Matematisk Modellering 1 Hjælpeark



Relaterede dokumenter
Dagens Temaer. Test for lineær regression. Test for lineær regression - via proc glm. k normalfordelte obs. rækker i proc glm. p. 1/??

Normalfordelingen. Statistik og Sandsynlighedsregning 2

Indholdsfortegnelse Generelt Diskrete stokastiske variable: Kontinuerte stokastiske variable: Regneregler for stokastiske variable

hvor i er observationsnummeret, som løber fra 1 til stikprøvestørrelsen n, X i

Statistik Lektion 8. Parrede test Test for forskel i andele Test for ens varians Gensyn med flyskræk!

Konfidens intervaller

Statistik 8. gang 1 KONFIDENSINTERVALLER. Konfidensintervaller: kapitel 11. Valg og test af fordelingsfunktion

Statistiske test. Efteråret 2010 Jens Friis, AAU. Hjemmeside :

Note til styrkefunktionen

Motivation. En tegning

Test i to populationer. Hypotesetest for parrede observationer Test for ens varians Gensyn med flyskræk!

9. Binomialfordelingen

Dagens program. Estimation: Kapitel Eksempler på middelrette og/eller konsistente estimator (de sidste fra sidste forelæsning)

Scorer FCK "for mange" mål i det sidste kvarter?

PhD-kursus i Basal Biostatistik, efterår 2006 Dag 2, onsdag den 13. september 2006

Kursus Introduktion til Statistik. Forelæsning 7: Kapitel 7 og 8: Statistik for to gennemsnit, ( , ) Per Bruun Brockhoff

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Generelle lineære modeller

Konfidensinterval for µ (σ kendt)

STATISTIKNOTER Simple normalfordelingsmodeller

Forelæsning 6: Kapitel 7: Hypotesetest for gennemsnit (one-sample setup)

Simpel Lineær Regression. Opsplitning af variationen Determinations koefficient Variansanalyse F-test Model-kontrol

Statistik Lektion 7. Hypotesetest og kritiske værdier Type I og Type II fejl Styrken af en test Sammenligning af to populationer

Stikprøvefordelinger og konfidensintervaller

Anvendt Statistik Lektion 3. Punkt- og intervalestimater Konfidensintervaller Valg af stikprøvestørrelse

Løsninger til kapitel 7

Spørgsmål 3 (5 %) Bestem sandsynligheden for at et tilfældigt valgt vindue har en fejl ved listerne, når man ved at der er fejl i glasset.

13. februar Resumé: En statistisk analyse resulterer ofte i : Et estimat ˆ θ med en tilhørende se( ˆ θ )

Dagens Emner. Likelihood teori. Lineær regression (intro) p. 1/22

Vejledende besvarelser til opgaver i kapitel 15

Program. 1. Repetition: konfidens-intervaller. 2. Hypotese test, type I og type II fejl, signifikansniveau, styrke, en- og to-sidede test.

Sætning: Middelværdi og varians for linearkombinationer. Lad X 1,X 2,...,X n være stokastiske variable. Da gælder. Var ( a 0 + a 1 X a n X n

Praktisk info. Statistisk analyse af en enkelt stikprøve: kendt eller ukendt varians Sandsynlighedsregning og Statistik (SaSt) I tirsdags.

30. august Epidemiologi og biostatistik. Forelæsning 3 Uge 2, torsdag d. 8. september 2005 Michael Væth, Afdeling for Biostatistik.

Ensidet variansanalyse

Mikroøkonomi, matematik og statistik Eksamenshjemmeopgave december 2007

Program. Ensidet variansanalyse Sammenligning af grupper. Statistisk model og hypotese. Eksempel: Aldersfordeling i hjertestudie

Hypotese test. Repetition fra sidst Hypoteser Test af middelværdi Test af andel Test af varians Type 1 og type 2 fejl Signifikansniveau

Estimation og test i normalfordelingen

Økonometri 1. Definition og motivation. Definition og motivation. Dagens program. Den multiple regressionsmodel 15. februar 2006

Statistik ved Bachelor-uddannelsen i folkesundhedsvidenskab

Program. Modelkontrol og prædiktion. Multiple sammenligninger. Opgave 5.2: fosforkoncentration

Sammenligning af to grupper

Tema. Model og modelkontrol ( Fx. en normalfordelt obs. række m. kendt varians) Estimation af parametre. Fordeling. Hypotese og test. Teststørrelse.

4. september π B = Lungefunktions data fra tirsdags Gennemsnit l/min

Elementær Matematik. Polynomier

Dagens Emner. Likelihood-metoden. MLE - fortsat MLE. Likelihood teori. Lineær regression (intro) Vi har, at

Kvantitative metoder 2

24. januar Epidemiologi og biostatistik. Forelæsning 1 Uge 1, tirsdag. Niels Trolle Andersen, Afdelingen for Biostatistik.

Uge 48 II Teoretisk Statistik 27. november Numerisk modelkontrol af diskrete fordelinger: intro

1 Punkt- og intervalestimation Punktestimatorer: Centralitet(bias) og efficiens... 2

Reminder: Hypotesetest for én parameter. Økonometri: Lektion 4. F -test Justeret R 2 Aymptotiske resultater. En god model

Renteformlen. Erik Vestergaard

Meningsmålinger KLADDE. Thomas Heide-Jørgensen, Rosborg Gymnasium & HF, 2017

Forelæsning 8: Inferens for varianser (kap 9)

Økonometri 1. Inferens i den lineære regressionsmodel 29. september Økonometri 1: F7 1

Sandsynlighedsfordelinger for kontinuerte data på interval/ratioskala

29. januar Epidemiologi og biostatistik Forelæsning 2 Uge 1, torsdag 2. februar 2006 Michael Væth, Afdeling for Biostatistik.

Estimation ved momentmetoden. Estimation af middelværdiparameter

Projekt 2.3 Det gyldne snit og Fibonaccitallene

Statistik Lektion 1. Introduktion Grundlæggende statistiske begreber Deskriptiv statistik Sandsynlighedsregning

Gamle eksamensopgaver. Diskret Matematik med Anvendelser (DM72) & Diskrete Strukturer(DM504)

Maja Tarp AARHUS UNIVERSITET

Asymptotisk optimalitet af MLE

DATV: Introduktion til optimering og operationsanalyse, Bin Packing Problemet

Statistik i basketball

Modul 5: Test for én stikprøve

Modul 14: Goodness-of-fit test og krydstabelanalyse

Den flerdimensionale normalfordeling

da er X 1 + X 2 N(µ 1 + µ 2,σ1 2 + σ2) Hvis X 1,...,X n er uafhængige og X r N(µ,σ 2 ), da er X = 1 n (X X n ) N(µ, σ2

vejer (med fortegn). Det vil vi illustrere visuelt og geometrisk for (2 2)-matricer og (3 3)-matricer i enote 6.

Module 12: Mere om variansanalyse

Modul 7: Eksempler. 7.1 Beskrivende dataanalyse Diagrammer. Bent Jørgensen. Forskningsenheden for Statistik ST501: Science Statistik

Vejledende opgavebesvarelser

Bjælkeoptimering. Opgave #1. Afleveret: Version: 2 Revideret: Optimering, ressourcer og miljø. Anders Løvschal, s022365

Cykelfysik. Om udveksling og kraftoverførsel

antal gange krone sker i første n kast = n

Uge 40 I Teoretisk Statistik, 30. september 2003

Sandsynlighedsregning og statistisk

Øvelse i kvantemekanik Måling af Plancks konstant

1 Start og afslutning. Help.

Oversigt. Course 02402/02323 Introducerende Statistik. Forelæsning 3: Kontinuerte fordelinger. Per Bruun Brockhoff

To-sidet variansanalyse

Oversigt. Kursus 02402/02323 Introducerende Statistik. Forelæsning 12: Inferens for andele. Klaus K. Andersen og Per Bruun Brockhoff

Lys og gitterligningen

Højere Teknisk Eksamen maj Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Velkommen til ABC Analyzer! Grundkursusmanual 2 vil introducere dig til ABC Analyzers mere avancerede funktioner, bl.a.:

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] (i,ii,iv). Udregn første fundamentalform af følgende flader

Maple 11 - Chi-i-anden test

Modul 3: Kontinuerte stokastiske variable

9. Chi-i-anden test, case-control data, logistisk regression.

Supplement til Kreyszig

Basal statistik. 30. januar 2007

FACITLISTE TIL KOMPLEKSE TAL

Vi kalder nu antal prøverør blandt de 20, hvor der ikke ses vækst for X.

Statistik og Sandsynlighedsregning 2

Adgangsgivende eksamen (udeladt kategori: Matematisk student med matematik på niveau A)

DATV: Introduktion til optimering og operationsanalyse, Følsomhed af Knapsack Problemet

Matematik A. Studentereksamen. Forberedelsesmateriale. Forsøg med digitale eksamensopgaver med adgang til internettet.

Opgaver til Maple kursus 2012

Transkript:

Matematisk Modellerig Hjælpeark Kaare B. Mikkelse 2005090 3. september 2007 Idhold Formler 2 2 Aalyse af k ormalfordelte prøver 2 2. Modelcheck............................................ 2 2.2 Test af H 0σ 2 : σ = σ 2 =... = σ k................................ 3 2.3 Test af H 0µ : µ = µ 2 =... = µ k................................. 3 2.4 Kofidesitervaller....................................... 4 2.5 k = 2............................................... 4 2.6 Test af µ = µ 0 og σ 2 = σ 2 0, for k =.............................. 5 3 Multiomialfordelige 6 3. Propositio 7........................................... 6 3.2 Test af Hypotese π = π 0 (simpel hypotese).......................... 6 3.3 Geerelt tilfælde......................................... 7 4 Lieær Regressio 7 4. Test af lieær regressio..................................... 7 4.2 Modeloversigt........................................... 8 4.3 M 2 M 3............................................. 8 4.4 M 2 M3............................................. 9 4.5 M3 M 4............................................. 9 4.6 M 3 M 4............................................. 0 5 Lieære ormalfordeliger - geerelt 0 5. Til-og-fra-formel......................................... 0 6 Beregigsskemaer

Kaare Mikkelse Hjælpeark til modellerig- eksame Formler SSD 2 = SP xt = x i t i i= (s. 22) SSD = USS S2 s 2 = S2 (USS ) (begge s. 64) ( k k ) i ( x i. x..) 2 Si 2 = i i= i= (s.03, eller 6) k s 2 i= = f (i)s 2 k (i) i= = SSD (i) f k i= f (i) (s. 5) 2 Aalyse af k ormalfordelte prøver 2. Modelcheck S.2. Hvis ma vil udersøge om et datasæt er ormalfordelt, plottes det i et fraktildiagram (se s. 3 for skabelo). Hvis dataee ligger på omtret e ret lije, bliver modelle: Som afskrevet s. 0-03 M 0 : x ij N(µ i, σ 2 i ), j =,..., i, i =,..., k µ i x i. N(µ i, σ2 i i ) σ 2 i s 2 (i) σ2 i χ 2 (f (i) )/f (i) 2

Kaare Mikkelse Hjælpeark til modellerig- eksame 2.2 Test af H 0σ 2 : σ = σ 2 =... = σ k 2 l Q(x) Ba = C hvor k 2 l Q(x) = f l s 2 f (i) l s 2 (i) C = + i= χ 2 (k ) [( k 3(k ) i= f (i) ) f hvor f = i f (i) * gælder (approksimativt) hvis f (i) 2 Testsadsylighed: p obs (x) = F χ2 (k )(Ba) Hvis e udregig i håde giver 2 l Q(x) < 0, har ma begået e fehler! Hvis H 0σ 2 holder vad, står ma med: M : x ij N(µ i, σ 2 ), j =,..., i, i =,..., k µ i x i. N(µ i, σ2 ) i σ 2 s 2 = SSD k i= = SSD (i) σ 2 χ 2 (f )/f f f 2.3 Test af H 0µ : µ = µ 2 =... = µ k F (x) = s2 2 s 2 F (k,. k) Testsadsylighed: hvor s 2 2 = SSD 2 k p obs (x) = F F (k,. k) (F (x)) bemark at hvis hypotese godkedes, ædres middelværdistrukture, og dermed varias-estimatet. Det korte og det lage: M 2 : x i N(µ, σ 2 ), i =,..., µ x. = S σ2 N(µ, ) σ 2 s 2 σ 2 χ 2 (f)/f 3

Kaare Mikkelse Hjælpeark til modellerig- eksame 2.4 Kofidesitervaller 2 Geerelt: Ma tager variase af estimatet, udskifter σ 2 med dets estimat, tager e kvadratrod, og gager med t α/2 (f). Også kedt som [ est. ± Std.error t α/2 (f) Ellers: For σ 2 : [ f s 2 χ 2 α/2 (f ), f s 2 χ 2 α/2 (f ) hvor χ 2 α/2 (f ) og χ 2 α/2 (f ) beteger fraktiler. For µ i : x i. s 2 s 2 t α/2 (f ), x i. + t α/2 (f ) i i hvor t α/2 (f ) beteger e fraktil. 2.5 k = 2 3 Test af H 0σ 2 : σ 2 = σ 2 2 Lad s 2 umerator = max {s 2 (), s2 (2) }, og lad f umerator være de tilhørede frihedsgrader, og lad s 2 deomiator = mi {s2 (), s2 (2) }, med tilhørede frihedsgrader f deomiator. F (x) = s2 umerator s 2 deomiator Testørrelse: F (f umerator, f deomiator ) Testsadsylighed: p obs (x) = 2 [ F F (fumerator,f deomiator )(F (x)) Hvor F (f umerator, f deomiator ) er F-fordelige med f umerator frihedsgrader i tællere, og f deomiator frihedsgrader i ævere. 2 s. 04 3 s. 94-95 4

Kaare Mikkelse Hjælpeark til modellerig- eksame Skulle hypotese blive accepteret, er modelle så: x ij N(µ i, σ 2 ), i =, 2, j =,..., i µ i x. N(µ i, σ2 i ) σ 2 s 2 = f ()s 2 () + f (2)s 2 (2) f () + f (2) = SSD () + SSD (2) f () + f (2) σ 2 χ 2 (f )/f hvor f = f () + f (2) =. 2 Test af H 0 : µ = µ 2, for samme varias 4 x. x 2. t(x) = ( ) t(f ) s 2 + 2 Testsadsylighed 5 : p obs (x) = 2 [ F t(f)( t(x) ) hvor f = f () + f (2) = + 2 2 Test af H 0 : µ = µ 2, for forskellig varias x. x 2. t(x) = t( f) s 2 () / + s 2 (2) / 2 hvor t( f) er t-fordelige med f frihedsgrader. f ka reges som Testsadsylighed: f = s 2 () + s2 (2)! 2 s 2 () f () + s 2 (2) 2 f (2)! 2 [ p obs (x) = 2 F t( f) ( t(x) ) 2.6 Test af µ = µ 0 og σ 2 = σ 2 0, for k = 6 Test af µ = µ 0, σ 2 kedt u(x) = x. µ 0 N(0, ) σ 2 0 / 4 s 2 fudet s. 94 5 f fudet s. 95 6 s. 78-79 5

Kaare Mikkelse Hjælpeark til modellerig- eksame Testsadsylighed: Test af µ = µ 0, σ 2 ukedt Testsadsylighed: Test af σ 2 = σ 2 0 Testsadsylighed: p obs (x) = 2 [ Φ( u(x) ) u(x) = x. µ 0 t(f) s2 / p obs (x) = 2 [ F t(f) ( t(x) ) fs σ 2 0 χ 2 (f) 3 Multiomialfordelige 3. Propositio 7. 7 For x j > 0, j =,..., k og k x j = : { 2Fχ 2 (f)( fs ) hvis fs f σ0 2 σ0 2 2( F χ2 (f)( fs )) hvis fs f σ0 2 σ0 2 Model: Fuktioe g : Π (k) R π π x... πxj j... π x k k har maximum for ˆπ = ( x,..., x k,..., x k ) M 0 : X m(, π), π Π (k) det skal bemærkes at Π (k) = {π R k π j > 0, j =,..., k, k π j = } j= 3.2 Test af Hypotese π = π 0 (simpel hypotese) 8 2 l Q(x) = 2 k j= x j l ( x j e j ) χ 2 (k d) i det simple tilfælde er e = π 0 7 s. 305 8 s. 307-308 6

Kaare Mikkelse Hjælpeark til modellerig- eksame Testsadsylighed: p obs (x) = F χ2 (k d)( 2 l Q(x)) d er i dee sammehæg atal frie parametre uder hypotese. 3.3 Geerelt tilfælde I det geerelle tilfælde fides e ved at idsætte π(θ) i Testsadsylighed: L(θ) =! x!... x j!... x k! π (θ) x... π j (θ) xj... π k (θ) x k og få dette på e form så ma ka bruge Prop. 7. på de. Udkommet af dette,ˆθ, ka så puttes id i e = (e,..., e j,..., e k ) = (π (ˆθ),..., π j (ˆθ),..., π k (ˆθ)) p obs = F χ2 (k d)( 2 l Q(x)) d er i dee sammehæg atal frie parametre uder hypotese. 4 Lieær Regressio 4. Test af lieær regressio I det geerelle tilfælde er de eeste måde at plotte dataee i e graf, og se hvorvidt placere sig ligger lieært. Skulle det være tilfældet at der er flere måliger (over 0) for hver værdi af de forklarede variabel (t), således at serie ka deles op i k måliger, hvor alle i (> 0) måliger i de i te gruppe har samme t-værdi, ka ma gøre følgede 9 : Udgagspuktet er Dee model ka f.eks. tjekkes vha. k fraktilplot s. Holder de vad, testes: vha. Bartlett (se ovefor). Næste skridt er M 0 : X ij N(µ i, σ 2 i ) M : X ij N(µ i, σ 2 ) M 2 : X ij N(α + βt i, σ 2 ) Reduktioe fra M til M 2 ka testes vha. til-og-fra-formle: F (x) = SSD 02 SSD f 02 f s 2 = s2 2 s 2 F (k 2, k) 9 s.33-34 7

4.2 Modeloversigt 0 M 3 : X i N(α + β 0 t i, σ 2 ) Kaare Mikkelse Hjælpeark til modellerig- eksame hvor f = k p obs (x) = F F (k 2, k) (F (x)) Går det godt, står ma altså med: M 2 : X ij N(α + βt i, σ 2 ) β ˆβ = SP D ( xt σ 2 ) N β, α ˆα = [S x ˆβS ( t N(α, + t 2 ). σ 2 s 2 02 = 2 SSD 02 σ 2 χ 2 (f 02 )/f 02 hvor f 02 = 2 H 03 : β = β 0 H 04 : α = α 0 M 2 : X i N(α + βt i, σ 2 ) M 4 : X i N(α 0 + β 0 t i, σ 2 ) H03 : α = α 0 H 04 : β = β 0 M3 : X i N(α 0 + βt i, σ 2 ) 4.3 M 2 M 3 Test af H 03 : β = β 0 : t(x) = ˆβ β 0 s 2 02 / t( 2) Testsadsylighed: p obs (x) = 2 [ F t( 2) ( t(x) ) Holder de vad, er modelle som beskrevet i modeloversigte, og estimatere er: α ˆα M3 = x. β 0 t. N(α, σ2 ) σ 2 s 2 03 = {x i (ˆα M3 + β 0 t i )} 2 = i= [SSD 02 + ( ˆβ β 0 ) 2 σ 2 χ 2 ( )/( ) 0 s. 56, alt følgede er taget fra sidere 56-58 8

Kaare Mikkelse Hjælpeark til modellerig- eksame -α-kofidesiterval for α: [ ˆα ± s 2 03 ( )t α/2(f 03 ) 4.4 M 2 M 3 Test af H 03 : α = α 0 t(x) = s 2 02 ˆα α 0 ( ) t( 2) + t 2. Testsadsylighed: p obs (x) = 2 [ F t( 2) ( t(x) ) Holder de vad, er modelle som beskrevet i modeloversigte, og estimatere er: β ˆβ i= M 3 = t i(x i α 0 ) = Sp xt α 0 S t σ 2 N(β, ) i= t2 i USS t USS t -α-kofidesiterval for β: σ 2 s 2 03 = {x i (α 0 + ˆβ M 2 t i)} 2 = 3 i= [ USS x + α0 2 2α 0 S x ˆβ M 2 USS 3 t σ 2 χ 2 ( )/( ) ˆβ ± s 2 03 t α/2 (f USS 03) t 4.5 M 3 M 4 Test af H 04 : β = β 0 Testsadsylighed: t(x) = ˆβ M 3 β 0 s 2 03 /USS t = SP xt α 0 S t β 0 USS t s 2 03 /USS t p obs (x) = 2 [ F t( ) ( t(x) ) t( ) Holder de vad, er modelle som beskrevet i modeloversigte, og estimatere er: σ 2 s 2 04 = {x i (α 0 + β 0 t i )} 2 = i= [ USSx + α 2 0 + β 2 0USS t 2α 0 S x 2β 0 SP xt + 2α 0 β 0 S t σ 2 χ 2 ()/ 9

Kaare Mikkelse Hjælpeark til modellerig- eksame 4.6 M 3 M 4 Test af H 04 : α = α 0 t(x) = ˆα M 3 α 0 s 2 03 t( ) Testsadsylighed: p obs (x) = 2 [ F t( ) ( t((x)) ) Holder de vad, er modelle som beskrevet i modeloversigte, og estimatere som beskrevet ovefor. 5 Lieære ormalfordeliger - geerelt 5. Til-og-fra-formel Omdrejigspuktet er til-og-fra-formle. Her regede på overgage M l M m F (x) = x P l (x) 2 x P m(x) 2 ( d l ) ( d m) s 2 0 F (d m d l, d ) Med testsadsylighed p obs (x) = F F (dm d l, d )(F (x)) Det er vist s. 87 hvor ma fider størrelsere i et GLM-prit. Det skal iøvrigt bemærkes, at skal ma rege på e overgag fra gruppe-afhægig spredig, til es spredig, så gøres det emt og smertefrit vha. stadardmetode, se afsit 2.2 ovefor. s. 87 0

Kaare Mikkelse Hjælpeark til modellerig- eksame 6 Beregigsskemaer Taget s. 59: Udregigsskema for model M q x t S S x S t SP SP xt SSD USS x S2 x USS t S2 t SPD SP xt SxSt ˆβ SP D xt ˆα [S x ˆβS t SSD 0q SSD x SP D2 xt s 2 0q 2 SSD 0q

Kaare Mikkelse Hjælpeark til modellerig- eksame Taget s. 59: Udregigsskema for model M q x t S S x S t SP SP xt SSD USS x S2 x USS t S2 t SPD SP xt SxSt ˆβ SP D xt ˆα [S x ˆβS t SSD 0q SSD x SP D2 xt s 2 0q 2 SSD 0q 2