Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen.

Størrelse: px
Starte visningen fra side:

Download "Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen."

Transkript

1 Side 1 af 8 Eksponentiel udvikling ( 37-43) Opgaverne med svar starter på side 4, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 7 med et s foran nummeret Betragt den eksponentielle udvikling y = 48 1,23 x. a) Hvor mange procent vokser funktionsværdien når x vokser med 1? b) Bestem den fremskrivningsfaktor der svarer til en x-tilvækst på 2. Hvad er den tilsvarende procentvise y-tilvækst? 0702 En eksponentiel udvikling y = b a x vokser med 14% pr. x-enhed. Bestem grundtallet a. Hvor mange procent vokser y når x vokser med 5? 0703 Betragt den eksponentielle udvikling der har grundtal a = 3, og som opfylder at når x = 4 er y = 2. Hvad er y når x = 5? Og når x = 6? Og når x = 3? 0704 Betragt den eksponentielle udvikling der har grundtal a = 0,9, hvis graf går gennem punktet (2,10). Hvad er y når x = 3? Og når x = 4? Og når x = 0? 0705 Betragt den eksponentielle udvikling med ligning y = 8 3,5 x. Løs ved maskinhjælp ligningen y = 35. Løs ved maskinhjælp ligningen y = 0,7. Find med maskinhjælp fordoblingskonstanten for den eksponentielle udvikling Betragt den eksponentielle udvikling med ligning y = 13 0,28 x. Løs ved maskinhjælp ligningen y = 117. Løs ved maskinhjælp ligningen y = 0,875. Find med maskinhjælp halveringskonstanten for den eksponentielle udvikling En eksponentiel udvikling er fastlagt ved at dens graf går igennem punkterne (2,7) og (7,11). Bestem ligningen for den eksponentielle udvikling En eksponentiel udvikling er fastlagt ved at dens graf går igennem punkterne ( 4, 5) og (3,27). Bestem ligningen for den eksponentielle udvikling. Bestem desuden fordoblingskonstanten En eksponentiel udvikling er fastlagt ved at dens graf går igennem punktet (3,11), og den har halveringskonstant 4,689. Bestem ligningen for den eksponentielle udvikling En eksponentiel udvikling er fastlagt ved at dens graf går igennem punktet (7,58), og den vokser med 32% når x vokser med 3. Bestem ligningen for den eksponentielle udvikling En eksponentiel udvikling er fastlagt ved at dens graf går igennem punktet (3,26), og den aftager med 41% når x vokser med 2. Bestem ligningen for den eksponentielle udvikling.

2 Side 2 af Figuren viser grafen for en eksponentielt voksende udvikling. Aflæs fordoblingskonstanten. Løs ved aflæsning ligningen y = 1. For hvilke x-er er y er større end eller lig med 6? Figuren viser grafen for en eksponentielt aftagende udvikling. Aflæs halveringskonstanten. Løs ved aflæsning ligningen y = 6. For hvilke x-er er y er større end eller lig med 6? Løs hver af ligningerne: a) 5 x = 487 b) 13 x = 3245 c) 4 x = 0,9857 d) 245 x = Løs hver af ligningerne: a) 0,2034 x = 0, b) 0,8024 x = 5 c) 0,9021 x = 0,05784 d) 0, x = Løs hver af ligningerne: a) 4 2 x = 119 b) 8 12,84 x = 65,09 c) 13,58 2,971 x = 0,2578 d) 65 0,02504 x = 0,005048

3 Side 3 af Løs hver af ligningerne: a) 56 0,5431 x = 57 b) 512 5,008 x = 78,59 c) 4,905 1,087 x = 504,8 d) 3 5 x = Hvor mange hele terminer skal kr. stå på en konto inden saldoen kommer over kr. hvis rentefoden er 1,75%? 0719 En eksponentiel udvikling y = b a x er fastlagt ved at dens graf går igennem punkterne (4,34) og (7,324). Beregn konstanterne a og b i ligningen En eksponentiel udvikling y = b a x er fastlagt ved at dens graf går igennem punkterne ( 3,51) og (5,13). Beregn konstanterne a og b i ligningen Beregn for hver af de eksponentielle udviklinger fordoblings- eller halveringskonstanten. a) y = 14 0,43 x b) y = 45 1,95 x c) y = 5 34,56 x d) y = 65 1,00258 x 0722 Beregn for hver af de eksponentielle udviklinger fordoblings- eller halveringskonstanten. a) y = 6 0,3406 x b) y = 32 0,02044 x c) y = 71 0,99324 x d) y = 0, ,04 x 0723 Betragt den eksponentielle udvikling med ligning y = 0, ,34 x. Er den eksponentielle udvikling voksende eller aftagende? Løs hver af ligningerne y = 435, y = 0,2108, og y = 0, Betragt den eksponentielle udvikling med ligning y = 15 0,93757 x. Er den eksponentielle udvikling voksende eller aftagende? Løs hver af ligningerne y = 17, y = 34, og y = Sammenhængen mellem to størrelser x og y kan beskrives ved en eksponentiel model. Tabellen viser nogle sammenhørende værdier af x og y. x y 3,0 4,7 7,9 17,4 a) Bestem tallene a og b i modellen f(x) = b a x. b) Bestem fordoblingskonstanten for modellen. c) Hvor stor skal x i modellen være for at y er større end 50?

4 Side 4 af 8 Opgaver med svar. 0701s Betragt den eksponentielle udvikling y = 31 1,49 x. a) Hvor mange procent vokser funktionsværdien når x vokser med 1? b) Bestem den fremskrivningsfaktor der svarer til en x-tilvækst på 2. Hvad er den tilsvarende procentvise y-tilvækst? 0702s En eksponentiel udvikling y = b a x vokser med 24% pr. x-enhed. Bestem grundtallet a. Hvor mange procent vokser y når x vokser med 5? 0703s Betragt den eksponentielle udvikling der har grundtal a = 1,5, og som opfylder at når x = 1 er y = 6. Hvad er y når x = 2? Og når x = 3? Og når x = 0? 0704s Betragt den eksponentielle udvikling der har grundtal a = 0,5, hvis graf går gennem punktet (3,16). Hvad er y når x = 4? Og når x = 5? Og når x = 2? 0705s Betragt den eksponentielle udvikling med ligning y = 3 2,1 x. a) Løs ved maskinhjælp ligningen y = 17. b) Løs ved maskinhjælp ligningen y = 0, c) Find med maskinhjælp fordoblingskonstanten for den eksponentielle udvikling. 0706s Betragt den eksponentielle udvikling med ligning y = 25 0,31 x. a) Løs ved maskinhjælp ligningen y = 48. b) Løs ved maskinhjælp ligningen y = 0,958. c) Find med maskinhjælp halveringskonstanten for den eksponentielle udvikling. 0707s En eksponentiel udvikling er fastlagt ved at dens graf går igennem punkterne (3,2) og (10,6). Bestem ligningen for den eksponentielle udvikling. 0708s En eksponentiel udvikling er fastlagt ved at dens graf går igennem punkterne ( 1,4) og (5,9). Bestem ligningen for den eksponentielle udvikling. Bestem desuden fordoblingskonstanten. 0709s En eksponentiel udvikling er fastlagt ved at dens graf går igennem punktet (6,3), og den har halveringskonstant 1,587. Bestem ligningen for den eksponentielle udvikling. 0710s En eksponentiel udvikling er fastlagt ved at dens graf går igennem punktet ( 3,42), og den vokser med 17% når x vokser med 4. Bestem ligningen for den eksponentielle udvikling. 0711s En eksponentiel udvikling er fastlagt ved at dens graf går igennem punktet (4,18), og den aftager med 85% når x vokser med 3. Bestem ligningen for den eksponentielle udvikling.

5 Side 5 af s Figuren viser grafen for en eksponentielt voksende udvikling. a) Aflæs fordoblingskonstanten. b) Løs ved aflæsning ligningen y = 1,5. c) For hvilke x-er er y er større end eller lig med 3? s Figuren viser grafen for en eksponentielt aftagende udvikling. a) Aflæs halveringskonstanten. b) Løs ved aflæsning ligningen y = 6. c) For hvilke x-er er y er større end eller lig med 3? s Løs hver af ligningerne: a) 23 x = 12 b) 2 x = 45 c) 7 x = 0,05487 d) 27 x = s Løs hver af ligningerne: a) 0,1345 x = 132 b) 0,7407 x = 13 c) 0,01231 x = 6014 d) 0,9958 x = s Løs hver af ligningerne: a) 2 12 x = 250 b) 23 8,574 x = 7069 c) 15 1,0157 x = 124 d) 35 0,4098 x = 2,587

6 Side 6 af a Løs hver af ligningerne: a) 2 8,095 x = 4609 b) 3,975 1,0258 x = 5,987 c) 64 2,345 x = 7,907 d) 98 0,9587 x = s Hvor mange hele terminer skal kr. stå på en konto inden saldoen kommer over kr. hvis rentefoden er 1,65%? 0719s En eksponentiel udvikling y = b a x er fastlagt ved at dens graf går igennem punkterne (6,7) og (13,564). Beregn konstanterne a og b i ligningen. 0720s En eksponentiel udvikling y = b a x er fastlagt ved at dens graf går igennem punkterne ( 8,45) og (3,6). Beregn konstanterne a og b i ligningen. 0721s Beregn for hver af de eksponentielle udviklinger fordoblings- eller halveringskonstanten. a) y = 9 0,32x b) y = 16 3,54 x c) y = 48 21,32 x d) y = 3 1,645 x 0722s Beregn for hver af de eksponentielle udviklinger fordoblings- eller halveringskonstanten. a) y = 23 1,0562 x b) y = 93 0,9405 x c) y = 19 0,3987 x d) y = ,004 x 0723s Betragt den eksponentielle udvikling med ligning y = 14 0,6807 x. Er den eksponentielle udvikling voksende eller aftagende? Løs hver af ligningerne y = 10, y = 100, og y = s Betragt den eksponentielle udvikling med ligning y = 23 1,043 x. Er den eksponentielle udvikling voksende eller aftagende? Løs hver af ligningerne y = 46, y = 59, og y = s Sammenhængen mellem to størrelser x og y kan beskrives ved en eksponentiel model. Tabellen viser nogle sammenhørende værdier af x og y. x y a) Bestem tallene a og b i modellen f(x) = b a x. b) Bestem fordoblingskonstanten for modellen. c) Hvor stor skal x i modellen være for at y er større end 1000?

7 Side 7 af 8 Svar til s-opgaverne. s0701 a) 49% b) 2, % s0702 a = 1,24 193,16% s0703 9, 13.5, 4 s0704 8, 4, 32 s0705 a) 2,338 b) 5,579 c) 0,9342 s0706 a) 0,5570 b) 2,785 c) 0,5918 s0707 y = 1,249 1,170 x s0708 y = 4,579 1,145 x T 2 = 5,129 s0709 y = 41,23 0,6461 x s0710 y = 47,25 1,040 x s0711 y = 225,8 0,5313 x s0712 a) T 2 = 4 b) x = 3 c) x 1 s0713 a) T ½ = 3,5 b) x = 2 c) x 1,5 s0714 a) x = 0,7925 b) x = 5,492 c) x = 1,492 d) x = 1 3 s0715 a) x = 2,434 b) x = 8,545 c) x = 1,979 d) x = 815,9 s0716 a) x = 1,943 b) x = 2,666 c) x = 135,6 d) x = 2,920 s0717 a) x = 3,702 b) x = 16,08 c) x = 2,454 d) x = 8,665 s0718 x = 14 s0719 a = 1,872, b = 0,1626 s0720 a = 0,8326, b = 10,39 s0721 a) T ½ = 0,6083 b) T 2 = 0,5483 c) T 2 = 0,2265 d) T 2 = 1,393

8 Side 8 af 8 s0722 a) T 2 = 12,68 b) T ½ = 11,30 c) T ½ = 0,7538 d) T 2 = 0,4305 s0723 Aftagende y = 10 så er x = 0,8748, y = 100 så er x = 5,112 og y = 6 så er x = 2,203. s0724 Voksende y = 46 så er x = 16,46, y = 59 så er x = 22,38 og y = 13 så er x = 13,55. s0725 a = 1,403 b = 5,915 T 2 = 2,048 For at y er større end 1000 skal x være større end 15,16.

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1

Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. IX Funktioner Side 1 Side 1 Funktion Opgaverne med svar starter på side 2, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står fra side 3 med et s foran nummeret. 1001 Figuren viser grafen

Læs mere

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra.

Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet fremskrivningsfaktor. Vis,

Læs mere

GrundlÄggende variabelsammenhänge

GrundlÄggende variabelsammenhänge GrundlÄggende variabelsammenhänge for C-niveau i hf 2014 Karsten Juul LineÄr sammenhäng 1. OplÄg om lineäre sammenhänge... 1 2. Ligning for lineär sammenhäng... 1 3. Graf for lineär sammenhäng... 2 4.

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det.

1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Emne: procent og rente: 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet

Læs mere

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG

ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG ØVEHÆFTE FOR MATEMATIK C EKSPONENTIEL SAMMENHÆNG INDHOLDSFORTEGNELSE Formelsamling... side Grundlæggende færdigheder... side 4 a Finde konstanterne a og b i en regneforskrift (og p eller r)... side 4 b

Læs mere

Eksamensspørgsmål: Eksponentiel vækst

Eksamensspørgsmål: Eksponentiel vækst Eksamensspørgsmål: Eksponentiel vækst Indhold Definition:... Eksempel :... Begndelsesværdien b... Fremskrivningsfaktoren a... Eksempel :... Formlerne for a og b... 3 Eksempel 3:... 3 Bevis for formlen

Læs mere

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives.

x + 4 = 3x - 2 Redegør for opstilling af formler til løsning af praktiske problemer. Vis, hvordan en formel kan omskrives. Eksamensspørgsmål - maj/juni 2016 1. Tal Du skal redegøre for løsningsregler for ligninger. Forklar, hvordan følgende ligning kan løses grafisk: x + 4 = 3x - 2 Redegør for opstilling af formler til løsning

Læs mere

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift:

Matematik projekt 4. Eksponentiel udvikling. Casper Wandrup Andresen 2.F 16-01-2009. Underskrift: Matematik projekt 4 Eksponentiel udvikling Casper Wandrup Andresen 2.F 16-01-2009 Underskrift: Teorien bag eksponentiel udvikling er som sådan meget enkel. Den har forskriften: B er vores begndelsesværdi

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2014 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Susanne Hansen

Læs mere

Formelsamling Matematik C

Formelsamling Matematik C Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden

Læs mere

Eksamensspørgsmål 4emacff1

Eksamensspørgsmål 4emacff1 Eksamensspørgsmål 4emacff1 1. Funktioner, Lineære funktioner Gør rede for den lineære funktion y ax b. Forklar herunder betydningen af a og b, og kom ind på det grafiske forløb af en lineær funktion. Kom

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Indholdsfortegnelse Variabel-sammenhænge... 1 1. Hvad er en eksponentiel sammenhæng?... 2 2. Forklaring med ord af eksponentiel vækst... 2, 6

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hf2 Matematik C Laila Knudsen 1a ma Oversigt over gennemførte undervisningsforløb Forløb

Læs mere

9 Eksponential- og logaritmefunktioner

9 Eksponential- og logaritmefunktioner 9 Eksponential- og logaritmefunktioner Hayati Balo, AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2 2. Crone og Rosenquist, Matematiske elementer

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-maj 16 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2014 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Dorthe Jørgensen

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014

SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014 SPØRGSMÅL TIL MUNDTLIG EKSAMEN, MAT C sommer2014 1. Procent og rente Forklar hvordan man udregner procentvis ændringer i forskellige tidsrum og giv et konkret eksempel herpå. Forklar gerne med et eksempel,

Læs mere

Kapitel 7 Matematiske vækstmodeller

Kapitel 7 Matematiske vækstmodeller Matematiske vækstmodeller I matematik undersøger man ofte variables afhængighed af hinanden. Her ser man, at samme type af sammenhænge tit forekommer inden for en lang række forskellige områder. I kapitel

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold 2hf Matematik C Thomas Pedersen

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Laila Knudsen mac3 Oversigt over gennemførte undervisningsforløb Forløb 1

Læs mere

MAT B GSK december 2008 delprøven uden hjælpemidler

MAT B GSK december 2008 delprøven uden hjælpemidler MAT B GSK december 008 delprøven uden hjælpemidler Opg Nedenstående diagram viser sumkurven F() for fordelingen af målte hastigheder højst 60 km/t. Bestem kvartilsættet (bent bilag ) og bestem hvor mange

Læs mere

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal.

En funktion kaldes eksponentiel, hvis den har en regneforskrift, der kan skrives således: f(x) = b a x eller y = b a x, idet a og b er positive tal. Eksponentielle funktioner Indhold Definition:... 1 Om a og b... 2 Tegning af graf for en eksponentiel funktion... 3 Enkeltlogaritmisk koordinatsstem... 4 Logaritmisk skala... 5 Fordoblings- og halveringskonstant...

Læs mere

brikkerne til regning & matematik funktioner preben bernitt

brikkerne til regning & matematik funktioner preben bernitt brikkerne til regning & matematik funktioner 2+ preben bernitt brikkerne til regning & matematik funktioner 2+ beta udgave som E-bog ISBN: 978-87-92488-32-9 2009 by bernitt-matematik.dk Kopiering af denne

Læs mere

ØVEHÆFTE FOR MATEMATIK C RENTESREGNING

ØVEHÆFTE FOR MATEMATIK C RENTESREGNING ØVEHÆFTE FOR MATEMATIK C RENTESREGNING hvor a INDHOLDSFORTEGNELSE 1 Introduktion... side 1 Renters rente på 4 måder... side 2 2 Grundlæggende færdigheder... side 3 2c Anvendelse af kapitalfremskrivningsformlen

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

H Å N D B O G M A T E M A T I K 2. U D G A V E

H Å N D B O G M A T E M A T I K 2. U D G A V E H Å N D B O G M A T E M A T I K C 2. U D G A V E ÁÒ ÓÐ Indhold 1 1 Procentregning 3 1.1 Delingsprocent.............................. 3 1.2 Vækstprocent.............................. 4 1.3 Renteformlen..............................

Læs mere

Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen.

Supplerende opgaver til TRIP s matematiske GRUNDBOG. Forlaget TRIP. Opgaverne må frit benyttes i undervisningen. 29-33. Side 1 af 6 Procent- og rentesregning ( 29-33) Opgaverne med svar starter på side 5, og deres numre har et s efter nummeret. Deres nummerering starter forfra. Svarene står på side 6 med et s foran

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2015/2016 Institution Frederiksberg HF Kursus Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Sebastian

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2015 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin 2014/2015 Institution Frederiksberg HF Kursus Uddannelse Fag og niveau Lærer(e) Hold HF Matematik C Sebastian

Læs mere

Mundtlige spørgsmål til 2v + 2b. mat B, sommer Nakskov Gymnasium & Hf.

Mundtlige spørgsmål til 2v + 2b. mat B, sommer Nakskov Gymnasium & Hf. Mundtlige spørgsmål til 2v + 2b. mat B, sommer 2010. Nakskov Gymnasium & Hf. Eksaminator: Ulla Juul Franck Der er 20 spørgsmål i alt, og bilag til spørgsmål 14 og 15. 1. Andengradspolynomier og parabler.

Læs mere

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet

Rentesregning. Procent- og rentesregning. Rentesregning. Opsparingsannuitet Rentesregning 1 Forklar begrebet fremskrivningsfaktor. Forklar kapitalfremskrivningsformlen (renteformlen), og opstil/omskriv denne så du kan bestemme 1 af størrelserne, ud fra de 3 andre. Giv eksempler,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Alexander

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 2016 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) HF Matematik C Kasper Jønsson

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer 2hf Matematik C Søren Fritzbøger Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Sommer 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Laila Knudsen mac5 Oversigt over gennemførte undervisningsforløb Forløb 1

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Maj-juni 2015 VUCHA Hf-2 Matematik-C Ivan Jørgensen(itj) Hold

Læs mere

Eksponentielle sammenhænge

Eksponentielle sammenhænge Eksponentielle sammenhænge Udgave 009 Karsten Juul Dette hæfte er en fortsættelse af hæftet "Lineære sammenhænge, udgave 009" Indhold 1 Eksponentielle sammenhænge, ligning og graf 1 Procent 7 3 Hvad fortæller

Læs mere

Undervisningsbeskrivelse for: 1mac16v ma

Undervisningsbeskrivelse for: 1mac16v ma Undervisningsbeskrivelse for: 1mac16v2 0816 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C for BIIG og enkeltfag ½ års efterår Termin: December 2016 Uddannelse:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 13/14 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Alexander

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jørn Ole Spedtsberg

Læs mere

Matematik for stx C-niveau

Matematik for stx C-niveau Thomas Jensen og Morten Overgård Nielsen Matematik for stx C-niveau Frydenlund Nu 2. reviderede, udvidede og ajourførte udgave Nu 2. reviderede, udvidede og ajourførte udgave Matema10k Matematik for stx

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold 2hf Matematik C Malene Overgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Forår 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Rabia Jeelani

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 Skoleår 2014/2015 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Jørn Ole Spedtsberg

Læs mere

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB

STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU. Tirsdag den 18. december 2007. Kl. 09.00 13.00 STX073-MAB STUDENTEREKSAMEN DECEMBER 2007 MATEMATIK B-NIVEAU Tirsdag den 18. december 2007 Kl. 09.00 13.00 STX073-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleåret 2014/15, eksamen maj-juni 2015 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januer-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Matematik Grundforløbet

Matematik Grundforløbet Matematik Grundforløbet Mike Auerbach (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 2. udgave, 2015 Disse noter er skrevet til matematikundervisning i grundforløbet på stx og kan frit anvendes

Læs mere

Naturfag - naturligvis. 3. Vækstmodeller

Naturfag - naturligvis. 3. Vækstmodeller Naturfag - naturligvis af Kenneth Hansen 3. Vækstmodeller Verdens befolkning 14 12 10 8 6 4 2 0 0 10 20 30 40 50 År 1984-2034 I 1984 var verdensbefolkningen 4,7 mia. og voksede med 1,8% om året Hvornår

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni, 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C Elisabeth

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni, 2014/15

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2014 Institution Uddannelse Fag og niveau Lærer(e) Hold Campus Vejle HHX Matematik C Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold 2hf Matematik C Najib Faizi

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Januar-maj 15 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik C Glenn Aarhus

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December-januar 15/16 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2015-2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab1 Oversigt over gennemførte undervisningsforløb

Læs mere

M A T E M A T I K G R U N D F O R L Ø B E T

M A T E M A T I K G R U N D F O R L Ø B E T M A T E M A T I K G R U N D F O R L Ø B E T M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) y 2 Q 1 a y 1 P b x 1 x 2 (1) Matematik: Grundforløbet 3. udgave, 2016 Disse noter er skrevet til matematikundervisning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Termin Maj-juni 2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Bodil Krongaard Lindeløv mac2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2016 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2014/2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Horsens HF og VUC Hf Matematik C Ineta

Læs mere

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever.

Beviserne: Som en det af undervisningsdifferentieringen er a i lineære, eksponentiel og potens funktioner er kun gennemgået for udvalgte elever. År Sommer 2015 Institution Horsens HF & VUC Uddannelse HF2-årigt Fag og Matematik C niveau Lærer Søren á Rógvu Hold 1b Oversigt over forløb Forløb 1 Forløb 2 Forløb 3 Forløb 4 Forløb 5 Forløb 6 Forløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2012. Institution ZBC Næstved. Uddannelse Hhx. Fag og niveau Matematik C. Lærer(e) Hold Lars Westermann

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016, skoleåret (15/) 16 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC HF-E

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 09/10 Institution Frederikshavn Handelsskole Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2014 - Juni 2015 Institution Uddannelse Fag og niveau Lærer(e) Hold Herning HF og VUC Hf Matematik

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution Frederikshavn Handelsgymnasium Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium

Projektopgave Matematik A. Vejleder: Jørn Bendtsen. Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Projektopgave Matematik A Tema: Eksponentielle modeller Vejleder: Jørn Bendtsen Navn: Devran Kücükyildiz Klasse: 2,4 Roskilde Tekniske Gymnasium Dato: 01-01-2008 Indholdsfortegnelse Indledning... 3 1.

Læs mere

Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF

Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF Undervisningsbeskrivelse for: hf15b 0813 Matematik C, 2HF Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: 1. hel hf B, 1. år af 2 Termin: Juni 2014 Uddannelse: HF Lærer(e):

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 200/2010 Institution Herning HF og VUC Uddannelse Fag og niveau Lærer(e) Hf Matematik C, HF Johnny

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 12/13 Institution Nørre Nissum Seminarium & HF Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Herning HF og VUC (657248) Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik C,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2011 Institution Frederikshavn Handelsgymnasium Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik

Læs mere

Undervisningsbeskrivelse for: 1mac15e2 0814 ma

Undervisningsbeskrivelse for: 1mac15e2 0814 ma Undervisningsbeskrivelse for: 1mac15e2 0814 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C for enkeltfag Termin: Juni 2015 Uddannelse: HF Lærer(e): Jacob

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj, 2015 Institution VID Gymnasier, Handelsgymnasium Rønde Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik

Læs mere

Eksponentiel regression med TI-Nspire ved transformation af data

Eksponentiel regression med TI-Nspire ved transformation af data Eksponentiel regression med TI-Nspire ved transformation af data En vigtig metode til at få overblik over data er at tranformere dem, således at der fremkommer en lineær sammenhæng. Ordet transformation

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Retur Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution VUC Syd Uddannelse Fag og niveau Lærer(e) 2-årigt hf Hf matematik C Hanne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Januar 2015 VUCHA Hf-Flex Matematik-C Ivan Tønner Jørgensen(itj)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2013 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni, 2012/13

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik C Signe Skovsgaard

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2016 Institution HF & VUC Nordsjælland, Hillerød afdeling Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf.

Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Eksamensspørgsmål i ma til 1p sommeren 2009 (revideret) 1. Procent- og rentesregning Gør rede for begrebet fremskrivningsfaktor og giv eksempler på anvendelse heraf. Forklar formlen til kapitalfremskrivning

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Maj-juni 2016 VUCHA Hf-2 og Hf-Enkeltfag Matematik-C Anders

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2016 Institution VUC Thy-Mors Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik niveau C René Günther

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2016 Institution Vestegnen hf og VUC Uddannelse Fag og niveau Lærer(e) Hold hf Matematik C Nicolai

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2015 Institution VUC Vest Esbjerg Afdeling, Eksamens nr. 582 / Skolenummer 561 248 Uddannelse Fag

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / juni 2014 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Undervisningsbeskrivelse for: 1mac16fs 0815 ma

Undervisningsbeskrivelse for: 1mac16fs 0815 ma Undervisningsbeskrivelse for: 1mac16fs 0815 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C fleks sommereksamen Termin: Juni 2016 Uddannelse: HF Lærer(e):

Læs mere

Eksponentielle funktioner

Eksponentielle funktioner Eksponentielle funktioner http://en.wikipedia.org/wiki/rabbits_in_australia 4. udg. 2011 12-12-2011 Eksponentielle funktioner Vækst Udfyld tabellen ved: at skrive begyndelsesværdien b = f(0) = 30 under

Læs mere