Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Relaterede dokumenter
Førsteordens lineære differentialligninger

Lineære differentialligningers karakter og lineære 1. ordens differentialligninger

matx.dk Differentialregning Dennis Pipenbring

MM501 forelæsningsslides

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Differentialligninger med TI-Interactive!

Mujtaba og Farid Integralregning

Introduktion til differentialregning 1. Jens Siegstad og Annegrethe Bak

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a

Matematisk modellering og numeriske metoder

Eksponentielle sammenhænge

Diskriminantformlen. Frank Nasser. 11. juli 2011

Matematisk modellering og numeriske metoder. Lektion 1

af koblede differentialligninger (se Apostol Bind II, s 229ff) 3. En n te ordens differentialligning

Algebra - Teori og problemløsning

Differentiation af Potensfunktioner

Matematisk modellering og numeriske metoder. Lektion 11

Noter til Computerstøttet Beregning Taylors formel

DesignMat Uge 1 Gensyn med forårets stof

Løsninger til eksamensopgaver på A-niveau 2016

PeterSørensen.dk : Differentiation

matx.dk Enkle modeller

Eksamen i Calculus. 14. juni f (x, y, z) = 1 + x 2 + y 2. x 2 + y 2 1 Hele rummet uden z aksen

DesignMat Uge 1 Repetition af forårets stof

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Komplekse Tal. 20. november UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Projekt 4.6 Løsning af differentialligninger ved separation af de variable

Differentiation af sammensatte funktioner

π er irrationel Frank Nasser 10. december 2011

Note om Laplace-transformationen

Undervisningsbeskrivelse

Test grafisk afledede Højere partielle afledede Differentiationsordenen er ligegyldig Partielle differentialligninger Test Laplaces ligning

Pointen med Differentiation

INFINITESIMALREGNING del 3 Differentialligninger Funktioner af flere variable Differentialligningssystemer x-klasserne Gammel Hellerup Gymnasium

Mere om differentiabilitet

Matematisk modellering og numeriske metoder. Lektion 8

Lotka-Volterra modellen

Differential- ligninger

MATEMATIK B. Videooversigt

Formler, ligninger, funktioner og grafer

BEVISER TIL KAPITEL 3

Matematik F2 Opgavesæt 6

Kvadratiske matricer. enote Kvadratiske matricer

MATEMATIK A-NIVEAU. Kapitel 1

Integralregning Infinitesimalregning

Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )

Sådan bruges skydere til at undersøge funktioner, tangenter og integraler

Taylor s approksimationsformler for funktioner af én variabel

Differential- regning

Taylor s approksimationsformler for funktioner af én variabel

Lineære 1. ordens differentialligningssystemer

Oprids over grundforløbet i matematik

Laplace transformationen

Differentialligninger af første orden

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

Løsninger til eksamensopgaver på A-niveau 2018

MM502+4 forelæsningsslides

DesignMat Lineære differentialligninger I

Projekt 2.2 Omvendt funktion og differentiation af omvendt funktion

Studieretningsopgave Temperatur af en væske

Logaritmiske Transformationer

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mundtlige spørgsmål til 2v + 2b. mat B, sommer Nakskov Gymnasium & Hf.

Bedste rette linje ved mindste kvadraters metode

matx.dk Mikroøkonomi

Studieplan. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Oversigt over gennemførte undervisningsforløb

Den homogene ligning. Vi betragter den n te ordens, homogene, lineære differentialligning. d n y dt n. an 1 + any = 0 (1.2) dt. + a1 d n 1 y dt n 1

f(x)=2x-1 Serie 1

DesignMat Lineære differentialligninger I

Differentialligninger. Ib Michelsen

Eksaminationsgrundlag for selvstuderende

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen

Polynomier. Frank Villa. 26. marts 2012

Københavns Universitet, Det naturvidenskabelige Fakultet. Afleveringsopgave 1

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 7. november 2015 Slide 1/25

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

SRO. Newtons afkølingslov og differentialligninger. Josephine Dalum Clausen 2.Y Marts 2011 SRO

[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0

Lektion ordens lineære differentialligninger

Differentialregning. Ib Michelsen

Undervisningsbeskrivelse

Omskrivningsregler. Frank Nasser. 10. december 2011

Matematik A STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler

MATEMATIK A. Indhold. 92 videoer.

Undervisningsbeskrivelse

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Løsninger til eksamensopgaver på A-niveau 2017

Stamfunktionsproblemet

Undervisningsbeskrivelse

Lineære 2. ordens differentialligninger med konstante koefficienter

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

Undervisningsbeskrivelse

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Differentiation. Frank Nasser. 11. juli 2011

Regning. Mike Vandal Auerbach ( 7) 4x 2 y 2xy 5. 2x + 4 = 3. (x + 3)(2x 1) = 0. (a + b)(a b) a 2 + b 2 2ab.

Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

Undervisningsbeskrivelse

Eksamensspørgsma l Mat B

Transkript:

Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer indenfor matematisk analyse. Vi vil her se på Laplace transformen som et vigtigt værktøj til at løse en klasse af problemer kaldet begyndelsesværdiproblemer. Anvendelsen af Laplace transformen kan illustreres med følgende figur taget fra www.efunda.com/math/laplace_transform/index.cfm: Initial-Value Problems ODE's or PDE's Algebra Problems Difficult Very Easy Solutions of Initial-Value Problems Solutions of Algebra Problems Et begyndelsesværdiproblem er en ligning som indeholder en ukendt funktion og nogle af dens afledede. Man kender nogle startværdier dvs begyndelsesværdier for funktionen. Den ukendte funktion skal så bestemmes. Sådanne problemer dukker op i alle mulige sammenhænge. Laplace transformationen kan håndtere avancerede ting som partielle differentialligninger, hvor det er en funktion af flere variable vi leder efter, og systemer af koblede differentialligninger, hvor det er flere ukendte funktioner vi leder efter på en gang. Vi vil imidlertid som eksempel se på: Problem: Bestem funktionen f (t) som opfylder følgende ligning f (t) + k f (t) = g(t), hvor tallet k og funktionen g(t) er givet sammen med begyndelsesværdien f () for den ukendte funktion f (t). Man kan sagtens løse sådanne problemer uden Laplace transformen, men vi bruger det som eksempel. Vi vil desuden nøjes med at se på situationen hvor den kendte funktion g(t) består af summer og produkter af eksponentialfunktioner og polynomier. Laplace transformen laver begyndelsesværdiproblemet om til et simpelt algebraisk problem. Det kan let løses. Ved at invers Laplace transformere løsningen af det algebraiske problem finder man så funktionen f (t).!!

. Laplace transform af funktioner Definition: Laplace transformen af en funktion f (t) er defineret ved L( f (t)) = F(s) = f (t) e st dt hvis integralet eksisterer. Et sådant integral på et ubegrænset interval kaldes et uegentligt integral og betyder blot, at man integrerer op til et tal og bagefter lader gå mod uendeligt og ser om grænseværdien eksisterer f (t) e st dt = lim f (t) e st dt. Man bruger notationen F(s), men det må naturligvis ikke forveksles med den sædvanlige stamfunktion til f (t). Det er noget helt andet. Bemærk: - Udgangspunktet er en funktion f (t) der beskriver en udvikling som funktion af tiden. Begyndelsesværdien er f () og f (t) er værdien til tidspunktet t. - Der stilles ikke store krav til f (t) for at Laplace transformen er defineret. Det er nok, at f (t) er stykkevist kontinuert og ikke vokser hurtigere end alle eksponentialfunktioner. Det sidste kan formuleres ved at der skal findes tre konstanter T, M og a så der for t > T gælder at f (t) M e at. Man siger så, at f (t) er af eksponentiel type. Sætning : Laplace transformen af funktionen f (t) = t er F(s) = s 2, s >. Vi sætter ind i definitionen og bruger delvis integration: t e st dt = e st s t e st dt = e s s s + s e st dt = e s + s s e st s = e s e s + s s 2 s 2 år vi så lader vil både e s og e s gå mod nul blot tallet s er positivt. Dvs Laplace transformen af f (t) = t er defineret for positive s og er givet ved F(s) = s 2. Situationen er typisk for Laplace transformen. For en stykkevist kontinuert funktion f (t) af eksponentiel type vil Laplace transformen være defineret for s s for et eller andet fast tal s. 2

Ved samme metode som i sætning kan man ved gentagen brug af delvis integration vise: Sætning 2: Laplace transformen af f (t) = t er F(s) =! s + u et par opgaver, som skal løses ved at bruge definitionen af Laplace transformen: Opgave : Vis at Laplace transformen af f (t) = er F(s) =. s Opgave 2: Vis at Laplace transformen af funktionen f (t) = e at er F(s) = s a, s > a. Sammenhængen mellem resultaterne i opgave og 2 er ikke tilfældig. Tværtimod har vi: Sætning 3 Hvis Laplace transformen af f (t) er F(s), så vil Laplace transformen af e at f (t) være F(s a). Vi sætter blot ind i definitionen: e at f (t) e st dt = f (t) e (s a)t dt Vi får med en potensregneregel straks samme integral som definerer F(s) blot med tallet s a i stedet for s. Dvs = F(s a) Vi kan samle resultaterne om Laplace transformer af elementære funktioner i følgende tabel: f (t) t t 2 t e at e at t F(s) 2!! s s 2 s 3 s + s a (s a) + Bemærk at den sidste formel er sætning 3 anvendt på resultatet i sætning 2. Den indeholder alle de andre: år a = fås formlerne med t og når = fås formlen med e at. Vi får ikke brug for andre Laplace transformer i disse noter. 3

Linearitet: Man kalder en transformation som Laplace transformen for lineær, hvis den opfylder følgende to egenskaber: ) L( f (t) + g(t)) = L( f (t)) + L(g(t)) 2) L(k f (t)) = k L( f (t)). Sætning 4 Laplace transformen er lineær. Vi skal kontrollere, at den opfylder de to betingelser: L( f (t) + g(t)) = lim ( f (t) + g(t)) e st dt = lim ( f (t) e st dt + g(t) e st dt) = lim f (t) e st dt + lim g(t) e st dt = L( f (t)) + L(g(t)) og L(k f (t)) = lim k f (t) e st dt = lim (k f (t) e st dt) = k lim ( f (t) e st dt) = k L( f (t)) Bemærk, at vi i begge tilfælde sætter ind i definitionen og bruger en regneregel for bestemte integraler og derefter en regneregel for grænseværdier. Eksempel : Vi kan bruge lineariteten og tabellen på side 3 til at finde Laplace transformen af produkter og summer af polynomier og eksponentialfunktioner: f (t) = (7t + 5)e 2t 3e 4t + t 2 L((7t + 5)e 2t 3e 4t + t 2 ) = L(7te 2t + 5e 2t 3e 4t + t 2 ) = L(7te 2t + 5e 2t + ( 3)e 4t + t 2 ) = L(7te 2t ) + L(5e 2t + ( 3)e 4t + t 2 ) = L(7te 2t ) + L(5e 2t ) + L(( 3)e 4t + t 2 ) = L(7te 2t ) + L(5e 2t ) + L(( 3)e 4t ) + L(t 2 ) Vi har nu brugt den første linearitetsbetingelse til at dele op ved hvert led. år der er mere end to led skal vi blot bruge regnereglen flere gange. = 7 L(te 2t ) + 5 L(e 2t ) + ( 3) L(e 4t ) + L(t 2 ) Her brugte vi den anden linearitetsbetingelse til at flytte konstanterne udenfor. Til sidst slår vi blot Laplace transformerne op i tabellen: = 7 (s 2) + 5 2 s 2 + ( 3) s 4 + 2 s 3 For at alle delene i udtrykket skal være defineret skal vi begrænse definitionsmængden til s > 4. F(s) = 7 (s 2) + 5 2 s 2 + ( 3) s 4 + 2 s, s > 4. 3 Opgave 3: Find Laplace transformen af funktionerne f (t) = (3t + 5)(4e 3t + 2t) f 2 (t) = 3e 5t t 2 e 7t + 32 4

2. Laplace transform af afledede Vi ønsker at se på sammenhængen mellem afledede og Laplace transformen. Antag, at vi har følgende udgangspunkt: f (t) er differentiabel og af eksponentiel type f () er begyndelsesværdien for f(t) hvor t er tiden F(s) er Laplace transformen af f (t) Der gælder så følgende sætning: Sætning 5: Laplace transformen af den afledede er givet ved L( f (t)) = s F(s) f (). Vi indsætter i definitionen og laver delvis integration: L( f (t)) = lim f (t) e st dt = lim( f (t) e st [ ] f (t) ( s)e st = lim( f ( ) e s f () + s f (t) e st dt) Bemærk nu, at da f(t) er af eksponentiel type findes der tre konstanter T, M og a så der for t > T gælder at f (t) M e at Hvis er større end dette tal T har vi derfor vurderingen f ( ) e s = f ( ) e s M e a e s = M e (a s) som viser, at for s større end dette tal a, vil udtrykket være mindre end en aftagende eksponentiel funktion, så lim f ( ) e s =. For s > a kan vi derfor fortsætte udregningen: L( f (t)) = lim( f ( ) e s f () + s = f () + s lim = s F(s) f (). f (t) e st dt) f (t) e st dt = f () + s F(s) dt) Eksempel 2 Betragt funktionen f (t) = t 2 + 7. Vi udregner L( f (t)) dels direkte og dels ved hjælp af sætning 5. Direkte: L( f (t)) = L(2t) = 2 L(t) = 2 s = 2 2 s 2 Med sætning 5: L( f (t)) = s L( f (t)) f () = s (L(t 2 ) + 7 L()) f () = s ( 2 s 3 + 7 s ) (2 + 7) = 2 s 2 + 7 7 = 2 s 2 5

3. Den inverse Laplace transform Definition: Hvis Laplace transformen af f (t) er F(s) siger vi, at den inverse Laplace transform af F(s) er f (t) og skriver L (F(s)) = f (t). Sætning 6: Den inverse Laplace transform er lineær. Vi skal igen kontrollere, at de to linearitetsbetingelser er opfyldt: L (F(s) + G(s)) = L (L( f (t)) + L(g(t))) = L (L( f (t) + g(t))) = f (t) + g(t) = L (F(s)) + L (G(s)) og L (k F(s)) = L (k L( f (t)) = L (L(k f (t))) = k f (t) = k L (F(s)) Bemærk, at vi i begge tilfælde først bruger, at Laplace transformen er lineær, og derefter bruger, at L (L( f (t))) = f (t). Eksempel 3 Vi benytter samme funktioner som i eksempel men ønsker at finde f(t) som den inverse Laplace transform af F(s): F(s) = 7 (s 2) + 5 2 s 2 + ( 3) s 4 + 2 s, s > 4. 3 Vi får så: f (t) = L (F(s)) = L (7 (s 2) + 5 2 s 2 + ( 3) s 4 + 2 s ) 3 = 7 L ( (s 2) ) + 5 2 L ( s 2 ) + ( 3) L ( s 4 ) + L ( 2 s ) 3 = 7 te 2t + 5 e 2t 3 e 4t + t 2 år F(s) er udtrykt som en sådan sum af kendte Laplace transformer fra tabellen, kan vi altså let finde f(t) ved at bruge lineariteten af den inverse Laplace transform. Opgave 4: Find den inverse Laplace transform af funktionerne F (s) = 3 s 5 + 7 s 8 2 (s ) 3 F 2 (s) = 2s4 + 6s 24 s 4 (s 4) = 2 s 4 + 6 s 4 6

4. Begyndelsesværdiproblemer Vi ønsker nu at kunne løse begyndelsesværdiproblemer på formen Problem: Bestem funktionen f (t) som opfylder følgende ligning f (t) + k f (t) = g(t), hvor tallet k og funktionen g(t) er givet sammen med begyndelsesværdien f () for den ukendte funktion f (t). Metoden vi vil bruge er som illustreret på side følgende: - Vi Laplace transformerer ligningen så vi får en algebraisk ligning der indeholder F(s) i stedet for f(t). - F(s) kan meget let isoleres i ligningen. - Vi finder så løsningen f(t) ved at invers Laplace transformere F(s). Lad os illustrere metoden med et konkret eksempel: Eksempel 4: Vi ønsker at løse begyndelsesværdiproblemet f '(t) 2 f (t) = 3 6t f () = Vi Laplace transformerer ligningen L( f '(t) 2 f (t)) = L(3 6t) L( f '(t)) 2L( f (t)) = 3L() 6L(t) (sf(s) ) 2F(s) = 3 s 6 s 2 Vi har nu en algebraisk ligning som kun indeholder F(s) og ikke f(t). Vi isolerer så bare F(s) (sf(s) ) 2F(s) = 3 s 6 s 2 (s 2)F(s) = 3 s 6 s 2 + = s2 + 3s 6 s 2 F(s) = s2 + 3s 6 s 2 (s 2) Bemærk at højresiden blev sat på fælles brøkstreg med fællesnævneren som i dette tilfælde var s 2. Vi mangler nu blot at bestemme f (t) = L (F(s)) = L ( s2 + 3s 6) s 2 (s 2) ) For at gøre det mangler vi at omskrive udtrykket for F(s) til en sum af kendte udtryk fra tabellen side 3. Det gør man ved at lave en såkaldt partialbrøksdekomposition af polynomiumsbrøken F(s) : 7

F(s) = s2 + 3s 6 s 2 (s 2) = A s 2 + B s + C s 2 Bemærk at nævnerpolynomiet skal være faktoriseret, og at man har brug for alle led op til den potens en faktor optræder med. Dekompositionen har lige så mange ukendte konstanter som graden af nævnerpolynomiet. Vi tænker på F(s) som en sum af nogle simplere brøker, der blot er sat på fælles brøkstreg. ævneren i F(s) er så fællesnævneren og fortæller os derfor hvordan disse simplere brøker kan se ud. Vi skal nu bestemme konstanterne A,B og C så lighedstegnet gælder: Vi ganger med nævnerpolynomiet på begge sider af lighedstegnet s 2 + 3s 6 = As 2 + Bs(s 2) + C(s 2) ganger højresiden ud s 2 + 3s 6 = (A + B)s 2 + (C 2B)s + ( 2C) og kan så bestemme konstanterne ved at løse ligningssystemet bestående af de 3 ligninger med 3 ubekendte man får ved at sammenligne koefficienterne: 2C = 6 C = 3 C 2B = 3 3 2B = 3 B = A + B = A + = A = Det er naturligvis ikke altid det går så let med at løse ligningerne som her, men man kan f.eks. altid bruge substitutionsmetoden: Hvis man isolerer en af konstanterne i en af ligningerne og indsætter udtrykket i de øvrige ligninger, så er problemet reduceret til 2 ligninger med 2 ubekendte osv. Vi har altså f (t) = L (F(s)) = L ( s2 + 3s 6) s 2 (s 2) ) = L ( s 2 + 3 s ) 2 = L ( s 2 ) + 3 L ( s ) = 2 e2t + 3t Opgave 5: Løs begyndelsesværdiproblemet f (t) 5 f (t) = t +7 f () = 2 med Laplace transformen. Opgave 6: Løs begyndelsesværdiproblemet f (t) 4 f (t) = e 4t 2t 5 f () = 2 med Laplace transformen. 8

Opgave 7: Forbered en fremlæggelse af følgende eksempel på et mundtligt eksamensspørgsmål: Laplace transformen Definer Laplace transformen og redegør for nogle af dens egenskaber. Giv herunder et bevis for formlen for Laplace transformen af funktionen f (t) = t og kom ind på anvendelsen af Laplace transformen i forbindelse med begyndelsesværdiproblemer. Opgave 8: Løs følgende temaopgave om afkøling af kaffe i en kop: Temaopgave: Modellering af afkøling i en kop år en ting er varmere end omgivelserne vil den gradvist blive afkølet. Temperaturfaldet målt i grader pr. minut er stort, hvis der er en stor temperaturforskel til omgivelserne, og bliver mindre og mindre jo tættere man kommer på omgivelsernes temperatur. Vi antager, at der gælder følgende: ewtons afkølingslov: Hastigheden hvormed et objekt afkøles er proportional med temperaturforskellen til omgivelserne. Vi ønsker at modellere afkølingen af kaffe i en kop. Det er klart, at hastigheden af afkølingen, og dermed proportionalitetsfaktoren, må afhænge af, hvor godt varmeisoleret koppen er. Opgave: Det oplyses, at temperaturen af kaffen i en kop til at begynde med er 92 grader. Kaffen står i et lokale, hvor temperaturen er 2 grader. Efter 5 minutter er temperaturen faldet til 85 grader. Opstil en model for afkølingen med ewtons afkølingslov og løs det derved fremkomne begyndelsesværdiproblem med Laplace transformen. Bestem derefter temperaturen af kaffen 25 minutter efter den var 92 grader, og bestem desuden hvor lang tid der går fra den var 92 grader til dens temperatur er faldet til 5 grader. Illustrer afkølingen grafisk, så man kan følge, hvordan temperaturen af kaffen gradvist nærmer sig stuetemperaturen på 2 grader.! 9!