA (ANalysis Of VAriance),

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Opgave fra sidst (Gauss-Markov teoremet) Kvantitative metoder Inferens i den lineære regressionsmodel 7. marts 007 Opgave: Vis at hvis M = I X X X X ( ' ) ' er M idempoten dvs der gælder gælder M = M '

Læs mere

Test nr. 6 af centrale elementer 02402

Test nr. 6 af centrale elementer 02402 QuizComposer 2001- Olaf Kayser & Gunnar Mohr Contact: admin@quizcomposer.dk Main site: www.quizcomposer.dk Test nr. 6 af centrale elementer 02402 Denne quiz angår forståelse af centrale elementer i kursus

Læs mere

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008

Logistisk regression. Basal Statistik for medicinske PhD-studerende November 2008 Logistisk regression Basal Statistik for medicinske PhD-studerende November 2008 Bendix Carstensen Steno Diabetes Center, Gentofte & Biostatististisk afdeling, Københavns Universitet bxc@steno.dk www.biostat.ku.dk/~bxc

Læs mere

Uge 13 referat hold 4

Uge 13 referat hold 4 Uge 13 referat hold 4 Gruppearbejde 1a: Er variablen kvotient inkluderet på en hensigtsmæssig måde? Der er to problemer med kvotient: 1) Den er trunkeret ved 6.9 og 10.0, løsningen er at indføre dummyer

Læs mere

Program. 1. Flersidet variansanalyse 1/11

Program. 1. Flersidet variansanalyse 1/11 Program 1. Flersidet variansanalyse 1/11 To-sidet variansanalyse Eksempel: (opgave 14.2 side 587) vitamin indhold i frossen juice målt for ialt 9 kombinationer af mærke (Rich food, Sealed-sweet, Minute

Læs mere

Module 12: Mere om variansanalyse

Module 12: Mere om variansanalyse Module 12: Mere om variansanalyse 12.1 Parreded observationer.................. 1 12.2 Faktor med 2 niveauer (0-1 variabel)......... 3 12.3 Tosidig variansanalyse med tilfældig virkning..... 9 12.3.1 Uafhængighedsbetragtninger..........

Læs mere

Kvantitative metoder 2

Kvantitative metoder 2 Kvantitative metoder 2 Inferens i den lineære regressionsmodel 7. marts 2007 regressionsmodel 1 Opgave fra sidst (Gauss-Markov teoremet) Opgave: Vis at hvis M = I X X X X 1 ( ' ) ' er M idempoten dvs der

Læs mere

Kapitel 8 Chi-i-anden (χ 2 ) prøven

Kapitel 8 Chi-i-anden (χ 2 ) prøven Kapitel 8 Chi-i-anden (χ 2 ) prøven Peter Tibert Stoltze stat@peterstoltze.dk Elementær statistik F2011 1 / 19 Indledning Forskelle mellem stikprøver undersøges med z-test eller t-test for data målt på

Læs mere

Modul 12: Regression og korrelation

Modul 12: Regression og korrelation Forskningsenheden for Statistik ST01: Elementær Statistik Bent Jørgensen Modul 12: Regression og korrelation 12.1 Sammenligning af to regressionslinier........................ 1 12.1.1 Test for ens hældning............................

Læs mere

Anvendt Statistik Lektion 7. Simpel Lineær Regression

Anvendt Statistik Lektion 7. Simpel Lineær Regression Anvendt Statistik Lektion 7 Simpel Lineær Regression 1 Er der en sammenhæng? Plot af mordraten () mod fattigdomsraten (): Scatterplot Afhænger mordraten af fattigdomsraten? 2 Scatterplot Et scatterplot

Læs mere

ANALYSENOTAT Portræt af iværksætterne

ANALYSENOTAT Portræt af iværksætterne ANALYSENOTAT Portræt af iværksætterne AF CHEFKONSULENT MALTHE MUNKØE ne har stor betydning for samfundsøkonomien: hvem er de? ne har stor betydning for samfundsøkonomien: de er med til at identificere

Læs mere

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater.

Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. Sammenhængen mellem elevernes trivsel og elevernes nationale testresultater. 1 Sammenfatning Der er en statistisk signifikant positiv sammenhæng mellem opnåelse af et godt testresultat og elevernes oplevede

Læs mere

De variable, som er inkluderet i de forskellige modeller, er følgende:

De variable, som er inkluderet i de forskellige modeller, er følgende: DUL II. Undersøgelse af hvilke faktorer, der er væsentlige for at understøtte, at der er klare og veltilrettelagte mål tilstede i arbejdet med elevernes læring Følgende er en statistisk analyse af ovenstående

Læs mere