Sandsynlighedsteori

Relaterede dokumenter
Elementær sandsynlighedsregning

Elementær sandsynlighedsregning

Sandsynlighedsregning Oversigt over begreber og fordelinger

INSTITUT FOR MATEMATISKE FAG c

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Binomialfordelingen. X ~ bin(n,p): X = antal "succeser" i n uafhængige forsøg, der alle har samme sandsynlighed p for at ende med succes.

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 7. forelæsning Bo Friis Nielsen

Karakteristiske funktioner og Den Centrale Grænseværdisætning

hvor a og b er konstanter. Ved middelværdidannelse fås videre

Sandsynlighedsregning

Teoretisk Statistik, 9 marts nb. Det forventes ikke, at alt materialet dækkes d. 9. marts.

Agenda Sandsynlighedsregning. Regneregler (kap. 3-4) Fordelinger og genkendelse af fordelinger (kap. 3-5) Simultane, marginale og betingede

02402 Vejledende løsninger til hjemmeopgaver og øvelser, Uge 4

Kvantitative Metoder 1 - Forår Dagens program

Statistik og Sandsynlighedsregning 2

Landmålingens fejlteori - Repetition - Kontinuerte stokastiske variable - Lektion 3

Uge 10 Teoretisk Statistik 1. marts 2004

Program. Statistik og Sandsynlighedsregning 2 Middelværdi og varians. Eksempler fra sidst. Sandsynlighedstæthed og sandsynlighedsmål

Program. Statistik og Sandsynlighedsregning. Eksempler. Sandsynlighedstæthed og sandsynlighedsmål

Kvantitative Metoder 1 - Efterår Dagens program

Introduktion til Statistik. Forelæsning 3: Kontinuerte fordelinger. Peder Bacher

Overheads til forelæsninger, mandag 5. uge På E har vi en mængde af mulige sandsynlighedsfordelinger for X, (P θ ) θ Θ.

Den todimensionale normalfordeling

Statistik og Sandsynlighedsregning 2

Lineære normale modeller (1) udkast. 1 Flerdimensionale stokastiske variable

Fortolkning. Foldning af sandsynlighedsmål. Foldning af tætheder. Foldning af Γ-fordelinger Eksempel: Hvis X og Y er uafhængige og. Sætning (EH 20.

enote 2: Kontinuerte fordelinger Introduktion til Statistik Forelæsning 3: Kontinuerte fordelinger Peder Bacher enote 2: Continuous Distributions

Hvad skal vi lave i dag?

Løsning til eksamen 16/

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Momenter som deskriptive størrelser. Hvad vi mangler fra onsdag. Momenter for sandsynlighedsmål

Hvad vi mangler fra onsdag. Vi starter med at gennemgå slides fra onsdag.

MM501 forelæsningsslides

Lidt om fordelinger, afledt af normalfordelingen

Repetition. Diskrete stokastiske variable. Kontinuerte stokastiske variable

Definition: Normalfordelingen. siges at være normalfordelt med middelværdi µ og varians σ 2, hvor µ og σ er reelle tal og σ > 0.

Eksamen 2014/2015 Mål- og integralteori

Sandsynlighedsregning 9. forelæsning Bo Friis Nielsen

Forelæsning 3: Kapitel 5: Kontinuerte fordelinger

Reeksamen 2014/2015 Mål- og integralteori

Fordelinger. En oversigt over de vigtigste sandsynlighedsteoretiske fordelinger Anden udgave. Udvidet version. Ulrich Fahrenberg

Kvantitative Metoder 1 - Forår 2007

Sandsynlighedsregning 6. forelæsning Bo Friis Nielsen

Bernoulli og binomial fordelingerne Kontinuerte stokastiske variable Normalfordelingen

Oversigt. Kursus Introduktion til Statistik. Forelæsning 3: Kapitel 5: Kontinuerte fordelinger. Per Bruun Brockhoff.

CIVILINGENIØREKSAMEN Side 1 af 18 sider. Skriftlig prøve, den: PQ. juli 200Z Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 19. december 2018 Kursus nr : (navn) (underskrift) (bord nr)

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen

DANMARKS TEKNISKE UNIVERSITET Side?? af?? sider. Skriftlig prøve, den: 18. december 2014 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 18. august 2016 Kursus nr : (navn) (underskrift) (bord nr)

Sandsynlighedsregning 8. forelæsning Bo Friis Nielsen

Landmålingens fejlteori - Lektion 2 - Transformation af stokastiske variable

CIVILINGENIØREKSAMEN Side?? af?? sider. Skriftlig prøve, den: 16. december 2004 Kursus nr : (navn) (underskrift) (bord nr)

Kvantitative Metoder 1 - Forår Dagens program

Kvantitative Metoder 1 - Forår Dagens program

Statistik Lektion 3. Simultan fordelte stokastiske variable Kontinuerte stokastiske variable Normalfordelingen

Kvantitative Metoder 1 - Forår 2007

MM501/MM503 forelæsningsslides

Sandsynlighed og Statistik

Statistik og Sandsynlighedsregning 2

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Sandsynlighedsregning 4. forelæsning Bo Friis Nielsen

Områdeestimator. X x. P θ. ν θ. Θ C(x) En områdeestimator er en afbildning C : X P(Θ). . p.1/30

Oversigt. Kursus Introduktion til Statistik. Forelæsning 4: Kapitel 5: Kontinuerte fordelinger

CIVILINGENIØREKSAMEN Side 1 af 16 sider. Skriftlig prøve, den: 16. december 2010 Kursus nr : (navn) (underskrift) (bord nr)

Landmålingens fejlteori Lektion 1 Det matematiske fundament Kontinuerte stokastiske variable

Definition. Definitioner

Kvantitative Metoder 1 - Efterår Dagens program

Forelæsning 2: Kapitel 4, Diskrete fordelinger

Betingning med en uafhængig variabel

Løsning til prøveeksamen 1

DANMARKS TEKNISKE UNIVERSITET Side 1 af 16 sider. Skriftlig prøve, den: 28. maj 2014 Kursus nr : (navn) (underskrift) (bord nr)

Opgaver til Matematisk Modellering 1

1/41. 2/41 Landmålingens fejlteori - Lektion 1 - Kontinuerte stokastiske variable

Opgaver i sandsynlighedsregning

DANMARKS TEKNISKE UNIVERSITET Side 1 af 18 sider. Skriftlig prøve, den: 16. december 2003 Kursus nr : (navn) (underskrift) (bord nr)

Opgave 1 Betragt to diskrete stokastiske variable X og Y. Antag at sandsynlighedsfunktionen p X for X er givet ved

Program. Statistik og Sandsynlighedsregning 2 Normalfordelingens venner og bekendte. χ 2 -fordelingen

Landmålingens fejlteori - Lektion 2. Sandsynlighedsintervaller Estimation af µ Konfidensinterval for µ. Definition: Normalfordelingen

Binomial fordeling. n f (x) = p x (1 p) n x. x = 0, 1, 2,...,n = x. x x!(n x)! Eksempler. Middelværdi np og varians np(1 p). 2/

Praktiske ting og sager: Forelæsninger tirsdag og torsdag kl i Kirkesalen, Studiestræde 38 Øvelser

DANMARKS TEKNISKE UNIVERSITET Side 1 af 17 sider. Skriftlig prøve, den: 30. maj 2016 Kursus nr : (navn) (underskrift) (bord nr)

DANMARKS TEKNISKE UNIVERSITET Side 1 af 18 sider. Skriftlig prøve, den: 4. juni 2013 Kursus nr : (navn) (underskrift) (bord nr)

Binomialfordelingen. Binomialfordelingen. Binomialfordelingen

Integration m.h.t. mål med tæthed

standard normalfordelingen på R 2.

Kvantitative Metoder 1 - Forår 2007

Integration m.h.t. mål med tæthed

Module 1: Lineære modeller og lineær algebra

En oversigt over udvalgte kontinuerte sandsynlighedsfordelinger

Statistik og Sandsynlighedsregning 2

Hvad skal vi lave i dag?

Produkt og marked - matematiske og statistiske metoder

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Antag X 1, X 2,..., X n er n uafhængige stokastiske variable, hvor Var(X 1 )=σ 2 1,..., Var(X n )=σ 2 n.

Oversigt. Kursus Introduktion til Statistik. Forelæsning 2: Kapitel 4, Diskrete fordelinger. Per Bruun Brockhoff. Stokastiske Variable

Kursusindhold: Produkt og marked - matematiske og statistiske metoder. Monte Carlo

Institut for Matematiske Fag Aalborg Universitet Specielt: Var(aX) = a 2 VarX 1/40. Lad X α, X β og X γ være stokastiske variable (vinkelmålinger) med

Transkript:

Fordelingskatalog til Sandsynlighedsteori 1.1 + 1.2 Svend Erik Graversen August 2005 1

Dette katalog indeholder de vigtigste egenskaber ved de 6 mest almindelige diskrete fordelinger samt de 11 mest almindelige absolut kontinuerte fordelinger. Endvidere omtales Multinomialfordelingen samt den to-dimensionale normalfordeling. Til slut indføres ganske kort begrebet uniformt fordelt over en given mængde. De en-dimensionale fordelingers egenskaber er listet i henhold til flg.skabelon (A) Parametrenes variationsområde. Sandsynlighedsfunktionen p hhv. tæthedsfunktionen f. Funktionerne angives kun, hvor de er strengt større end 0. Endvidere specificeres eventuelle relationer til andre kendte fordelingstyper. (C) Monotoniforhold for sandsynlighedsfunktionen/tæthedsfunktionen. (D) FordelingsfunktionenF. Angives kun i punkter x hvor 0 < F(x) < 1, og kun i de tilfælde hvor den kan opskrives på en lukket form, der er simplere end den rene definitionsligning. (E) Momentforhold. I denne forbindelse skrives x (k) = x (x 1) (x k + 1) omtalt som x i k nedstigende for x R og k N. (F) Frembringende funktion q på intervallet [0, 1]. Kun for diskrete fordelinger. Karakteristisk funktion ϕ. (H) Laplace transforml med angivelse af definitionsområde D(L). Additionsforhold(foldning).(Dvs.sum af uafhænige variable, se nedenfor.) (J) Konvergenssætninger. (K) Diverse fordelingsresultater og andre relevante oplysninger. Lad mig vedrørende og (H) minde om, at hvis X er en stokastisk variabel, så er den karakteristiske funktion og Laplace transformen for X defineret som ϕ X (t) = E[e itx ] t R og L X (z) = E[e zx ] z D(L X ) := {z C E[e RzX ] < } Laplace transformen er ikke pensum, men er medtaget for fuldstændighedens skyld. I forbindelse med skrives kort F 1 F 2 = F 3 betydende, at hvis X og Y er uafhængige variable, så at X F 1 og Y F 2, så er X + Y F 3. Tilsvarende skrives i (J) F n F, hvis X n X, hvor X n F n og X F. Behandlingen af de to eksempler på flerdimensionale fordelinger foregår efter samme skabelon, men er mindre grundig. Punkt er dog udvidet med angivelse af de marginale fordelinger. 2

Binomialfordelingen bi(n, p) (A) n N, 0 p 1. p(k) = bi(k, n, p) = ( n k ) p k (1 p) n k k = 0, 1,..., n. (C) Hvis k := [ (n + 1)p ] er j bi(j, n, p) voksende for 0 j k, aftagende for k j n og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X bi(n, p) er E[X] = np, V ar(x) = np (1 p), E[X (k) ] = n (k) p k k 2. (F) (H) (J.1) (J.2) q(t) = (1 + p (t 1)) n. ϕ(t) = (1 + p (e it 1)) n. L(z) = (1 + p (e z 1)) n z C. bi(n 1, p) bi(n 2, p) = bi(n 1 + n 2, p). bi(n, p n ) po(λ) for n, hvis np n λ. bi(n, p) n np (1 p) N(0, 1) for n. (K) Hvis A 1,...,A n er uafhængige hændelser med samme sandsynlighed p, er n X bi(n, p), hvor X := 1 Ak. k=1 Eller: et forsøg med udfaldene A og B med sandsynligheder hhv.p og 1 p, udføres n gange. Lad X betegne antallet af gange A kommer ud, da er X bi(n, p). 3

Den hypergeometriske fordeling h(n, r, N) (A) N, n N og 1 n N, r N 0 og 0 r N. p(k) = h(k, n, r, N) = ( r k ) ( N r n k ) ( N n ) 1 k = 0, 1,..., min(r, n). (C) Hvis k := [ (rn N + r + n 1)/(N + 2) ] er j h(j, n, r, N) voksende for 0 j k, aftagende for k j min(r, n) og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X h(n, r, N) er E[X] = nr N nr (N r) (N n), V ar(x) =, E[X (k) ] = n(k) r (k) k 2. N 2 (N 1) N (k) (J) h(n 1, r, N) h(n 2, r, N) = h(n 1 + n 2, r, N). h(n, r N, N) bi(n, p) for N, hvis r N /N λ. (K) Af en kasse med r røde og N r sorte kugler trækkes n kugler tilfældigt uden tilbagelægning. Hvis X er antallet af udtrukne røde kugler, er X h(n, r, N). 4

Poissonfordelingen po(λ) (A) 0 < λ <. p(k) = po(k, λ) = λk k! e λ k = 0, 1, 2,.... (C) Hvis k := [ λ ] er j po(j, λ) voksende for 0 j k, aftagende for k j < og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X po(λ) er E[X] = λ, V ar(x) = λ, E[X (k) ] = λ k k 2. (F) (H) (J.1) q(t) = exp( λ (t 1) ). ϕ(t) = exp( λ (e it 1) ). L(z) = exp( λ(e z 1) ) z C. po(λ 1 ) po(λ 2 ) = po(λ 1 + λ 2 ). po(λ) λ λ N(0, 1) for λ. (J.2) Hvis (X n ) n 1 er stokastiske variable, så at X n = X 1n + + X nn, hvor X 1n,..., X nn iid heltallige og da vil lim n n P(X 1n = 1) = λ > 0 samt lim n n P(X 1n 2) = 0, X n po(λ) for λ. (K) Hvis (T n ) n 1 er en iid-følge af E(λ)-fordelte stokastiske variable, så er for alle t > 0 N t po(tλ) hvor N t := #{n 1 T 1 + + T n t}. 5

Den negative Binomialfordeling b (κ, p) (A) 0 < κ <, 0 p 1. ( k + κ 1 p(k) = b (k, κ, p) = k ) p k (1 p) κ = ( κ k ) ( p) k (1 p) κ k = 0, 1, 2,.... (C) Hvis k := [ (κp 1)/(1 p) ] + 1 er j b (j, κ, p) voksende for 0 j k, aftagende for k j < og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X b (κ, p) er E[X] = κp 1 p, V ar(x) = κp (1 p) 2, E[X(k) ] = (k+κ 1) (k) p k (1 p) k k 2. (F) (H) (J.1) q(t) = (1 p) κ (1 tp) κ. ϕ(t) = (1 p) κ (1 e it p) 1κ. L(z) = (1 p) κ (1 e z p) κ Rz < log p. b (κ 1, p) b (κ 2, p) = b (κ 1 + κ 2, p). bi (κ n, p n ) po(λ) for n, hvis p n 0 og p n κ n /(1 p n ) λ > 0. (J.2) (1 p) b (κ, p) κp κp N(0, 1) for κ. 6

Den geometriske fordeling ge(p) (A) 0 p 1. ge(p) = b (1, p) og derfor p(k) = ge(k, p) = p k (1 p) k = 0, 1, 2,.... (C) k ge(k, p) er aftagende og antager sit maksimum i 0. (D) F(x) = G(x, p) = 1 p [x]+1 x 0. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X ge(p) er (F) (H) (J) E[X] = p 1 p, V ar(x) = p (1 p), p k 2 E[X(k) ] = k! k 2. (1 p) k q(t) = (1 p) (1 tp) 1. ϕ(t) = (1 p) (1 e it p) 1. L(z) = (1 p) (1 e z p) 1 Rz < log p. ge(p) ge(p)) = b (2, p). ge(p n )/n E(λ) for n, hvis n(1 p n ) λ > 0. (K.1) Den geometriske fordeling har ingen hukommelse, dvs. X ge(p) P(X n + k X n) = P(X k) k, n 0. Denne egenskab karakteriserer den geometriske fordeling blandt de diskrete fordelinger med støtte N 0. I denne sammenhæng gælder endvidere X E(λ) [X] ge(e λ ). (K.2) Et forsøg med udfaldene A og B, med sandsynligheder hhv.p og 1 p, udføres uendelig mange gange. Lad X betegne antallet af gange B kommer ud, før end A kommer ud første gang, da er X ge(p). X + 1 svarer derfor til ventetiden på, at A kommer ud første gang, dvs.variablen inf{k 1 1 Ak = 1 }. 7

Pascalfordelingen pas(n, p) (A) n N, 0 p 1. pas(n, p) = b (n, p) og derfor ( k + n 1 p(k) = pas(k, n, p) = k ) p k (1 p) n k = 0, 1, 2,.... (C) Hvis k := [ (np 1)/(1 p) ] + 1 er j pas(j, n, p) voksende for 0 j k, aftagende for k j < og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X pas(n, p) er E[X] = np np, V ar(x) = 1 p (1 p), 2 E[X(k) ] = (k+n 1) (k) p k k 2. (1 p) k (F) (H) (J.1) q(t) = (1 p) n (1 tp) n. ϕ(t) = (1 p) n (1 e it p) n. L(z) = (1 p) κ (1 e z p) n Rz < log p. pas(n 1, p) pas(n 2, p) = pas(n 1 + n 2, p). pas(n, p n ) po(λ) for n, hvis p n 0 og np n /(1 p n ) λ > 0. (J.2) (1 p) pas(n, p) np np N(0, 1) for n. (K) Et forsøg med udfaldene A og B, med sandsynligheder hhv.p og 1 p, udføres uendelig mange gange. Lad X betegne antallet af gange B kommer ud, før end A kommer ud n te gang, da er X pas(n, p). X + n svarer derfor til ventetiden på, at A kommer ud n te gang, dvs.variablen k inf{k 1 1 Aj n }. j=1 8

Den uniforme (rektangulære) fordeling over (a, b) U(a, b) (A) < a < b <. f(x) = r(x, a, b) = 1/(b a) x (a, b). (C) x r(x, a, b) er konstant på intervallerne (, a ], (a, b) og [ b, ). (D) F(x) = R(x, a, b) = x a b a x (a, b). (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X U(a, b) er E[X] = a + b 2, V ar(x) = (b a)2 12, E[X k ] = bk+1 a k+1 (b a) (k + 1) k 2. (H) ϕ(t) = e it(a+b)/2 U(a, b) U(a, b) har tæthed sin td td L(z) = ezb e za z(b a) hvor d = (b a)/2. z C. x (b a) 1 x a b (b a) 2 x (2a, 2b). (K) X U(a, b) X U( b, a) og cx + d U(ca + d, cb + d) c > 0. 9

Gammafordelingen Γ(α, β) (A) 0 < α <, 0 < β <. f(x) = g(x, α, β) = xα 1 β α e βx x > 0. Γ(α) (C) Hvis 0 < α 1 er x g(x, α, β) aftagende på (0, ). Hvis α > 1 og k = (α 1)/β er x g(x, α, β) voksende i (0, k ] og aftagende i intervallet [ k, ) og antager sit maksimum i k. (D) For m N F(x) = G(x, m, 1) = 1 m 1 j=0 x j j! e x x > 0 (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X Γ(α, β) er E[X] = α/β, V ar(x) = α/β 2, E[X k ] = (α + k 1) (k) /β k k 2. (H) (J) (K) ϕ(t) = (1 it/β) α. L(z) = (1 z/β) α Rz < β. Γ(α 1, β) Γ(α 2, β) = Γ(α 1 + α 2, β). Γ(α, β) α/β α/β 2 N(0, 1) for α. X Γ(α, β) ax Γ(α, β/a) a > 0. Bemærkning. Det er værd at bemærke, at der i litteraturen ikke er enighed om, hvorvidt man skal parametrisere med β eller 1/β. Dvs.man skal være på vagt overfor, hvilken parametrisering der er valgt. α kaldes ofte formparameteren og 1/β hhv. β skalaparameteren. Navnet skalaparameter skyldes egenskaben (K). 10

χ 2 -fordelingen χ 2 (n) (A) n N. χ 2 (n) = Γ(n/2, 1/2) og derfor f(x) = χ 2 (x, n) = 1 Γ(n/2) 2 ( x 2 ) n/2 1 e x/2 x > 0. (C) Hvis n = 1, 2 er x χ 2 (x, n) aftagende på (0, ). Hvis n 3 og k = n 2 er x χ 2 (x, n) voksende i (0, k ] og aftagende i intervallet [ k, ) og antager sit maksimum i k. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X χ 2 (n) er E[X] = n, V ar(x) = 2n, E[X k ] = 2 k (n/2 + k 1) (k) k 2. (H) (J) (K.1) (K.2) ϕ(t) = (1 2it) n/2. L(z) = (1 2z) n/2 Rz < 1/2. χ 2 (n 1 ) χ 2 (n 2 ) = χ(n 1 + n 2 ). χ 2 (n) n 2n N(0, 1) for n. X N(0, 1) X 2 χ 2 (1). X U(0, 1) 2 log X χ 2 (2) = E(1/2). 11

Eksponentialfordelingen E(λ) (A) 0 < λ <. E(λ) = Γ(1, λ) og derfor (C) x e(x, λ) aftagende på (0, ). (D) F(x) = E(x, λ) = 1 e λx x > 0. f(x) = e(x, λ) = λ e λx x > 0. (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X E(λ) er (H) (K.1) E[X] = 1/λ, V ar(x) = 1/λ 2, E[X k ] = k!/λ k k 2. L(z) = ϕ(t) = λ λ z λ λ it. Rz < λ. E(λ) E(λ) = Γ(2, λ). X E(λ) ax E(λ/a) a > 0. (K.2) Eksponentialfordelingen er karakteriseret ved, at den er hukommelsesløs, dvs. X E(λ) for et λ > 0 P(X > s + t X > s) = P(X > t) for alle s, t > 0, specielt er [X] og X [X] uafhængige, hvis X er eksponentialfordelt. Endvidere gælder X E(λ) [X] ge(e λ ) og X [X] P X ( X 1). (K.3) Hvis T 1 og T 2 er uafhængige og T i E(λ i ) for i = 1, 2, er og hvis 0 < λ 1 < λ 2 gælder T 1 T 2 E(λ 1 + λ 2 ), dvs. P T1 = λ 2 λ 1 λ 2 P T1 +T 2 + λ 1 λ 2 P T2, P(T 1 B) = λ 2 λ 1 λ 2 P(T 1 + T 2 B) + λ 1 λ 2 P(T 2 B) for B B(R). 12

Normalfordelingen N(µ, σ 2 ) (A) < µ <, 0 < σ <. f(x) = n(x, µ, σ 2 ) = 1 µ)2 exp( (x ) x (, ). 2π σ 2 2σ 2 (C) x n(x, µ, σ 2 ) er voksende i (, µ ], aftagende i [ µ, ) og antager sit maksimum i µ. (D) Hvis X N(µ, σ 2 ) er (X µ)/σ N(0, 1), dvs. F(x) = N(x, µ, σ 2 ) = N( x µ σ, 0, 1) = Φ( x µ σ ) x (, ). (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X N(µ, σ 2 ) er E[X] = µ, V ar(x) = σ 2, E[(X µ) k ] = 0 k 1 ulige og (H) E[(X µ) k ] = 1 3 5 (2l 3) (2l 1) σ 2l ϕ(t) = exp( iµt σ 2 t 2 /2 ). L(z) = exp( zµ + σ 2 z 2 /2 ) z C. k = 2l lige. N(µ 1, σ 2 1) N(µ 2, σ 2 2) = N(µ 1 + µ 2, σ 2 ) hvor σ 2 = σ 2 1 + σ 2 2. (J) Hvis (X n ) n 1 er en iid-følge af stokastiske varable med endelig middelværdi µ og varians σ 2 konvergerer 1 n (X k µ) N(0, σ 2 ) for n. n k=1 (K) X N(0, 1) X 2 Γ(1/2, 1/2) = χ 2 (1). 13

Betafordelingen B(s, t) (A) 0 < s <, 0 < t <. B(1, 1) = U(0, 1) og generelt f(x) = β(x, s, t) = xs 1 (1 x) 1 t B(s, t) x (0, 1) hvor B(s, t) = Γ(s) Γ(s) Γ(s + t). (D) For m N F(x) = B(x, m, t) = 1 m 1 j=0 ( m + t 1 j ) x j (1 x) m+t+j 1 x (0, 1). (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X B(s, t) er og E[X] = s s + t, V ar(x) = st (s + t) 2 (s + t + 1) E[X k ] = Γ(s + t) Γ(s + k) Γ(s + t + k) Γ(s) k 2. (K) X og Y er uafhængige og X Γ(s, β) og Y Γ(t, β), så er X X + Y B(s, t). 14

Arcussinusfordelingen Arc(α) (A) 0 < α < 1. Arc(α) = B(α, 1 α) og derfor f(x) = arc(x, α) = sin(πα) π x α 1 (1 x) α x (0, 1). (C) x arc(x, α) er aftagende i (0, 1 α ], voksende i [ 1 α, 1) og antager sit minimum i 1 α. (D) F(x) = Arc(x, 1/2) = 1 π arcsin x x (0, 1). (E) Momenter af enhver orden, som bestemmer fordelingen. Hvis X Arc(α) er E[X] = α, V ar(x) = α(1 α) (2, E[X k ] = ( α + k 1 k ) k 2. J) Lad (X n ) n 1 betegne en iid-følge af stokastiske varable og sæt for n 1 S n = n X k. k=1 Da gælder hvor P(S n > 0) n α (0, 1) N n /n Arc(α) N n := #{1 k n S k > 0} n 1. 15

F-fordelingen (v 2 -fordelingen) F(s, t) (A) 0 < s <, 0 < t <. f(x) = v 2 (x, s, t) = s s/2 t t/2 x s/2 1 B(s/2, t/2) (t + sx) (s+t)/2 x (0, ). (C) Hvis s > 2 og k = (s 2) t /(s (t + s)) er x v 2 (x, s, t) voksende i (0, k ], aftagende i [ k, ) og antager sit maksimum i k. Hvis s 2 er x f(x, s, t) aftagende på (0, ). (E) Hvis X F(s, t) er E[X α ] = hvis 2α t. Endvidere er og (K.1) E[X] = t/(t 2) hvis t > 2, V ar(x) = 2t2 (s + t 2) s (t 2) 2 (t 4) hvis t > 4 E[X k ] = ( t s ) k Γ(s/2 + k) Γ(t/2 k) Γ(s/2) Γ(t/2) hvis t > 2k, k 2. X F(s, t) t t + sx B(t/2, s/2) og sx t + sx B(s/2.t/2). (K.2) X B(s/2, t/2) t s X 1 X F(s, t) (K.3) Hvis X og Y er uafhængige og X χ 2 (n 1 ) og Y χ 2 (n 2 ) er X/n 1 Y/n 2 ) F(n 1, n 2 ). 16

t-fordelingen (Student fordelingen) t(λ) (A) 0 < λ <. f(x) = t(x, λ) = 1 λ B(1/2, λ/2) (1 + x 2 /λ) (λ+2)/2 x (, ). (C) x t(x, λ) er voksende i (, 0 ], aftagende i [ 0, ) og antager sit maksimum i 0. (E) Hvis X t(λ) er E[X α ] = hvis α λ. Endvidere er E[X] = 0 hvis λ > 1, V ar(x) = λ λ 1 hvis t > 4 og E[X k ] = 0 hvis k er ulige og λ > k, og hvis k er lige og λ > 2k er E[X 2k ] = Γ(k + 1/2) Γ(λ k) (2λ)k. Γ(1/2) Γ(λ) (J) t(λ) N(0, 1) λ. (K.1) Hvis X og Y er uafhængige og X N(0, 1) og Y χ 2 (n) er X Y/n t(n). (K.2) X t(λ) (1 + X2 λ ) 1 B(λ/2, 1/2). 17

Log-normalfordelingen log N(µ, σ 2 ) (A) < µ <, 0 < σ 2 <. f(x) = log n(x, µ, σ 2 ) = 1 x x µ)2 exp( (log ) x (0, ). 2πσ2 2σ 2 (C) Hvis k = exp(µ σ 2 ) er x log n(x, µ, σ 2 ) voksende i (0, k ], aftagende i [ k, ) og antager sit maksimum i k. (E) Momenter af enhver orden, men de bestemmer ikke fordelingen entydigt. Hvis X log N(µ, σ 2 ) er E[X] = exp( µ + σ 2 /2 ), V ar(x) = exp( 2µ + σ 2 ) (exp( σ 2 ) 1), og (K) E[X k ] = exp( k (µ + kσ 2 /2) ) k 2. X log N(µ, σ 2 ) log X N(µ, σ 2 ) 18

Cauchyfordelingen C(a, b) (A) < a <, 0 < b <. f(x) = c(x, a, b) = b π (b 2 + (x a) 2 ) x (, ). (C) x c(x, a, b) er voksende i (, a ], aftagende i [ a, ) og antager sit maksimum i a. (D) F(x) = C(x, a, b) = 1/2 + 1 π arctan( x a b ) x (, ). (E) Hvis X C(a, b) og α 1 er E[X α ] =, dvs.x har ikke endelig middelværdi. (K.1) ϕ(t) = exp( iat b t ). C(a 1, b 1 ) C(a 2, b 2 ) = C(a 1 + a 2, b 1 + b 2 ). X C(a, b) cx + d C(d + ca, c b). (K.2) Hvis X og Y er uafhængige og X N(0, σ 2 ) og Y N(0, 1), så er (K.3) X/Y C(0, σ). X C(0, 1) 1 2 ( X 1 X ) C(0, 1) og 1 + X 1 X C(0, 1). (K.4) Hvis X 1,...,X n er uafhængige og X k C(a, b) for 1 k n, er 1 n n X k C(a, b). k=1 19

Multinomialfordelingen mn(n, p 1,...,p m ) (A) n N, 0 p i 1 i = 1,..., m og p 1 + + p m = 1. ( ) n m p(k) = mn(k, n, p 1,..., p m ) = k 1,...,k m i+1 for k = (k 1,...,k m ) : 0 k i n i = 1,...,n og k 1 + + k m = n. X = (X 1,...,X m ) mn(n, p 1,...,p m ) X i bi(n, p i ) i = 1,...,m. (E) Hvis X = (X 1,...,X m ) mn(n, p 1,...,p m ) er E[X i ] = np i, V ar(x i ) = np i (1 p i ), Cov(X i, X j ) = np i p j i j. mn(n 1, p 1,...,p m ) mn(n 2, p 1,..., p m ) = mn(n 1 + n 2, p 1,...,p m ). (J) Hvis X n = (X 1n,...,X mn ) mn(n, p 1,...,p m ) for alle n 1 konvergerer p k i i m i=1 (X in np i ) 2 np i χ 2 (m 1) for n. (K) Et forsøg med m mulige udfald A 1,...A m med sandsynligheder p 1,...,p m udføres n-gange. Hvis X i for i = 1,..., m betegner antallet af gange A i kommer ud, så er (X 1n,...,X mn ) mn(n, p 1,...,p m ). 20

Den to-dimensionale normalfordeling N 2 (µ, σ) (A) ( σ µ = (µ 1, µ 2 ) R 2 2, σ = 1 c c σ2 2 ) hvor σ 1, σ 2 > 0 og c < σ 1 σ 2. f(x) = n 2 (x, µ, σ) = 1 2π σ 1 σ 2 1 ρ 2 exp( Q(x 1 µ 1, x 2 µ 2 ) ) x R 2, hvor ρ = c/σ 1 σ 2, og Q er den kvadratiske form Q(x) = 1 2(1 ρ 2 ) ( ) x 2 1 /σ2 1 + x2 2 /σ2 2 2ρ x 1 x 2 σ 1 σ 2 1 ρ 2 x R 2. X = (X 1, X 2 ) N 2 (µ, σ) X i N(µ i, σi 2 ) i = 1, 2. (E) Hvis X = (X 1, X 2 ) N 2 (µ, σ) er E[X i ] = µ i og V ar(x i ) = σ 2 i og Cov(X 1, X 2 ) = c. ϕ(t) = exp( i µ t 1 2 t σ tt ). (K) Hvis X = (X 1, X 2 ) N 2 (µ, σ) og T er en lineær bijektion i R 2, er T(X) N 2 ( T(µ), T σ T t ), hvor T er matricen hørende til T udregnet mht.den kanoniske basis i R 2 og T t den transponerede. Formlen er angivet under forudsætningen, at vektorerne i R 2 opfattes som søjlevektorer. Skiftes til rækkevektor-notation er formlen for Kovariansmatricen i stedet T t σ T. For alle a, b R gælder derfor hvor σ 2 = a 2 σ 2 1 + b2 σ 2 2 + 2 abc. ax 1 + bx 2 N(aµ 1 + bµ 2, σ 2 ) 21

Generelle uniforme fordelinger Lad A B(R n ) have positivt endeligt Lebesgue mål, dvs.0 < λ n (A) <. Definition En n-dimensional stokastisk vektor X siges da at være uniformt fordelt over A hvis P(X B) = λ 2 (B A)/λ 2 (A) B B(R n ). Flg.punkter er åbenbart opfyldte, hvis X er uniformt fordelt over A. 1) P X λ n med tæthed x 1 A (x)/λ n (A). 2) X + x er uniformt fordelt over A + x for alle x R n. 3) T(X) er uniformt fordelt over T(A) for enhver lineær bijektion i R n. 22