Ikke-lineære funktioner

Størrelse: px
Starte visningen fra side:

Download "Ikke-lineære funktioner"

Transkript

1 I elevernes arbejde med funktioner på tidligere klassetrin har hovedvægten ligget på sammenhænge, der kan beskrives med lineære funktioner. Dette kapitel berører ligefrem proportionalitet og stykkevist lineære funktioner, men fokus er på sammenhænge, der ikke kan beskrives med lineære funktioner. Eksempler fra hverdagen eller omverdenen er udgangspunktet for elevernes arbejde med omvendt proportionalitet, andengradsfunktioner og eksponentiel vækst. Det kræver modelleringskompetence at kunne oversætte kapitlets praktiske problemstillinger til funktioner, der kan beskrive de konkrete sammenhænge og til at kunne se, hvad de matematiske beskrivelser og løsninger betyder for de praktiske problemstillinger. Som i Kolorit 7 matematik grundbog og Kolorit 8 matematik grundbog er det gennemgående for arbejdet med de forskellige funktioner, at eleverne arbejder med både tabeller, funktionsforskrifter, grafer og sproglige beskrivelser og sammenhængen imellem dem repræsentationskompetencen er således central. Eleverne arbejder med symbolbehandlingskompetencen gennem det meste af kapitlet, idet de anvender symboler i den algebraiske repræsentation. I forbindelse med mange af kapitlets sider er det en fordel at have et funktionsprogram til rådighed, men især i forbindelse med omvendt proportionalitet og andengradsfunktioner lægger opgaverne op til, at eleverne arbejder undersøgende med henholdsvis hyperblen og parablen i et funktionsprogram fx med fokus på at undersøge og systematisere iagttagelser omkring sammenhængen mellem graf og funktionsforskrift. Eleverne får på den måde mulighed for at styrke deres hjælpemiddelkompetence i arbejdet med kapitlet, og funktionsprogrammet kan blive en støtte i arbejdet med at udvikle matematikfaglig indsigt i ikke-lineære funktioner. Eleverne får desuden mulighed for at styrke deres tankegangskompetence, når de arbejder med centrale begreber i forbindelse med funktioner. Kapitlets centrale faglige begreber er: tabel graf funktionsforskrift ligefrem proportionalitet omvendt proportionalitet og hyperbel andengradsfunktion og parabel eksponentialfunktion og eksponentiel vækst stykkevis lineær funktion Huskeliste: Et funktionsprogram (til side 48, 52, 53) IKKE-LINEÆRE FUNKTIONER 1

2 FRA FAGHÆFTET Kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers rækkevidde og begrænsning (tankegangskompetence) opstille, behandle, afkode, analysere og forholde sig kritisk til modeller, der gengiver træk fra virkeligheden, bl.a. ved hjælp af regneudtryk, tegning, diagrammer, ligninger, funktioner og formler (modelleringskompetence) afkode, bruge og vælge hensigtsmæssigt mellem forskellige repræsentationsformer og kunne se deres indbyrdes forbindelse (repræsentationskompetence) forstå og benytte variable og symboler, bl.a. når regler og sammenhænge skal vises, samt oversætte mellem dagligsprog og symbolsprog (symbolbehandlingskompetence) kende forskellige hjælpemidler, herunder it, og deres muligheder og begrænsninger, samt anvende dem hensigtsmæssigt, bl.a. til eksperimenterende udforskning af matematikkens sammenhænge, til beregninger og til præsentationer (hjælpemiddelkompetence) Matematiske emner I arbejdet med tal og algebra at kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge forstå og anvende formler og matematiske udtryk, hvori der indgår variable anvende funktioner til at beskrive sammenhænge og forandringer arbejde med funktioner i forskellige repræsentationer I arbejdet med geometri at arbejde med koordinatsystemet og forstå sammenhængen mellem tal og geometri Matematik i anvendelse arbejde med problemstillinger vedrørende dagligdagen, bl.a. i forbindelse med privatøkonomi, bolig og transport anvende faglige redskaber og begreber, bl.a. procentberegninger, formler og funktioner som værktøj til løsning af praktiske problemstillinger Matematiske arbejdsmåder undersøge, systematisere og ræsonnere med henblik på at generalisere arbejde individuelt og sammen med andre om problemløsning i mundtligt og skriftligt arbejde Indhold og mål I dette kapitel skal I bruge funktioner til at beskrive forskellige sammenhænge. Målet er, at I lærer forskellige ikke-lineære funktioner at kende. bruger funktioner til at beskrive forskellige sammenhænge. lærer, hvad der kendetegner grafer for omvendt proportionalitet. lærer, hvad der kendetegner grafer for andengradsfunktioner. lærer mere om eksponentiel vækst. IKKE-LINEÆRE FUNKTIONER 2

3 Facit: Side 42 Mundtlig 1. Fx Grafen for funktionen er en ret linje. Hver gang vi går 1 hen på x-aksen, går vi 50 op ad y-aksen. 2. Fx Hvis bilen kører dobbelt så lang tid, bliver strækningen dobbelt så stor. Hvis bilen kører tre gange så lang tid, bliver strækningen tre gange så lang. 3. Funktionsværdien findes som et produkt af x og en konstant. Når vi går 1 til højre på x- aksen, vil vi derfor altid gå konstantens størrelse op/ned ad y-aksen. 4. a. 5 timer. b. 2,5 timer. c. 1 time. 5. IKKE-LINEÆRE FUNKTIONER 3

4 Side 43 Mundtlig 6. a. 1 m b. 4 m c. 16 m 7. Fx I opgave 6 ses, at bremselængden bliver fire gange større, når farten fordobles. Man kan fx aflæse bremselængden ud for 45 km/t i koordinatsystemet og gange den med fire. Man kan også sætte 90 ind på x s plads i ligningen og beregne bremselængden. 8. a kr. b kr. c ,75 kr. Side 44 Problem km. 2. a. Først cykler Per 15 km på 30 min., hvorefter han holder 5 min. pause. Dernæst cykler han 15 km på 45 min. b. Først cykler Dennis 12,5 km på 30 min. hvorefter han holder 10 min. pause. Dernæst cykler han 17,5 km på 40 min. 3. Per cykler hurtigst i begyndelsen af turen. Man kan aflæse, at han cykler længere end Dennis på 30 min. Hældningstallet for det røde linjestykke er større end hældningstallet for det sorte linjestykke. 4. Per kører først med en fart på 30 km/t og til sidst med en fart på 20 km/t. Dennis kører først med en fart på 25 km/t og til sidst med en fart på 26,25 km/t. 5. Side 45 Færdighed Se grundbogen. IKKE-LINEÆRE FUNKTIONER 4

5 Side 46 Mundtlig 1. I koordinatsystemet ses, at funktionens graf er en ret linje, der skærer y-aksen i (0,0). Funktionsforskriften er af typen f(x) = ax. Af tabellen ses fx, at funktionsværdien bliver dobbelt så stor, når x bliver dobbelt så stor. 2. a. Ja. b. Ja. 3. Sammenhængen mellem mandler (x) og sukker (f(x)). a. Mængden af sukker svarer til af mængden af mandler. b. g mandler g sukker c. d. f(x) = 0,6x IKKE-LINEÆRE FUNKTIONER 5

6 Side 47 - Mundtlig 4. Ikke alle værdier på x-aksen kan bruges, men kun de positive, hele tal. Derfor består grafen af punkter. 5. a. 100 poser. b. 50 poser. c. 25 poser. 6. Fx Når mængden af gram bolsjer i en pose bliver dobbelt så stor, kan der kun laves halvt så mange poser med bolsjer. 7. x er mængden af mandler i gram og f(x) antallet af poser. a. f(x) =, x 0 b. f(x) =, x 0 8. f(x) = 9. a. Nej. Når x er et meget stort negativt eller positivt tal, vil f(x) nærme sig 0, men aldrig antage værdien 0. b. Nej, grafen skærer ikke x-aksen. f(x) kan ikke blive 0. IKKE-LINEÆRE FUNKTIONER 6

7 c. Når værdien af x har en numerisk lille værdi, bliver den numeriske værdi af f(x) stor. d. Ja, y-aksen og f(x) = x er symmetriakser. Side 48 Problem a. f(x) bliver mindre og mindre. b. f(x) bliver større og større. IKKE-LINEÆRE FUNKTIONER 7

8 3. 4. Når a er et positivt tal, er grafen placeret i 1. og 3. kvadrant. Når a er et negativt tal, er grafen placeret i 2. og 4. kvadrant. 5. Grafen for f(x) = er placeret i 1. og 3. kvadrant. Grafen for f(x) = er placeret i 2. og 4. kvadrant. Der er symmetri omkring y-aksen fx svarer f(3) = = 1 til f(-3) = = 1. Der er symmetri omkring x-aksen fx svarer f(1,5) = = 2 til f(1,5) = = -2. IKKE-LINEÆRE FUNKTIONER 8

9 6. Side 49 Problem a. 100 ml b. 83,3 ml 3. a. slagvolumen = b. IKKE-LINEÆRE FUNKTIONER 9

10 4. minutvolumen = 150 ml puls. f(x) = 150x 5. a. 1 og 3: Omvendt proportionalitet. 4: Ligefrem proportionalitet. b. x-værdierne skal i alle opgaverne være positive. I opgave 1 og 4 er x et udtryk for hvilepulsen. Mange har en hvilepuls på mellem 60 og 100 slag på minutter. De mest veltrænedes hvilepuls er omkring 30. De mindst veltrænedes kan omkring 100. En tommelfingerregel for den maksimale puls er 220 minus alder. Side 50 Mundtlig 1. a. Vi kan aflæse, hvor grafen rammer x-aksen, svarende til at højden er 0 meter. b. Vi kan aflæse den højeste funktionsværdi. c. Vi kan aflæse, hvor grafen skærer y-aksen. 2. Grafen parallelforskydes lodret nedad og skærer i (0;1,9) i stedet for (0,2). 3. a. a = -0,0514 b. b = 1 c. c = 2 4. f(0) = 2. Værdien fortæller, hvor højt over jorden kuglen er ved start. 5. a. -0,0514x 2 + x + 2,3 b. -0,0514x 2 + x + 1,8 IKKE-LINEÆRE FUNKTIONER 10

11 Side 51 Mundtlig 6. a. Ifølge grafen øverst til højre er der ca. 1,65 km imellem pillerne. b. Pillerne når ca. 0,032 km = 32 m op over broen. 7. Grafen vil parallelforskydes lodret opad, så alle funktionsværdierne bliver a. 0,003 højere. b. 0,005 højere. 8. x = 0,8 9. Side 51: (0,8;0). Side 50: ca. (10; 7). 10. a. Toppunktet viser, hvor højt kuglen blev kastet (y-værdien), og hvor i kastet denne højde blev nået (x-værdien). b. Toppunktet viser den mindste kabelhøjde (y-værdien), og hvor denne kabelhøjde findes (x-værdien). 11. På side 50 vender parablens grene opad, og på side 51 vender parablens grene nedad. Parablen på side 51 er smallere end parablen på side 50. Parablen på side 51 har en symmetriakse. Parablen på side 50 har ikke en symmetriakse. Side 52 Problem 1. IKKE-LINEÆRE FUNKTIONER 11

12 2. 40 meter meter. 4. Bolden kan ikke sparkes et negativt antal meter. 5. Fx a. f(x) = -0,025x 2 + 2x og f(x) = -0,04x 2 + 2,6x b. f(x) = -0,12x 2 + 4,4x f(x) = -0,18x 2 + 5,4x c. f(x) = -0,1x 2 + 4x og f(x) = -0,125x 2 + 5x. d. f(x) = -0,05x 2 +2x + 20 og f(x) = -0,05x 2 +2x + 35 Side 53 Problem a. Parablens grene vender opad. b. Parablens grene vender nedad. c. Parablen er smal. d. Parablen er bred. IKKE-LINEÆRE FUNKTIONER 12

13 3. 4. Alle graferne er lige brede. a, b, c og d vender opad, mens e og f vender nedad. Graferne skærer y-aksen forskellige steder, men de har alle x = 0 som symmetriakse. 5. Fx a. f(x) = 2x og f(x) = x b. f(x) = 3x og f(x) = 5x c. f(x) = -2x 2 + og f(x) = -10x 2 + d. f(x) = -9x 2-2 og f(x) = -x 2-2 Side 54 Mundtlig 1. a. Ca b. Ca a ,012 3 b , b = og r = 0,012. IKKE-LINEÆRE FUNKTIONER 13

14 Side 55 Mundtlig 6. Befolkningstallet bliver større og større, så det er et større og større tal, den procentvise vækst skal beregnes ud fra. 7. Grafen er blevet mindre stejl, hvilket er et udtryk for, at befolkningstilvæksten er blevet mindre. 8. Nej, grafen har ikke udviklet sig eksponentielt i virkeligheden. Befolkningstilvæksten er blevet mindre, og tilvæksten forventes at blive negativ. 9. a. Ca b. Ca c. Ca Side 56 Problem 1. År Antal millioner indbyggere , , , , , , , , , , a ,008 = b ,008 2 = c , = Mellem år 2030 og IKKE-LINEÆRE FUNKTIONER 14

15 Side 57 - Færdighed Se grundbogen. IKKE-LINEÆRE FUNKTIONER 15

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Funktioner og ligninger

Funktioner og ligninger Eleverne har både i Kolorit på mellemtrinnet og i Kolorit 7 matematik grundbog arbejdet med funktioner. I 7. klasse blev funktionsbegrebet defineret, og eleverne arbejdede med forskellige måder at beskrive

Læs mere

Årsplan matematik 7 kl 2015/16

Årsplan matematik 7 kl 2015/16 Årsplan matematik 7 kl 2015/16 I matematik bruger vi bogsystemet Sigma som grundmateriale, og har matematikfessor som suplerende materiale, samt kopisider. I systemet er der,ud over grundbogen, også kopiark

Læs mere

Matematik. Formål for faget matematik. Slutmål for faget matematik efter 9. klasse. Matematiske kompetencer. Matematiske emner

Matematik. Formål for faget matematik. Slutmål for faget matematik efter 9. klasse. Matematiske kompetencer. Matematiske emner Formål for faget matematik Matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet.

Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet. Dette kapitel tager især udgangspunkt i det centrale kundskabs- og færdighedsområde: Matematik i anvendelse med økonomi som omdrejningspunktet. Kapitlet indledes med fokus på løn og skat og lægger op til,

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

4 Funktioner. Faglige mål. Lineære funktioner. Stykkevis lineære funktioner. Ligefrem proportionale funktioner. Andengradsfunktioner

4 Funktioner. Faglige mål. Lineære funktioner. Stykkevis lineære funktioner. Ligefrem proportionale funktioner. Andengradsfunktioner 4 Funktioner Faglige mål Kapitlet Funktioner tager udgangspunkt i følgende faglige mål: Lineære funktioner: kunne definere hvad der kendetegner en funktion, beregne hældningskoefficienten for en linje

Læs mere

Årsplan for Matematik 8. klasse 2011/2012

Årsplan for Matematik 8. klasse 2011/2012 Årsplan for Matematik 8. klasse 2011/2012 Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget MATEMATIK Formål for faget Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt i matematikrelaterede

Læs mere

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34

Årsplan 9. klasse matematik 2014-2015 Uge Emne Faglige mål Trinmål Materialer/ systemer 33-34 Årsplan 9. klasse matematik 2014-2015 33-34 Årsprøve og rettevejledledning 34-36 Årsprøven i matematik Talmængder og regnemetoder 37 Fordybelses uge 38-39 40 Termins-prøve 41 Studieturen 42 Efterårsferie

Læs mere

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål

MATEMATIK. GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål MATEMATIK GIDEONSKOLENS UNDERVISNINGSPLAN Oversigt over undervisning i forhold til trinmål og slutmål KOMMENTAR Vi har i det følgende foretaget en analyse og en sammenstilling af vore materialer til skriftlig

Læs mere

Undervisningsplan for faget matematik. Ørestad Friskole

Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplan for faget matematik Ørestad Friskole 1. af 11 sider Undervisningsplan for faget matematik. Ørestad Friskole Undervisningsplanens indhold Undervisningens organisering og omfang side 2

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer skelne mellem definitioner og sætninger, mellem enkelttilfælde og generaliseringer og anvende denne indsigt til at udforske og indgå i dialog om forskellige matematiske begrebers

Læs mere

Årsplan for 7. klasse, matematik

Årsplan for 7. klasse, matematik Årsplan for 7. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over grundbogen, også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Ringsted Lilleskole, Uffe Skak Årsplan for 5. klasse, matematik Som det fremgår af nedenstående uddrag af undervisningsministeriets publikation om fælles trinmål til matematik efter 6. klasse, bliver faget

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer formulere sig skriftligt og mundtligt om matematiske påstande og spørgsmål og have blik for hvilke typer af svar, der kan forventes (tankegangskompetence) løse matematiske problemer

Læs mere

Årsplan for matematik

Årsplan for matematik Årsplan for matematik 2016-17 Uge Tema/emne Metode/mål 33 Brøker + talforståelse Matematiske arbejdsmåder(metode) 34 Brøker + procent 35 Excel 35 GeoGebra/Geometri 36 Geometri 37 Emneuge 38 Geometri 39

Læs mere

3. klasse 6. klasse 9. klasse

3. klasse 6. klasse 9. klasse Børne- og Undervisningsudvalget 2012-13 BUU Alm.del Bilag 326 Offentligt Elevplan 3. klasse 6. klasse 9. klasse Matematiske kompetencer Status tal og algebra sikker i, er usikker i de naturlige tals opbygning

Læs mere

Anden del af kapitlet fokuserer på rentebegrebet. I læseplanen fra Fælles Mål 2009 står der direkte, at eleverne skal arbejde med

Anden del af kapitlet fokuserer på rentebegrebet. I læseplanen fra Fælles Mål 2009 står der direkte, at eleverne skal arbejde med Af læseplanen for 7.-9. klassetrin fremgår det, at beskrivelse af lineære og ikke-lineære sammenhænge indgår i arbejdet med funktionsbegrebet. Det er ligeledes fremhævet, at arbejdet med funktionsbegrebet

Læs mere

Evaluering af matematik undervisning

Evaluering af matematik undervisning Evaluering af matematik undervisning Udarbejdet af Khaled Zaher, matematiklærer 6-9 klasse og Boushra Chami, matematiklærer 2-5 klasse Matematiske kompetencer. Fællesmål efter 3.klasse indgå i dialog om

Læs mere

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber:

I kapitlet arbejdes med følgende centrale matematiske objekter og begreber: INTRO Efter mange års pause er trigonometri med Fælles Mål 2009 tilbage som fagligt emne i grundskolens matematikundervisning. Som det fremgår af den følgende sides udpluk fra faghæftets trinmål, er en

Læs mere

Årsplan for 5. klasse, matematik

Årsplan for 5. klasse, matematik Årsplan for 5. klasse, matematik I matematik bruger vi bogsystemet Sigma som grundmateriale. I systemet er der, ud over også kopiark og tests tilknyttet de enkelte kapitler. Systemet er udarbejdet så det

Læs mere

MaxiMat og de forenklede Fælles mål

MaxiMat og de forenklede Fælles mål MaxiMat og de forenklede Fælles mål Dette er en oversigt over hvilke læringsmål de enkelte forløb indeholder. Ikke alle forløb er udarbejdet endnu, men i skemaet kan man se alle læringsmålene også de,

Læs mere

Årsplan for matematik 2012-13

Årsplan for matematik 2012-13 Årsplan for matematik 2012-13 Uge Tema/emne Metode/mål 32 Matematiske arbejdsmåder(metode) 33 Intro 34 Tal + talforståelse 35 Brøker-procent 36 Potens+kvadrat-og kubikrod 37 Emneuge 38 Ligninger-uligheder

Læs mere

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14:

Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Introduktion til mat i 4 klasse Vejle Privatskole 2013/14: Udgangspunktet bliver en blød screening, der skal synliggøre summen af elevernes standpunkt. Det betyder i realiteten, at der uddeles 4 klasses

Læs mere

Eleverne skal lære at:

Eleverne skal lære at: PK: Årsplan 8.Ga. M, matematik Tid og fagligt område Aktivitet Læringsmål Uge 32 uge 50 Tal og algebra Eleverne skal arbejde med at: kende de reelle tal og anvende dem i praktiske og teoretiske sammenhænge

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe11-mat/b-3108011 Onsdag den 31. august 011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen

Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen Space Challenge og Undervisningsminsteriets Fælles Mål for folkeskolen I dette kapitel beskrives det, hvilke Fælles Mål man kan nå inden for udvalgte fag, når man i skolen laver aktiviteter med Space Challenge.

Læs mere

Geometri i plan og rum

Geometri i plan og rum INTRO I kapitlet arbejder eleverne med plane og rumlige figurers egenskaber og med deres anvendelse som geometriske modeller. I den forbindelse kommer de bl.a. til at beskæftige sig med beregninger af

Læs mere

Funktioner - supplerende eksempler

Funktioner - supplerende eksempler - supplerende eksempler Oversigt over forskellige typer af funktioner... 9b Omvendt proportionalitet og hyperbler... 9c Eksponentialfunktioner... 9e Potensfunktioner... 9g Side 9a Oversigt over forskellige

Læs mere

Matematik. Matematiske kompetencer

Matematik. Matematiske kompetencer Matematiske kompetencer stille spørgsmål, som er karakteristiske for matematik og have blik for hvilke typer af svar, som kan forventes(tankegangskompetence) erkende, formulere, afgrænse og løse matematiske

Læs mere

Matematikken og naturens kræfter

Matematikken og naturens kræfter INTRO Omdrejningspunktet for dette tema er matematikkens anvendelse som beskrivelsesmiddel i forbindelse med fysiske love. Temaet er inddelt i følgende fire emner: Pendulure Frit fald Bremselængder og

Læs mere

Matematik 2. klasse Årsplan

Matematik 2. klasse Årsplan Matematik 2. klasse Årsplan Årets overordnede mål inddelt i faglige kategorier: Tal og algebra Tælle og kende talnavne op til 9999. Kunne navigere på en tallinje inddelt i enere og tiere, på en tallinje

Læs mere

Matematik 1. klasse Årsplan. Årets overordnede mål inddelt i faglige kategorier:

Matematik 1. klasse Årsplan. Årets overordnede mål inddelt i faglige kategorier: Matematik 1. klasse Årsplan Årets overordnede mål inddelt i faglige kategorier: Tallenes opbygning og indbyrdes hierarki Tælle op til 100. Kende tælleremser som fx 10 20 30, 2 4 6, 1 3 5, osv. Kunne navigere

Læs mere

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence)

ræsonnere og argumentere intuitivt om konkrete matematiske aktiviteter og følge andres mundtlige argumenter (ræsonnementskompetence) Matematiske kompetencer indgå i dialog om spørgsmål og svar, som er karakteristiske i arbejdet med matematik (tankegangskompetence) løse matematiske problemer knyttet til en kontekst, der giver mulighed

Læs mere

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik

Årsplan 9. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 Årsprøven i matematik Årsplan 9. klasse matematik 2013-2014 33 Årsprøven i matematik Årsprøve og rettevejledledning 34-35 36 og løbe nde Talmængder og regnemetoder Mundtlig matematik 37 Fordybelses uge 38-39 Procent - Gennemgå

Læs mere

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion 1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,

Læs mere

Fælles Mål 2009. Sorø Matematik i Marts 2009. Vi får et nyt faghæfte -igen

Fælles Mål 2009. Sorø Matematik i Marts 2009. Vi får et nyt faghæfte -igen Fælles Mål 2009 Sorø Matematik i Marts 2009 Vi får et nyt faghæfte -igen Vi får et nyt faghæfte -igen Du Anna, det der nye faghæfte, hvad skal det egentlig til for? Hvem er blandet ind i at lave det? Hvad

Læs mere

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt.

Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Introduktion til mat i 5/6 klasse Vejle Privatskole 13/14: Klassen er sammenlæst, altså 5 og 6 klasse på en og samme tid. Samtidig er klassen pt på ca 11 elever ialt. Udgangspunktet bliver en blød screening,

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Fælles Mål 2009. Matematik. Faghæfte 12

Fælles Mål 2009. Matematik. Faghæfte 12 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Fælles Mål 2009 Matematik Faghæfte 12 Undervisningsministeriets håndbogsserie nr. 14 2009 Indhold Formål for faget

Læs mere

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET

Tal og algebra. I kapitlet arbejdes med følgende centrale matematiske begreber: algebra variable. Huskeliste: Tændstikker (til side 146) FRA FAGHÆFTET I kapitlet skal eleverne arbejde med fire forskellige vinkler på algebra de præsenteres på kapitlets første mundtlige opslag. De fire vinkler er algebra som et redskab til at løse matematiske problemer.

Læs mere

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende

Årsplan 8. klasse matematik 2013-2014 Uge Emne Faglige mål Trinmål Materialer/ systemer 33 og løbende Årsplan 8. klasse matematik 2013-2014 33 løbende 33-34 løbende Løbende Problemregning ( faglig læsning) Mundtlig matematik (forberede oplæg til 6. klasse) - flere forskellige trinmål Ben, formelsamlingen,

Læs mere

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x).

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x). Uden hjælpemidler Opgave 8.00 Funktionen f(x) er bestemt ved skitse af grafen for f(x). f ( x) = x 3 4x. På figuren ses en Grafen skærer førsteaksen i punkterne P(,0), O(0,0) og Q(,0). Sammen med førsteaksen

Læs mere

Læringsmål på 3 niveauer: Eleverne arbejder med at opstille og løse 2.gradsligninger (ax 2 +bx+c=0).

Læringsmål på 3 niveauer: Eleverne arbejder med at opstille og løse 2.gradsligninger (ax 2 +bx+c=0). Planlægningsmodel UVD Forløb med løsning af en 2. gradsligning 9 klasse i 5-6 lektioner Fælles mål /kompetencemål: Tal og algebra Eleverne kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser

Læs mere

Teknologi & Kommunikation

Teknologi & Kommunikation Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder.

Der er ikke væsentlig niveauforskel i opgaverne inden for de fire emner, men der er fokus på forskellige matematiske områder. Dette tema lægger forskellige vinkler på temaet biografen. Udgangspunktet er således ikke et bestemt matematisk område, men et stykke virkelighed, der bl.a. kan beskrives ved hjælp af matematik. I dette

Læs mere

Års- og aktivitetsplan i matematik hold 4 2014/2015

Års- og aktivitetsplan i matematik hold 4 2014/2015 Års- og aktivitetsplan i matematik hold 4 2014/2015 Der arbejdes hen mod slutmålene i matematik efter 10. klassetrin. www.uvm.dk => Fælles Mål 2009 => Faghæfter alfabetisk => Matematik => Slutmål for faget

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Hf Matematik

Læs mere

Undervisningsplan for matematik

Undervisningsplan for matematik Undervisningsplan for matematik Formål for faget Formålet med undervisningen i matematik er, at eleverne udvikler kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

Andengradspolynomier

Andengradspolynomier Andengradspolynomier Teori og opgaver (hf tilvalg) Forskydning af grafer...... 2 Andengradspolynomiets graf (parablen)..... 5 Andengradsligninger. 10 Andengradsuligheder 13 Nyttige formler, beviser og

Læs mere

Modellering med Lego education kran (9686)

Modellering med Lego education kran (9686) Modellering med Lego education kran (9686) - Et undervisningsforløb i Lego education med udgangspunkt i matematiske emner og kompetencer Af: Ralf Jøker Dohn Henrik Dagsberg Kranen - et modelleringsprojekt

Læs mere

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf Digitalt prøvesæt Dette er et opgavesæt, som jeg har forsøgt at forestille mig, det kan se ud, hvis det skal leve op til ordene i det der er initiativ 3 i rækken af initiativer til videreudvikling af folkeskolens

Læs mere

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik

10.klasse. Naturfaglige fag: Matematik, Fysik/kemi. Matematik. Formål for faget matematik 10.klasse Naturfaglige fag: Matematik, Fysik/kemi Matematik Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at

Læs mere

Matematisk argumentation

Matematisk argumentation Kapitlets omdrejningspunkt er matematisk argumentation, der især bruges i forbindelse med bevisførelse altså, når det drejer sig om at overbevise andre om, at matematiske påstande er sande eller falske.

Læs mere

Årsplan 2015/16. Fag Matematik FP10 Gymnastikefterskolen Stevns Lærer Peder Lund Årgang 2015/16

Årsplan 2015/16. Fag Matematik FP10 Gymnastikefterskolen Stevns Lærer Peder Lund Årgang 2015/16 Årsplan 2015/16 Fag Matematik FP10 Gymnastikefterskolen Stevns Lærer Peder Lund Årgang 2015/16 Det er altoverskyggende formålet med matematikundervisningen er, at eleverne rustes til at møde fremtidige

Læs mere

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger

Eleven kan handle med overblik i sammensatte situationer med matematik. Eleven kan anvende rationale tal og variable i beskrivelser og beregninger Fagformål for faget Eleverne skal i faget udvikle kompetencer opnå færdigheder viden, således at de kan begå sig hensigtsmæssigt i relaterede situationer i deres aktuelle fremtidige daglig-, fritids-,

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5

Undervisningsplan: Matematik Skoleåret 2014/2015 Strib Skole: 5B Ugenumre: Hovedområder: Emner og temaer: Side 1 af 5 Ugenumre: Hovedområder: Emner og temaer: 33 Addition og subtraktion Anvendelse af regningsarter 34 Multiplikation og division Anvendelse af regningsarter 35 Multiplikation med decimaltal Anvendelse af

Læs mere

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne

Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Fagårsplan 10/11 Fag: Matematik Klasse: 7.ABC Lærer: Henrik Stillits. Fagområde/ emne Matematiske færdigheder Grundlæggende færdigheder - plus, minus, gange, division (hele tal, decimaltal og brøker) Identificer

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

Emne Tema Materiale r - - - - - aktiviteter

Emne Tema Materiale r - - - - - aktiviteter Fag: Matematik Hold: 24 Lærer: TON Undervisningsmål Læringsmål 9 klasse 32-34 Introforløb: række tests, som viser eleverne faglighed og læringsstil. Faglige aktiviteter Emne Tema Materiale r IT-inddragelse

Læs mere

Selam Friskole Fagplan for Matematik

Selam Friskole Fagplan for Matematik Selam Friskole Fagplan for Matematik Formål Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver i stand til at begå sig hensigtsmæssigt

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 4 Proportionalitet... 4 Rentesregning...

Læs mere

Modellering med Lego EV3 klodsen

Modellering med Lego EV3 klodsen Modellering med Lego EV3 klodsen - Et undervisningsforløb i Lego Mindstorm med udgangspunkt i matematiske emner og kompetencer Af: Ralf Jøker Dohn Henrik Dagsberg EV3 - et modelleringsprojekt i matematik

Læs mere

Undervisningsbeskrivelse for: 1mac16fs 0815 ma

Undervisningsbeskrivelse for: 1mac16fs 0815 ma Undervisningsbeskrivelse for: 1mac16fs 0815 ma Fag: Matematik C, 2HF Niveau: C Institution: HF og VUC Fredericia (607247) Hold: Matematik C fleks sommereksamen Termin: Juni 2016 Uddannelse: HF Lærer(e):

Læs mere

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9.

Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. Kapitlet indledes med en beskrivelse af - og opgaver med - de tre former for sandsynlighed, som er omtalt i læseplanen for 7.- 9. klassetrin: statistisk sandsynlighed, kombinatorisk sandsynlighed og personlig

Læs mere

Polynomier et introforløb til TII

Polynomier et introforløb til TII Polynomier et introforløb til TII Formål At introducere polynomier af grad 0, 1, 2 samt højere, herunder grafer og rødder At behandle andengradspolynomiet og dets graf, parablen, med fokus på bl.a. toppunkt,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Termin hvori undervisningen afsluttes: maj-juni, 13/14 Tekniske

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg hf Matematik

Læs mere

Overordnet set kan man inddele matematikholdige tekster i to kategorier tekster i matematiksammenhænge og tekster i andre sammenhænge.

Overordnet set kan man inddele matematikholdige tekster i to kategorier tekster i matematiksammenhænge og tekster i andre sammenhænge. I Fælles Mål 2009 er faglig læsning en del af CKF et matematiske arbejdsmåder. Faglig læsning inddrages gennem elevernes arbejde med hele Kolorit 8, men i dette kapitel sætter vi et særligt fokus på denne

Læs mere

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet

Matematik A. Studentereksamen. Digital eksamensopgave med adgang til internettet Matematik A Studentereksamen Digital eksamensopgave med adgang til internettet 1stx131-MATn/A-405013 Fredag den 4. maj 013 kl. 09.00-14.00 Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret

Læs mere

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen:

Matematik. Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for undervisningen: Matematik Årgang: Lærer: 7. årgang Jonas Albrekt Karmann (JK) og Shiva Qvistgaard Sharifi (SQ) Mål for : Formålet med er, at udvikler matematiske kompetencer og opnår viden og kunnen således, at de bliver

Læs mere

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014

1hf Spørgsmål til mundtlig matematik eksamen sommer 2014 1. Procent og rente Vis, hvordan man beregner gennemsnitlig procentændring 2. Procent og rente Vis hvordan man beregner indekstal. 3. Procent og rente Vis, hvordan man kan beregne forskellige størrelser

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2014 Institution Uddannelse Fag og niveau Lærer(e) VUF - Voksenuddannelsescenter Frederiksberg Stx Matematik

Læs mere

MATEMATIK. Formål for faget

MATEMATIK. Formål for faget Fælles Mål II MATEMATIK Formål for faget Fælles Mål Formålet med undervisningen i matematik er, at eleverne bliver i stand til at forstå og anvende matematik i sammenhænge, der vedrører dagligliv, samfundsliv

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Læseplan for faget matematik. 1. 9. klassetrin

Læseplan for faget matematik. 1. 9. klassetrin Læseplan for faget matematik 1. 9. klassetrin Matematikundervisningen bygger på elevernes mange forudsætninger, som de har med når de starter i skolen. Der bygges videre på elevernes forskellige faglige

Læs mere

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-13.00

Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 19. december 2011. kl. 9.00-13.00 Matematik B Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx113-mat/b-19122011 Mandag den 19. december 2011 kl. 9.00-13.00 Matematik B Prøven uden hjælpemidler Prøvens varighed er

Læs mere

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

Det er altså muligt at dele lige på to kvalitativt forskellige måder: Deling uden forståelse af helheden Deling med forståelse af helheden

Det er altså muligt at dele lige på to kvalitativt forskellige måder: Deling uden forståelse af helheden Deling med forståelse af helheden DELE 1 Vejledning Division Allerede i børnehaven oplever man børn travlt optaget af at dele legetøj, mad eller andet af interesse ud fra devisen en til dig og en til mig. Når der ikke er flere tilbage

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Årsplan for matematik i 1. klasse 2010-11

Årsplan for matematik i 1. klasse 2010-11 Årsplan for matematik i 1. klasse 2010-11 Vanløse den 6. juli 2010 af Musa Kronholt Formål for faget matematik Formålet med undervisningen er, at eleverne udvikler matematiske kompetencer og opnår viden

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016, eksamen maj / juni / 2016 Institution Kolding HF og VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Inverse funktioner. John V Petersen

Inverse funktioner. John V Petersen Inverse funktioner John V Petersen Indhold Indledning: Indledende eksempel. Grafen for en funktion. Og grafen for den inverse funktion.... 3 Afbildning, funktion og inverse funktion: forklaringer og definitioner...

Læs mere

Differential- regning

Differential- regning Differential- regning 1 del () (1) 006 Karsten Juul Indhold 1 Funktionsværdi, graf og tilvækst1 Differentialkvotient og tangent8 3 Formler for differentialkvotient16 4 Opgaver med tangent 5 Væksthastighed5

Læs mere

www.aalborg-friskole.dk

www.aalborg-friskole.dk www.aalborg-friskole.dk Sohngårdsholmsvej 47, 9000 Aalborg, Tlf.98 14 70 33, E-mail: kontor@aalborg-friskole.dk Årsplan for 9. klasse Matematik 12/13 Materialer Matematik-Tak for 9. klasse Matematik for

Læs mere

ÅRSPLAN M A T E M A T I K

ÅRSPLAN M A T E M A T I K ÅRSPLAN M A T E M A T I K 2013/2014 Klasse: 3.u Lærer: Bjørn Bech 3.u får 5 matematiktimer om ugen: MANDAG TIRSDAG ONSDAG TORSDAG FREDAG Lektion 1 Lektion 2 Lektion 3 Matematik Matematik Lektion 4 Matematik

Læs mere

Matematik Eksamensprojekt

Matematik Eksamensprojekt Matematik Eksamensprojekt Casper Wandrup Andresen, 2.F I dette projekt arbejdes der bl.a. med parabler, vektorer, funktioner, sinus, cosinus, tangens, differentialregning, integralregning samt de øvrige/resterende

Læs mere

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO

Areal. Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Areal Et af de ældste skrifter om matematik, der findes, hedder Rhind Papyrus. NTRO Det stammer fra Egypten og er ca. 3650 år gammelt. I Rhind Papyrus findes optegnelser, der viser, hvordan egypterne beregnede

Læs mere

Årsplan 2016/2017 Matematik i 8. klasse

Årsplan 2016/2017 Matematik i 8. klasse Årsplan 2016/2017 Matematik i 8. klasse I matematik i 8. klasse arbejdes der med hovedområderne matematiske kompetencer, tal og algebra, geometri og måling samt statistik og sandsynlighed. Ved udgangen

Læs mere

Matematiklærer og Fælles Mål 2009

Matematiklærer og Fælles Mål 2009 Matematiklærer og Fælles Mål 2009 af Thomas Kaas Vi har fået et nyt faghæfte for folkeskolens matematikundervisning endnu engang. Alle landets matematiklærere må bruge tid og kræfter på at sætte sig ind

Læs mere

Hvad siger statistikken?

Hvad siger statistikken? Eleverne har tidligere (fx i Kolorit 7, matematik grundbog) arbejdet med især beskrivende statistik (deskriptiv statistik). I dette kapitel fokuseres i højere grad på, hvordan datamateriale kan tolkes

Læs mere

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer

Årsplan matematik 4.klasse - skoleår 11/12- Ida Skov Andersen Med ret til ændringer og justeringer Basis: Klassen består af 22 elever og der er afsat 4 ugentlige timer. Grundbog: Vi vil arbejde ud fra Matematrix 4, arbejds- og grundbog, kopisider, Rema, ekstraopgaver og ugentlige afleveringsopgaver

Læs mere