Polynomier et introforløb til TII

Størrelse: px
Starte visningen fra side:

Download "Polynomier et introforløb til TII"

Transkript

1 Polynomier et introforløb til TII Formål At introducere polynomier af grad 0, 1, 2 samt højere, herunder grafer og rødder At behandle andengradspolynomiet og dets graf, parablen, med fokus på bl.a. toppunkt, forløbet af grafen og faktoropløsning At introducere programmet TI InterActive! (TII) og at o Tegne grafer for funktioner o Indføre en slider ( skyder ) for at kunne variere koefficienter i polynomier o Løse ligninger, herunder to ligninger med to ubekendte o Kunne bestemme maksima og minima grafisk o Kunne ekspandere ( gange ud ) og faktorisere samt sætte på fælles brøkstreg o Kunne bestemme nulpunkter grafisk og med kommandoen zeros o Kunne bestemme skæringspunkter mellem to grafer, såvel grafisk (intersection) som med kommandoen solve Omfang Modulerne 20/10, 23/10, 27/10 og 29/10. Den 30/10 arbejdes med afleveringsopgaver til 3/11. Relevante sider i bogen Siderne og De vigtigste begreber og sætninger findes på de følgende sider i kopi. Arbejdsform Selvstændigt arbejde ved egen PC. Om nødvendigt kan detaljer diskuteres helt eller delvist på klassen, evt. med demonstration af programmet. Det er dit eget ansvar, at du får lavet alle de øvelser, der står på de følgende sider. Af hensyn til skriftlig eksamen er det af stor betydning, at du bliver fortrolig med programmet. Side 1 af 10

2 Modul 1 Bogen giver på s. 18 følgende vigtige definition Definition 3.1: Parabel En parabel er grafen for en funktion af typen y = ax 2, a 0 Punktet (0,0), der kaldes parablens toppunkt, deler den i to grene Øvelse 1. Åbn TII. Tegn graferne for de parabler, der er vist på s. 18 i bogen. Det kan fx gøres sådan: Tryk på Graph-ikonen (se nedenfor), skriv forskrifterne som vist, tryk close og dernæst på ikonen Save to Document Herefter ser dokumentet sådan ud (Se også bogen s. 38) Math Box Alle formler skrives i en math box. Tryk CTRL + m for at åbne en sådan. Side 2 af 10

3 Øvelse 2. Stemmer graferne med bogens påstand om, at parabelgrenene vender op eller ned afhængigt af fortegnet af a? Øvelse 3. I TII skal du prøve at lave en slider. Dette er en smart måde at variere værdien af a. Gør fx som vist nedenfor. Tryk herefter på Enter for at vende tilbage til dokumentet. Tegn herefter grafen for ax 2, hvor du kan variere værdien af a med slideren. Husk at skrive a*x^2, ikke ax^2 PARALLELFORSKYDNING AF PARABLER Kurver, der fremkommer af de ovennævnte parabler ved såkaldt parallelforskydning, er også parabler, fordi de har nøjagtig samme kurveform. Øvelse 4. Tegn graferne for de tre parabler, som er beskrevet i Eksempel 3.3. Øvelse 5. Tegn grafer for parabler af formen ax 2 + k, hvor både a og k kan varieres med hver deres slider. Varier k. Konklusion? Øvelse 6. Tegn graferne for de tre parabler, som er beskrevet i Eksempel 3.4 Øvelse 7. Tegn grafer for parabler af formen a(x ) 2, hvor både a og kan varieres med hver deres slider. Varier. Konklusion? Øvelse 8. Tegn grafer for parabler af formen a(x ) 2 + k, hvor både a, k og kan varieres med hver deres slider. Konklusion? Sammenlign med bogens kommentar øverst s. 22. Side 3 af 10

4 Øvelse 9. (Forlængelse af øvelse 8) Ud for hver slider opretter du en math-box (tryk CTRL+m), skriv heri navnet på den variabel, som hører til slideren. Det kan fx se ud som vist nedenfor. Sætning 3.5: Hjælpesætning Grafen for en funktion af typen f x = a x 2 + k er en parabel med toppunkt (, k). Øvelse 10. Bestem koordinaterne til toppunktet: a. Dobbeltklik på grafen b. Klik på Calculate Minimum (eller Maximum, afhængig af din graf) c. Tryk på Calculate d. Sammenlign værdierne af og k med det netop fundne resultat e. Sammenlign med bogens Sætning 3.5 Hvis du mangler én eller flere øvelser i dagens program, er dette lektie til næste gang. Hvis du har tid i overskud, skal du starte med programmet for modul 2. Side 4 af 10

5 Modul 2 Bogen definerer andengradspolynomier på følgende måde: Et andengradspolynomium er en funktion af typen f x = ax 2 + bx + c, hvor a 0. Fx er f x = 2x 2 + 3x 4 et andengradspolynomium. Nedenfor vil vi se, at grafen for et andengradspolynomium altid er en parabel. I det følgende vil vi se på to funktioner, nemlig (a 0): f x = ax 2 + bx + c og g x = a x 2 + k. Formålet er at vise, at f kan omskrives, så udtrykket kommer på samme form som g, dvs. at man kan finde og k ud fra forskriften for f, sådan at f x = g(x) Dermed indser vi, at grafen for f er en parabel og desuden finder vi formler til at bestemme toppunktet. Øvelse 11. I første modul fandt du ud af, at grafen for g er en parabel med toppunkt (, k). Gang parentesen i g ud pr. håndkraft og skriv udtrykket for g. Øvelse 12. I TII skal du lave samme udregning. Definer g og brug kommandoen expand. Sammenlign med resultatet fra øvelse 11. Du taster sådan: g(x) := a*(x - h)^2 + k expand(g(x)) Forklar i ord, hvad kommandoen expand gør. Øvelse 13. Sammenlign resultaterne fra øvelse 11 og 12 med andengradspolynomiet. Hvis der skal gælde, at f x = g x, hvad må så b og c være lig med? (Der er hjælp i bogen, hvis du har brug for det) Øvelse 14. Bestem nu og derefter k (brug solve) og sammenlign dit resultat med bogens Sætning 3.6 Sætning 3.6: Grafen for et andengradspolynomium Grafen for et andengradspolynomium, dvs. en funktion af typen f x = ax 2 + bx + c, hvor a 0, er en parabel med toppunkt: T p = b 2a, d 4a hvor d = b 2 4ac er polynomiets diskriminant. = b 4ac b2, 2a 4a, Side 5 af 10

6 Man kan også løse problemet i den modsatte rækkefølge, som vi nu skal se. Øvelse 15. Vi vil dog først i ét hug bestemme og k, sådan at f og g stemmer overens i to punkter, fx i x = 1 og i x = 2. Det svarer til at løse to ligninger med to ubekendte. Undersøg, om f og g med ovenstående værdier af og k stemmer overens helt generelt, dvs. om f x g x = 0. Konklusion? Vi vil til slut prøve en anderledes metode. Øvelse 16. Tegn grafen for f x = 2x 2. Beregn f( 2) og f 2. Beregn f( 17) og f 17. Beregn f(x) og f( x). Har den observerede symmetri mon noget at gøre med parablens toppunkt? Øvelse 17. Tegn nu grafen for f x = 3x 2 2x 1. Synes der at være en tilsvarende symmetri her? Prøv evt. med et par andre andengradspolynomier. Øvelse 18. Næste skridt er at vise, at grafen for f x = ax 2 + bx + c ligger symmetrisk omkring en x-værdi, som vi kalder. Dette gøres ved at løse ligningen f + q = f q, uanset værdien af q. Denne ligning udtrykker jo, at f er symmetrisk om. Brug hertil solve: solve(f(h+q)=f(h-q),h). Hvilken værdi af får du? Sammenlign med Sætning 3.6. Øvelse 19. Beregn funktionsværdien = f b. NB: husk parentes rundt om 2a. Sæt 2a resultatet på fælles brøkstreg, fx som vist. Sammenlign med Sætning 3.6. Øvelse 20. Indsæt dine fundne udtryk for og k i udtrykket a x 2 + k, hvis graf du kender (det er jo en parabel). Skriv evt. expand(ans). Hvad får du? Konklusion? Øvelse 21. Find selv på et andengradspolynomium og bestem toppunktet. Find selv på et toppunkt, find ligningen for det tilhørende andengradspolynomium. Du har i dette modul vist, at man kan starte med f x = ax 2 + bx + c og omskrive det til g x = a x 2 + k, og du har fundet og k (dvs. toppunktets koordinater). Du har også vist, at man kan starte med g og omskrive det til f. Dermed har du vist: grafen for et andengradspolynomium er en parabel (øv ), og kun andengradspolynomier har parabler som grafer (øv. 20). Hvis du mangler én eller flere øvelser i dagens program, er dette lektie til næste gang Side 6 af 10

7 Modul 3 Igen starter vi med en definition fra bogen: Definition 3.9: Nulpunkt Ved en rod eller et nulpunkt (eng. zero) for en funktion forstås en x-værdi for et skæringspunkt mellem grafen og x-aksen, dvs. en x-værdi, der giver y = f x = 0. Øvelse 22. Afgør ved aflæsning, hvilke rødder funktionen f har: Bogen angiver en generel definition af et polynomium af grad n, dvs. en generalisering af ovenstående. Definition 4.1: n tegradspolynomium f x = a n x n + a n 1 x n a 2 x 2 + a 1 x + a 0 er et n tegradspolynomium, hvis a n 0. Tallene a n, a n 1,, a 2, a 1, a 0 kaldes polynomiets koefficienter. Øvelse 23. Brug kommandoen zeros til at bestemme rødderne i følgende polynomier af grad 4 du skriver zeros(f(x),x) osv.: f x = x 4 + 1, g x = x 4 + 5x 3 + 6x 2 4x 8, x = x 4 + 5x 3 + 3x 2 9x, k x = x 4, j x = x 4 10x x 2 50x Tegn også graferne for funktionerne og check de fundne rødder. Ser du noget mønster? Side 7 af 10

8 Øvelse 24. Nedenfor ser du graferne for 3 andengradspolynomier. Bestem i hvert af tilfældene fortegnene for a, b og c: Øvelse 25. Når to grafer skærer hinanden, har de i skæringspunkterne samme x og y værdier. Tegn graferne for f x = 3x 3 + 6x 2 3x 6 og g x = 5x + 3. Brug Calculate/Intersection til at bestemme skæringspunkterne. Læg mærke til, at værdien Guess kan ændres manuelt. Prøv at gøre det og tryk så på Calculate. Hvad sker der? Hvor mange skæringspunkter kan du finde på denne måde? Øvelse 26. Bestem nu skæringspunkterne ved brug af solve(f(x)=g(x),x). Hvor mange skæringspunkter finder programmet? Side 8 af 10

9 Bogen omtaler s. 28 opløsning af et andengradspolynomium i faktorer: Sætning 3.15: Opløsning i faktorer Et andengradspolynomium med ikke-negativ diskriminant og rødder r 1 og r 2 kan omskrives således: ax 2 + bx + c = a x r 1 x r 2 Man siger, at andengradspolynomiet er blevet opløst i faktorer. Hvis d = 0, er r 1 = r 2, og polynomiet har en såkaldt dobbeltrod. Bogen giver ikke noget bevis, men det er heldigvis let med TII: Øvelse 27. Bevis for sætning a. Bestem rødderne for andengradspolynomiet ax 2 + bx + c ved brug af solve. b. Skriv: exptolist(ans,x) c. Skriv: r:=ans (herved gemmer TII de to løsninger som r[1] og r[2]) d. Skriv: a*(x - r[1])*(x - r[2]) (svarende til højre side i Sætning 3.15) e. Skriv: expand(ans) (kan du forklare, hvad programmet gør?) f. Hvad er din konklusion? g. Mon noget tilsvarende gælder for polynomier af grad 3, 4 osv.? Øvelse 28. Programmet kan også faktorisere direkte med kommandoen factor. Prøv at faktorisere polynomiet 3x 2 3x 6 (eksempel 3.16): factor(3*x^2 3*x 6). Øvelse 29. Se på eksempel Find herefter ud af, om brøkerne f x = 3x2 + 3x 36 x 3, g x = 4x2 + 4x 8 x 2 x 2, x = x2 x x kan forkortes. Tegn graferne læg mærke til, om graferne for f og har huller! Hvorfor bør de have det? (Hint: prøv at beregne f(3) eller (0) ) Sætning 3.20: Nulreglen Et produkt er nul, hvis og kun hvis en af faktorerne er nul Øvelse 30. Løs øvelse 3.22 hertil behøves TII dog ikke Nulreglen er ofte guld værd, når man regner opgaver uden hjælpemidler (UHM) Hvis du mangler én eller flere øvelser i dagens program, er dette lektie til næste gang. Side 9 af 10

10 Modul 4 Øvelse 31. Giv eksempler på polynomier af grad 0, 1, 2, 3 og 4. Skitser graferne. Angiv i hvert tilfælde antallet af rødder (fx ved brug af zeros eller factor). Sætning 4.4: Højst n rødder Et n tegradspolynomium har højst n rødder. Stemmer dette overens med det, du fandt ovenfor? Øvelse 32. Vis, at følgende polynomium af grad 10 kun har 2 rødder: 2x 10 4x 9 18x x x 6 36x 5 174x 4 48x x x + 32 Strider dette imod Sætning 4.4? Forklar hvorfor/hvorfor ikke. Hint: Eksempel 3.18 s. 29. Du kan nu gå i gang med aktiviteten s De 5 opgaver udgør afleveringssættet til 3/11, der naturligvis skal laves i TII. Side 10 af 10

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Andengradspolynomier

Andengradspolynomier Andengradspolynomier Teori og opgaver (hf tilvalg) Forskydning af grafer...... 2 Andengradspolynomiets graf (parablen)..... 5 Andengradsligninger. 10 Andengradsuligheder 13 Nyttige formler, beviser og

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Den bedste dåse, en optimeringsopgave

Den bedste dåse, en optimeringsopgave bksp-20-15e Side 1 af 7 Den bedste dåse, en optimeringsopgave Mange praktiske anvendelser af matematik drejer sig om at optimere en variabel ved at vælge en passende kombination af andre variable. Det

Læs mere

Forslag til løsning af Opgaver til analytisk geometri (side 338)

Forslag til løsning af Opgaver til analytisk geometri (side 338) Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,

Læs mere

Forslag til løsning af Opgaver til ligningsløsning (side172)

Forslag til løsning af Opgaver til ligningsløsning (side172) Forslag til løsning af Opgaver til ligningsløsning (side17) Opgave 1 Hvis sønnens alder er x år, så er faderens alder x år. Der går x år, før sønnen når op på x år. Om x år har faderen en alder på: x x

Læs mere

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45

Bogstavregning. Formler... 46 Reduktion... 47 Ligninger... 48. Bogstavregning Side 45 Bogstavregning Formler... 6 Reduktion... 7 Ligninger... 8 Bogstavregning Side I bogstavregning skal du kunne regne med bogstaver og skifte bogstaver ud med tal. Formler En formel er en slags regne-opskrift,

Læs mere

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen

Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning. John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning John V Petersen Finde invers funktion til en 2-gradsfunktion - ved parallelforskydning 2015 John V Petersen art-science-soul Indhold

Læs mere

Funktionalligninger - løsningsstrategier og opgaver

Funktionalligninger - løsningsstrategier og opgaver Funktionalligninger - løsningsstrategier og opgaver Altså er f (f (1)) = 1. På den måde fortsætter vi med at samle oplysninger om f og kombinerer dem også med tidligere oplysninger. Hvis vi indsætter =

Læs mere

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion 1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,

Læs mere

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav.

Secret Sharing. Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav. 1 Læsevejledning Secret Sharing Olav Geil Institut for Matematiske Fag Aalborg Universitet email: olav@math.aau.dk URL: http://www.math.aau.dk/ olav September 2006 Nærværende note er tænkt som et oplæg

Læs mere

Variabel- sammenhænge

Variabel- sammenhænge Variabel- sammenhænge Udgave 2 2009 Karsten Juul Dette hæfte kan bruges som start på undervisningen i variabelsammenhænge for stx og hf. Hæftet er en introduktion til at kunne behandle to sammenhængende

Læs mere

Afstand fra et punkt til en linje

Afstand fra et punkt til en linje Afstand fra et punkt til en linje Frank Villa 6. oktober 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser for brug her. Indhold

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x).

Opgavesæt 12 21/01-2009. Laura Pettrine Madsen Uden hjælpemidler. skitse af grafen for f(x). Uden hjælpemidler Opgave 8.00 Funktionen f(x) er bestemt ved skitse af grafen for f(x). f ( x) = x 3 4x. På figuren ses en Grafen skærer førsteaksen i punkterne P(,0), O(0,0) og Q(,0). Sammen med førsteaksen

Læs mere

7 Funktioner. Hayati Balo, AAMS. Følgende fremstilling er baseret hovedsageligt på følgende bøger

7 Funktioner. Hayati Balo, AAMS. Følgende fremstilling er baseret hovedsageligt på følgende bøger 7 Funktioner Hayati Balo, AAMS Følgende fremstilling er baseret hovedsageligt på følgende bøger 1. Nils Victor-Jensen, Matematik for adgangskursus B-niveau 1 og 2 2. Hans Sloth, Trip s matematiske bog

Læs mere

Arealer under grafer

Arealer under grafer HJ/marts 2013 1 Arealer under grafer 1 Arealer og bestemt integral Som bekendt kan vi bruge integralregning til at beregne arealer under grafer. Helt præcist har vi denne sætning. Sætning 1 (Analysens

Læs mere

Teknologi & Kommunikation

Teknologi & Kommunikation Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige

Læs mere

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner

Læs mere

Matematikopgaver niveau C-B-A STX-HTX

Matematikopgaver niveau C-B-A STX-HTX Matematikopgaver niveau C-B-A STX-HTX Niels Junge Niels Junge 1 Indhold 1. Algebra...4 Opgave 1.1...4 Opgave 1.2...4 Opgave 1.3...4 Opgave 1.4...5 Opgave 1.5...5 Opgave 1.6...5 Opgave 1.7...5 Opgave 1.8...6

Læs mere

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier:

Opgave 1. 1a - To linjer Vi får opgivet linjen m: 1b - Trigonometri Vi får opgivet en trekant med følgende værdier: Løsningsvejledning til eksamenssæt fra januar 2009 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - To linjer Vi får opgivet linjen m: Vi skal bestemme en ligning til linjen l, som er parallel med

Læs mere

Løsningsforslag 7. januar 2011

Løsningsforslag 7. januar 2011 Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen

Læs mere

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i

FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1. a) Voksende. b) Voksende. c) Konstant. d) Aftagende ØVELSE 2. a) f aftagende i f voksende i 1 af 41 MATEMATIK B hhx Udskriv siden FACITLISTE TIL KAPITEL 3 ØVELSER ØVELSE 1 Voksende Voksende Konstant Aftagende ØVELSE 2 f aftagende i f aftagende i f aftagende i f aftagende i ØVELSE 3 Hældningen

Læs mere

Ikke-lineære funktioner

Ikke-lineære funktioner I elevernes arbejde med funktioner på tidligere klassetrin har hovedvægten ligget på sammenhænge, der kan beskrives med lineære funktioner. Dette kapitel berører ligefrem proportionalitet og stykkevist

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj- juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik C Lene Thygesen

Læs mere

Læringsmål på 3 niveauer: Eleverne arbejder med at opstille og løse 2.gradsligninger (ax 2 +bx+c=0).

Læringsmål på 3 niveauer: Eleverne arbejder med at opstille og løse 2.gradsligninger (ax 2 +bx+c=0). Planlægningsmodel UVD Forløb med løsning af en 2. gradsligning 9 klasse i 5-6 lektioner Fælles mål /kompetencemål: Tal og algebra Eleverne kan anvende reelle tal og algebraiske udtryk i matematiske undersøgelser

Læs mere

Ligninger med reelle løsninger

Ligninger med reelle løsninger Ligninger med reelle løsninger, marts 2008, Kirsten Rosenkilde 1 Ligninger med reelle løsninger Når man løser ligninger, er der nogle standardmetoder som er vigtige at kende. Vurdering af antallet af løsninger

Læs mere

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod

Potens & Kvadratrod. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 22 Ekstra: 4 Point: Matematik / Potens & Kvadratrod Navn: Klasse: Matematik Opgave Kompendium Potens & Kvadratrod Opgaver: Ekstra: Point: http://madsmatik.dk/ d.0-0-01 1/1 Potenser: Du har måske set udtrykket før eller måske 10 1. Begge to er det vi kalder

Læs mere

Matematik Eksamensprojekt

Matematik Eksamensprojekt Matematik Eksamensprojekt Casper Wandrup Andresen, 2.F I dette projekt arbejdes der bl.a. med parabler, vektorer, funktioner, sinus, cosinus, tangens, differentialregning, integralregning samt de øvrige/resterende

Læs mere

VIA læreruddannelsen Silkeborg. WordMat kompendium

VIA læreruddannelsen Silkeborg. WordMat kompendium VIA læreruddannelsen Silkeborg WordMat kompendium Bolette Fisker Olesen 25-11-2015 Indholdsfortegnelse Ligning... 2 Løs ligning... 2 WordMat som lommeregner... 4 Geometri... 4 Trekanter... 4 Funktioner...

Læs mere

1RWHWLOGLIIHUHQWLDOOLJQLQJHU

1RWHWLOGLIIHUHQWLDOOLJQLQJHU ote til differentialligninger rik Bennike marts 00 ROGIIUQOOJQQJU Først skal man naturligvis gøre sig klart hvilken orden differentialligningen er af. G G,? Indgår,, ( ) kun, eller er der også, ( ) 'IIUQOOJQQJUII

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016, eksamen maj / juni / 2016 Institution Kolding HF og VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Om hvordan Google ordner websider

Om hvordan Google ordner websider Om hvordan Google ordner websider Hans Anton Salomonsen March 14, 2008 Man oplever ofte at man efter at have givet Google et par søgeord lynhurtigt får oplysning om at der er fundet et stort antal - måske

Læs mere

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte

Matematik. på Åbent VUC. Trin 2 Xtra eksempler. Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Matematik på Åbent VUC Trin Xtra eksempler Trigonometri, boksplot, potensfunktioner, to ligninger med to ubekendte Trigonometri Sinus og cosinus Til alle vinkler hører der to tal, som kaldes cosinus og

Læs mere

DesignMat Uge 11 Vektorrum

DesignMat Uge 11 Vektorrum DesignMat Uge Vektorrum Preben Alsholm Forår 200 Vektorrum. Definition af vektorrum Definition af vektorrum Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016, eksamen maj / juni / 2016 Institution Kolding HF og VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Differential- regning

Differential- regning Differential- regning 1 del () (1) 006 Karsten Juul Indhold 1 Funktionsværdi, graf og tilvækst1 Differentialkvotient og tangent8 3 Formler for differentialkvotient16 4 Opgaver med tangent 5 Væksthastighed5

Læs mere

MATEMATIK B-NIVEAU STX081-MAB

MATEMATIK B-NIVEAU STX081-MAB MATEMATIK B-NIVEAU STX081-MAB Delprøven uden hjælpemidler Opgave 1 Indsættes h = 2 og x = i (x + h) 2 h(h + 2x), så fås (x + h) 2 h(h + 2x) = ( + 2) 2 2(2 + 2 ) = 5 2 2 8 = 25 16 = 9 Hvis man i stedet

Læs mere

Vejledning til Photofiltre nr.129 Side 1

Vejledning til Photofiltre nr.129 Side 1 Side 1 Til denne vejledning laver vi lidt ekstra ved hvert billede. Vi skal bruge det der hedder Image Curl. Vi skal altså bruge en fil der kan hentes på min hjemmeside under Photofiltre 7 og nederst på

Læs mere

Løsning af præmie- og ekstraopgave

Løsning af præmie- og ekstraopgave 52 Læserbidrag Løsning af præmie- og ekstraopgave 23. årgang, nr. 1 Martin Wedel Jacobsen Både præmieopgaven og ekstraopgaven er specialtilfælde af en mere generel opgave: Hvor mange stykker kan en n-dimensionel

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier. Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.

Læs mere

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX

MATEMATIK NOTAT 2. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX MATEMATIK NOTAT. GRADSLIGNINGEN AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: MAJ 04 Michel Mandi (00).Gradsligningen Side af 9 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... INTRODUKTION:... 3 KOEFFICIENTER...

Læs mere

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf

https://www.uvm.dk/~/media/uvm/filer/udd/folke/pdf14/nov/141127_initiativer_til_videreudvikling _af_folkeskolens_proever.pdf Digitalt prøvesæt Dette er et opgavesæt, som jeg har forsøgt at forestille mig, det kan se ud, hvis det skal leve op til ordene i det der er initiativ 3 i rækken af initiativer til videreudvikling af folkeskolens

Læs mere

Inverse funktioner og Sektioner

Inverse funktioner og Sektioner Inverse funktioner og Sektioner Frank Nasser 15. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

1. Modeller Redegør for regneforskrift og graf for forskellige vækstmodeller. Du skal specielt redegøre for eksponentielle modeller-

1. Modeller Redegør for regneforskrift og graf for forskellige vækstmodeller. Du skal specielt redegøre for eksponentielle modeller- 1. Modeller Redegør for regneforskrift og graf for forskellige vækstmodeller. Du skal specielt redegøre for eksponentielle modeller- Vækstmodellerne: Lineær funktion: Forskrift: a er hældningskoefficient

Læs mere

Afstandsformlerne i Rummet

Afstandsformlerne i Rummet Afstandsformlerne i Rummet Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk:

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul

Kort om. Andengradspolynomier. 2011 (2012) Karsten Juul Kort om Anengraspolynomier 11 (1) Karsten Juul Dette häfte ineholer pensum i anengraspolynomier for gymnasiet og hf Inhol 1. Definition Anengraspolynomium... 1. Eksempel Hvilke tal er a, b og c lig?...

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Brøkregning. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 24 Ekstra: 5 Point:

Brøkregning. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 24 Ekstra: 5 Point: Navn: Klasse: Matematik Opgave Kompendium Brøkregning Følgende gennemgås: Brøk typer Forlængning Forkortning Addition Subtraktion Blandede tal Multiplikation Division Heltal & Brøk Brøk & decimal & Procent

Læs mere

Statistik med GeoGebra

Statistik med GeoGebra Statistik med GeoGebra Hayati Balo, AAMS, marts 2012 1 Observationssæt Det talmateriale, som man gerne vil undersøge, kaldes et observationssæt. Det talsæt som fremgår i tabel 5.1 kan indsættes i GeoGebra

Læs mere

Frank Villa. 15. juni 2012

Frank Villa. 15. juni 2012 2 er irrationel Frank Villa 15. juni 2012 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som aonnerer på MatBog.dk. Se yderligere etingelser for rug her. Indhold 1 Introduktion

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Inverse funktioner. John V Petersen

Inverse funktioner. John V Petersen Inverse funktioner John V Petersen Indhold Indledning: Indledende eksempel. Grafen for en funktion. Og grafen for den inverse funktion.... 3 Afbildning, funktion og inverse funktion: forklaringer og definitioner...

Læs mere

Delmængder af Rummet

Delmængder af Rummet Delmængder af Rummet Frank Nasser 11. juli 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Velkommen til 2. omgang af IT for let øvede

Velkommen til 2. omgang af IT for let øvede Velkommen til 2. omgang af IT for let øvede I dag Hjemmeopgave 1 Næste hjemmeopgave Eventuelt vinduer igen Mapper og filer på USB-stik Vi skal hertil grundet opgave 2 Internet Pause (og det bliver nok

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

De 2D Constraints, der findes i programmet, er vist herunder (dimension er også en form for 2D Constraint). Fig. 298

De 2D Constraints, der findes i programmet, er vist herunder (dimension er også en form for 2D Constraint). Fig. 298 Inventor 2011 - Del 1 Featuren Circular Pattern 2D Constraints Constraints er bindinger, der kan oprettes mellem de forskellige elementer i fx en Sketch. Du har allerede arbejdet med nogle af dem, programmet

Læs mere

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører.

Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. Opgave 1 Alle tallene er reelle tal, så opgaven er at finde den mindste talmængde, som resultaterne tilhører. A. Q B. R (sidelængden er 5, som er irrational) C. Q Opgave 2 A. 19 = 1 19 24 = 2 3 3 36 =

Læs mere

Løsninger til eksamensopgaver på A-niveau 2015

Løsninger til eksamensopgaver på A-niveau 2015 Løsninger til eksamensopgaver på A-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Det antages, at der ikke også opstår pengeinstitutter efter 2001, dvs. antallet af pengeinstitutter falder

Læs mere

Projekt 3.5 faktorisering af polynomier

Projekt 3.5 faktorisering af polynomier Projekt 3.5 faktorisering af polynomier Hvilke hele tal går op i tallet 60? Det kan vi få svar på ved at skrive 60 som et produkt af sine primtal: 60 3 5 Divisorerne i 60 er lige præcis de tal, der kan

Læs mere

TALTEORI Wilsons sætning og Euler-Fermats sætning.

TALTEORI Wilsons sætning og Euler-Fermats sætning. Wilsons sætning og Euler-Fermats sætning, marts 2007, Kirsten Rosenkilde 1 TALTEORI Wilsons sætning og Euler-Fermats sætning. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan

Læs mere

MATEMATIK C. Videooversigt

MATEMATIK C. Videooversigt MATEMATIK C Videooversigt Deskriptiv statistik... 2 Eksamensrelevant... 2 Eksponentiel sammenhæng... 2 Ligninger... 3 Lineær sammenhæng... 3 Potenssammenhæng... 4 Proportionalitet... 4 Rentesregning...

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2010 Institution Vejle Handelsskole Uddannelse Fag og niveau HHX Matematik B Lærer(e) LSP ( Liselotte

Læs mere

gudmandsen.net 1 Parablen C-niveau y = ax 2 bx c eksempelvis: y = 2x 2 2x 4

gudmandsen.net 1 Parablen C-niveau y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

TALTEORI Primfaktoropløsning og divisorer.

TALTEORI Primfaktoropløsning og divisorer. Primfaktoropløsning og divisorer, oktober 2008, Kirsten Rosenkilde 1 TALTEORI Primfaktoropløsning og divisorer. Disse noter forudsætter et grundlæggende kendskab til talteori som man kan få i Marianne

Læs mere

Statistikkompendium. Statistik

Statistikkompendium. Statistik Statistik INTRODUKTION TIL STATISTIK Statistik er analyse af indsamlet data. Det vil sige, at man bearbejder et datamateriale, som i matematik næsten altid er tal. Derved får man et samlet overblik over

Læs mere

NR. 66 VER. 2, LUDUS WEB

NR. 66 VER. 2, LUDUS WEB NR. 66 VER. 2, LUDUS WEB DEN 15. DECEMBER 2011 INDHOLD Undervisningsbeskrivelser og studieplaner Grundbegreber Forskellige arbejdsgange Forløb først Forløb sidst Arbejde via skemabrikker (parallelle forløb)

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Ansøgervejledning for elever i 9. kl. Brugervejledning til Optagelse.dk

Ansøgervejledning for elever i 9. kl. Brugervejledning til Optagelse.dk Ansøgervejledning for elever i 9. kl. Brugervejledning til Optagelse.dk Ansøgervejledning for elever i 9. kl. Brugervejledning til Optagelse.dk Forfatter: Tine Kanne Sørensen, Ulrik Sølgaard-Nielsen Styrelsen

Læs mere

Vejledning til personlige funktioner på MIT DANSKE ARK ( eksklusive profil og cv) Indholdsfortegnelse:

Vejledning til personlige funktioner på MIT DANSKE ARK ( eksklusive profil og cv) Indholdsfortegnelse: Vejledning til personlige funktioner på MIT DANSKE ARK ( eksklusive profil og cv) Indholdsfortegnelse: Side 2: Nyheder valg til personligt nyhedsbrev, Mine Nyheder og visning på enkeltsider Side 3: Funktionen

Læs mere

Manual til skinnelayoutprogram

Manual til skinnelayoutprogram Manual til skinnelayoutprogram Version 1.1 13. marts 2005 Skinnelayoutmanual af 13. marts 2005, version 1.1 1 Indholdsfortegnelse 1. Indledning... 3 2. Oversigt over startbillede... 3 3 Menulinie... 4

Læs mere

Picasa Web. En ressource i SkoleIntra. Version: August 2012

Picasa Web. En ressource i SkoleIntra. Version: August 2012 Picasa Web En ressource i SkoleIntra Version: August 2012 Indholdsfortegnelse Hvad er PicasaWeb?...4 Kom på!...5 Google-konto...5 Når du er logget ind: Indstillinger...5 Når du er logget ind: Upload...6

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) MIHY (Michael

Læs mere

Projekt 3.1 Fjerdegradspolynomiets symmetri

Projekt 3.1 Fjerdegradspolynomiets symmetri Projekt 3.1 Fjerdegradspolynomiets symmetri I kapitel 3 har vi set at grafen for et andengradspolynomiet p x a x x c () altid er symmetrisk omkring den lodrette akse x. a Tilsvarende er grafen for tredjegradspolynomiet

Læs mere

Ordbogsværktøjet mikrov.dk

Ordbogsværktøjet mikrov.dk Kom godt i gang med Ordbogsværktøjet mikrov.dk Forord - et læse- og skrivestøttende sprogværktøj Ordbogsværktøjet kan anvendes som betydnings- og retskrivningsordbog eller som et undersøgende og støttende

Læs mere

Matematikkens mysterier. 3. Analytisk geometri

Matematikkens mysterier. 3. Analytisk geometri Matematikkens mysterier - på et obligatorisk niveau af Kenneth Hansen 3. Analytisk geometri y 4 9,6 0 5 7 x En bro Hvad er mon højden af støttepælene? 3. Analytisk geometri Indhold 3. Koordinatsystemet

Læs mere

Det sprogpædagogiske kørekort 2012/2013. Modul 2: Blog for begyndere

Det sprogpædagogiske kørekort 2012/2013. Modul 2: Blog for begyndere Det sprogpædagogiske kørekort 2012/2013 Modul 2: Blog for begyndere Ana Acosta og Christoph Schepers Indholdsfortegnelse Gloseliste... 2 Log på bloggen (punkt 1-3) 3 Opret og rediger en side med undersider

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni, 08/09 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik C Sanne Schyum

Læs mere

Potensfunktioner, Eksponentialfunktioner og Logaritmer

Potensfunktioner, Eksponentialfunktioner og Logaritmer Potensfunktioner, Eksponentialfunktioner og Logaritmer Frank Villa 2. marts 2014 Dette dokument er en del af MatBog.dk 2008-2012. IT Teaching Tools. ISBN-13: 978-87-92775-00-9. Se yderligere betingelser

Læs mere

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler.

Reelle tal. Symbolbehandlingskompetencen er central gennem arbejdet med hele kapitlet i elevernes arbejde med tal og regneregler. Det første kapitel i grundbogen til Kolorit i 9. klasse handler om de reelle tal. Første halvdel af kapitlet har karakter af at være opsamlende i forhold til, hvad eleverne har arbejdet med på tidligere

Læs mere

Matematik B. Højere forberedelseseksamen

Matematik B. Højere forberedelseseksamen Matematik B Højere forberedelseseksamen hfe11-mat/b-3108011 Onsdag den 31. august 011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Tal, funktioner og grænseværdi

Tal, funktioner og grænseværdi Tal, funktioner og grænseværdi Skriv færdig-eksempler der kan udgøre en væsentlig del af et forløb der skal give indsigt vedrørende begrebet grænseværdi og nogle nødvendige forudsætninger om tal og funktioner

Læs mere

1. Send Digitalt knappen anvendes til at afsende meddelelsen til de valgte modtagere. (Alt- S)

1. Send Digitalt knappen anvendes til at afsende meddelelsen til de valgte modtagere. (Alt- S) Send Digitalt. Elementerne i Send Digitalt vinduet 1. Send Digitalt knappen anvendes til at afsende meddelelsen til de valgte modtagere. (Alt- S) 2. Tjek kan anvendes til at kontrollere, om der kan sendes

Læs mere

Vejledning i brug af Finale NotePad 2008 Pædagogisk konsulent Niels Rebsdorf, CFU i Vejle, UCL

Vejledning i brug af Finale NotePad 2008 Pædagogisk konsulent Niels Rebsdorf, CFU i Vejle, UCL Vejledning i brug af Finale NotePad 2008 Pædagogisk konsulent Niels Rebsdorf, CFU i Vejle, UCL Når programmet er pakket ud og installeret, er du klar. Når du åbner programmet, hjælper Document Setup Wizard

Læs mere

Basal Matematik 3. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 64 Ekstra: 9 Point:

Basal Matematik 3. Navn: Klasse: Matematik Opgave Kompendium. Opgaver: 64 Ekstra: 9 Point: Matematik / Basal Matematik Navn: Klasse: Matematik Opgave Kompendium Basal Matematik Følgende gennemgås De 4 regnearter Afrunding af tal Regne hierarki Enheds omregning Reduktion Brøkregning Potenser

Læs mere

Tilsvarende har vbi i kapitel 3 set, at grafen for tredjegradspolynomiet

Tilsvarende har vbi i kapitel 3 set, at grafen for tredjegradspolynomiet Projekt 3 Fjerdegradspolynomiets symmetri Indledning: Symmetri for polynomier I kapitel har vi set at grafen for et andengradspolynomiet altid er symmetrisk omkring den lodrette akse x a p x a x x c ()

Læs mere

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2011 2. runde

Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 2011 2. runde Retningslinjer for bedømmelsen. Georg Mohr-Konkurrencen 20 2. runde Det som skal vurderes i bedømmelsen af en besvarelse, er om deltageren har formået at analysere problemstillingen, kombinere de givne

Læs mere

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1

Pendulbevægelse. Måling af svingningstid: Jacob Nielsen 1 Pendulbevægelse Jacob Nielsen 1 Figuren viser svingningstiden af et pendul i sekunder som funktion af udsvinget i grader. For udsving mindre end 20 grader er svingningstiden med god tilnærmelse konstant.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 08/09 Institution Grenaa Handelsskole Uddannelse Fag og niveau Lærer(e) Hold hhx Matematik B Hasse

Læs mere

Opgave 1: Log ind og skift password m.m.

Opgave 1: Log ind og skift password m.m. Opgaver i Typo3 Opgave 1: Log ind og skift password m.m.... 2 Opgave 2: Opret flere filmapper og upload diverse filer... 3 Opgave 3: Opret en ny side som denne her... 4 Opgave 4: Opret fotogallerier med

Læs mere

Succesfuld start på dine processer. En e-bog om at åbne processer succesfuldt

Succesfuld start på dine processer. En e-bog om at åbne processer succesfuldt Succesfuld start på dine processer En e-bog om at åbne processer succesfuldt I denne e-bog får du fire øvelser, der kan bruges til at skabe kontakt, fælles forståelser og indblik. Øvelserne kan bruges

Læs mere

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014

Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014 Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.

Læs mere

Programmering C. Casper Hermansen Klasse 2.7 Programmering C. Navn: Casper Hermansen. Klasse: 2.7. Fag: Programmering C

Programmering C. Casper Hermansen Klasse 2.7 Programmering C. Navn: Casper Hermansen. Klasse: 2.7. Fag: Programmering C Navn: Casper Hermansen Klasse: 2.7 Fag: Skole: Roskilde tekniske gymnasium Side 1 af 16 Indhold Indledende aktivitet... 3 Projektbeskrivelse:... 3 Krav:... 3 Målgrupper:... 3 Problemformulering:... 3 Diskussion

Læs mere

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi

MATEMATIK A-NIVEAU. Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX. Anders Jørgensen & Mark Kddafi MATEMATIK A-NIVEAU Eksempel på løsning af matematik A eksamenssæt STX143-MAT/A-05122014 Matematik A, STX 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012

Læs mere

Netværksguide. sådan bruger du dit netværk. Danmarks måske stærkeste netværk

Netværksguide. sådan bruger du dit netværk. Danmarks måske stærkeste netværk Netværksguide sådan bruger du dit netværk Danmarks måske stærkeste netværk Step 1 Formålet med guiden Hvor kan netværk hjælpe? Netværk er blevet et centralt middel, når det gælder om at udvikle sig fagligt

Læs mere