KOMPLEKS ANALYSE. noter til matematik beta H.A. NIELSEN

Størrelse: px
Starte visningen fra side:

Download "KOMPLEKS ANALYSE. noter til matematik beta H.A. NIELSEN"

Transkript

1 KOMPLEKS ANALYSE noter til matematik beta H.A. NIELSEN institut for matematiske fag aarhus universitet 23

2

3 KOMPLEKS ANALYSE H.A. NIELSEN Indhold. Komplekse tal 2 2. Elementære funktioner 3. Holomorfe funktioner 2 4. Kompleks kurveintegral Cauhys integralsætninger Potensrækker Poler Residuesætningen Integraler, summer og produkter 63 Eksamensopgaver 85 Løsninger 94 Litteratur Stikord Noterne er til et 8 timers kursus inden for Matematik beta i kompleks analyse. De skitserede beviser er ultrakorte og skal kun give appetit på at se i de mere udførlige fremstillinger i litteraturlisten. Der er især lagt vægt på beregning af bestemte integraler ved brug af residuesætningen. Foruden det direkte nyttige og sjove heri er tanken, at dette skulle katalysere fortrolighed med regning med komplekse tal og funktioner. I resten af Matematik beta såvel Fourierrækketeorien som grupperepræsentationsteorien vil komplekse tal spille en vigtig rolle. Reel analyse forudsættes i et omfang svarende til Matematik alfa +2, hvorfra også afsnit +2 i disse noter prinipielt er kendte. Fremstillingen er bevidst kortfattet og præis, fremfor beskrivende og detaljeret. Dette kræver en lidt større indsats ved første læsning, men vil betale sig i overskuelighed senere. For et helstøbt udbytte forudsættes, at noterne suppleres med både forelæsninger og mange øvelser. Tidligere eksamensopgaver i Matematik beta med løsninger, udgivet særskilt, er vejledende for vægtning af både pensum og sværhed. Version: november, 25.

4 2. Komplekse tal. Komplekse tal Her repeteres kort de komplekse tal, regneregler, modulus og argument samt trigonometriske formler og roduddragning. Definition.. Ved et kompleks tal forstås et udtryk z = x + yi hvor x = Rez og y = Im z er reelle tal kaldet realdel og imaginœrdel. i er den imaginœre enhed, formelt identifieret med i =, altså i 2 =. Mængden af komplekse tal betegnes C. Det er et faktum, at de sædvanlige regneregler for reelle tal udvider meningsfuldt fra realdel til alle komplekse tal. Der gælder addition multiplikation z = x + y i, z 2 = x 2 + y 2 i z + z 2 = (x + y i) + (x 2 + y 2 i) = (x + x 2 ) + (y + y 2 )i z z 2 = (x + y i)(x 2 + y 2 i) = x x 2 + x y 2 i + y ix 2 + y iy 2 i = (x x 2 y y 2 ) + (x y 2 + y x 2 )i Øvelse.2. (3 5i) + ( 2 + 3i) = 2i (3 5i)( 2 + 3i) = 3( 2) ( 5)3 + (3 3 + ( 5)( 2))i = 9 + 9i Definition.3. For et kompleks tal z = x + yi er det konjugerede tal z givet ved z = x yi så Der gælder Rez = z + z 2, Im z = z z 2i z + z 2 = z + z 2 samt z z 2 = z z 2 z z = x 2 + y 2

5 . Komplekse tal 3 Sætning.4. Hvis z = x + yi så findes det reiproke tal z = z z z x + yi = x x 2 + y 2 y x 2 + y 2i Øvelse i i = (3 + 5i)( + i) ( i)( + i) = 2 + 8i 2 = + 4i Definition.6. Talplanen R 2 med rektangulœre koordinater (x,y) identifieres med de komplekse tal (den komplekse plan) C ved = (,) og i = (,), så x + yi = (x,y) Im yi z = z + yi i x Re Skitse.6.. Den komplekse plan. Im z 2 z + z 2 i z Re Skitse.6.2. Addition ved parallellogramreglen.

6 4. Komplekse tal Im i z Re z Skitse.6.3. Konjugering er spejling i den reelle akse. Den ordnede reelle basis {,i} bestemmer den positive omløbsretning. Normen x + yi = x 2 + y 2 = (x,y) kaldet Modulus (absolut vœrdi) udtrykkes ved Modulus opfylder nulregel multiplikativitet og trekantsuligheder z = z z z = z = z z 2 = z z 2 z + z 2 z + z 2 z z 2 z z 2 z z z 2 z z 2 z 2 Skitse.6.4. Trekantsuligheder er geometrisk indlysende.

7 . Komplekse tal 5 Sætning.7. For z = er z = z For z er w z = w z z 2 Eksempel.8. For reelle tal a,b,,d er (a 2 + b 2 )( 2 + d 2 ) = (a bd) 2 + (ad + b) 2 ved brug af modulus multiplikativitet på a + bi, + di. Dette giver, at hvis to tal er sum af kvadrattal, så gælder dette også for produktet. For eksempel 65 = 3 5 = ( )( ) = ( 4) = Øvelse.9. Hvis z > så er ved brug af trekantsuligheden. z 3i > 7 Definition.. Et kompleks tal kan udtrykkes ved polœre koordinater z = z (os θ + isin θ) Vinklen θ = arg z, z, er bestemt op til et heltals fold af 2π og kaldes argument. Det er bestemt ved Hvis Re z så er som det ses af figuren: os arg z = Rez Im z, sin arg z = z z Im tan arg z = Imz Rez i z arg z z Re Skitse... Polære koordinater.

8 z z 2 6. Komplekse tal Ved hovedbestemmelsen af arg forstås værdien For Arg z π er Thi Arg z ] π,π] Arg z = 2Artan Imz z + Re z tan Arg z Arg z 2sin 2 os Arg z 2 sin Arg z = = 2 2os 2 Arg z + os Arg z = Imz z + Re z 2 Multiplikation i C kan udtrykkes ved additionsformlerne (os θ + isin θ )(os θ 2 + isin θ 2 ) = os(θ + θ 2 ) + isin(θ + θ 2 ) så for komplekse tal z,z 2 er z z 2 = z z 2 arg(z z 2 ) = arg z + arg z 2 z z 2 Im θ θ 2 θ + θ 2 Re Skitse..2. Multiplikation af komplekse tal. For z er pånær fold af 2π. arg z = arg z Im i z z Re Skitse..3. Reiprok tal.

9 Øvelse.. Bestem modulus og argument for i i. Komplekse tal 7 Da i =, arg i = π 2 og i = 2, arg i = π 4 er i i = 2 Det ses arg i i = π 2 ( π 4 ) = 3π 4 i i = 2 (os 3π 4 + isin 3π 4 ) = i Øvelse.2. Skitser følgende mængder af z C () Rez = a (2) z = r (3) a Rez b, Im z d (4) s z t, u arg z v Eksempel.3. Trigonometriske formler for fold af vinkler udledes fra binomialformlen n ( ) n (z + w) n = z n k w k k Realdel og imaginærdel samles sin nθ = os nθ = os n θ ( ) n os n θ sinθ k= (os θ + isin θ) n = os nθ + isin nθ ( ) ( n n os n 2 θ sin 2 θ ( ) n os n 3 θ sin 3 θ + 3 ) os n 4 θ sin 4 θ... ( ) n os n 5 θ sin 5 θ... 5 Eksempel.4. Trigonometriske sumformler til brug i Fourierrækketeorien udledes fra sum af kvotientrække, z n z k = zn+ z k= k= (Antag først ω = ) n os(kθ + ω) = os(n 2 θ + ω)sin(n+ 2 θ) sin( θ 2 ) n k= sin(kθ + ω) = sin(n 2 θ + ω)sin(n+ 2 θ) sin( θ 2 )

10 8. Komplekse tal Sætning.5 (Rødder, de Moivre). Lad z = z (os θ + i sin θ) () For et helt tal n er z n = z n (os nθ + isin nθ) (2) For helt tal n > og k n er w k = z /n (os( θ n + 2π n k) + isin(θ n + 2π n k)) de n forskellige komplekse rødder til ligningen Im w n = z, z z i θ θ 2 z Re Skitse.5.. Kvadratroden. Øvelse.6. Bestem de komplekse tal w som opfylder w 4 = 4 Da 4 = 4 og arg 4 = π så er w k = 4 /4 (os( π 4 + 2π 4 k) + isin(π 4 + 2π 4 k)) altså w = + i,w = + i,w 2 = i,w 3 = i Eksempel.7 (Kvadratrod). Kvadratroden ±w = ±(u+vi) af z = x+yi kan beregnes direkte. (u + vi) 2 = x + yi giver u 2 v 2 = x, 2uv = y som kvadreres og adderes og dermed (u 2 + v 2 ) 2 = x 2 + y 2 2u 2 = x 2 + y 2 + x, 2v 2 = x 2 + y 2 x

11 Så pånær fortegn, + for y = Imz positiv, er. Komplekse tal 9 eller u + vi = x 2 + y 2 + x 2 z + Rez ± x 2 + y 2 x 2 z Re z i w = 2 ± 2 i Øvelse.8 (Andengradsligning). Formlen for løsning af andengradsligningen w 2 + aw + b = er som bekendt Løs ligningen w = a ± d, d = a 2 4b 2 w 2 + ( 4 + i)w i = Diskriminanten er ( 4 + i) 2 4(5 + i) = 5 2i og kvadratroden er i = i = 2 3i 2 2 Formlen for løsninger giver altså w = 4 i ± 5 2i 2 w = + i,w = 3 2i Opgaver Opgave.. Udregn (form x + yi) i + i og ( ) i + i Opgave.2. Udregn realdel og imaginærdel af z i z + i udtrykt ved realdel og imaginærdel af z. Opgave.3. Find modulus og argument af ( + i ( + i) 7, i 7, i ) 7

12 . Komplekse tal Opgave.4. Hvis = og d, så er d d = Opgave.5. Bestem for givne,d den mindste værdi af z + z d, z C Opgave.6. Skitser følgende mængder af z C () Rez 2 (2) Imz 2 Opgave.7. Angiv formler for udtrykt ved os θ, sin θ, tan θ os 5θ, sin 5θ, tan 5θ Opgave.8. Løs ligningerne z 3 =, z 4 =, z 6 = Opgave.9. Find kvadratrødder 36, i, 5 6i, os + isin 2 Opgave.. Løs andengradsligningerne z 2 + z + =, z 2 + ( + 2i)z + 5i = Opgave.. Løs ligningen iz = z i både rektangulære og polære koordinater.

13 2. Elementære funktioner 2. Elementære funktioner Polynomier og rationale funktioner udvider naturligt til komplekse tal. Udvidelsen af exponential- og logaritmefunktionen til komplekse tal forbindes ved Eulers formler med trigonometriske funktioner. Eksempel 2.. For komplekse tal e = a + bi,f = + di er den lineære funktion z ez + f for z = x + yi givet ved matrixformen ( x y) ( a b b a )( x y ) ( + d) Fra polær form a + bi = r(os θ + isin θ) ( ( )( ( x os θ sin θ x r + y) sin θ os θ y) d) ses, at en lineær funktion bevarer vinkler i den komplekse plan. Im Im i i f Re Re Skitse 2... z-plan og w-billedplan. Øvelse 2.2. Ved navngivningen ( ) =,i = ( ) identifieres de komplekse tal med addition og multiplikation med reelle matrier af form ( ) x y x + yi = y x med matrixaddition og matrixmultiplikation.

14 2 2. Elementære funktioner Eksempel 2.3. Til en kompleks 2 2 matrix ( ) a b d med determinant ad b tilordnes en rational funktion z w af form w = az + b, ad b z + d som kaldes en Möbius transformation. Den er defineret for z, hvor z+d og har billede w, hvor w + a. Der er en invers funktion z = dw b w + a som også er en Möbius transformation. Dette følger af, at sammensat funktion w = a w + b w + d w = (a a + b )z + (a b + b d) ( a + d )z + ( b + d d) igen er en Möbius transformation, og på matrix form er koeffiienterne i sammensætning givet ved matrixmultiplikation. Øvelse 2.4. Möbius transformationen w = z er en bijektiv afbildning af C fraregnet på sig selv. For reelle a > afbildes irklen med entrum i a og radius a på den lodrette linje gennem 2a z a = a Rew = 2a og omvendt da transformationen er sin egen inverse. Øvelse 2.5. For a < er Möbius transformationen w = z a az en bijektiv afbildning af irkelskiven z på sig selv. Øvelse 2.6. Möbius transformationerne w = z i z + i, z = iw + i w + giver en bijektiv afbildning {z Im z > } {w w < }

15 2. Elementære funktioner 3 Im Im Re Re Skitse z-plan og w-billedplan for reiprokfunktion af den øvre halvplan på den åbne enhedsirkelskive. Definition 2.7. Exponentialfunktionen er givet ved, z = x + yi exp z = e z = e x (os y + isin y) som er en udvidelse af exponentialfunktionen for realdel. Im e x e x+yi y Re Skitse Eksponentialfunktionen. Der gælder den fundamentale regneregel e z +z 2 = e z e z 2 Logaritmefunktionen er bestemt op til heltals fold af 2πi for z log z = log z + iarg z Ved hovedbestemmelsen af log forstås værdien Log z = log z + iarg z

16 4 2. Elementære funktioner For komplekse tal z,z 2 er pånær fold af 2π. Der gælder log(z z 2 ) = log z + log z 2 exp log z = z log exp z = z + 2pπi, p helt tal For et tal w findes tal z så alle andre løsninger er på formen Exponentialfunktionen er e z = w z + 2pπi, p et helt tal exp : {z π < Imz π} {z z } en bijektiv afbildning, hvis inverse afbildning er logaritmefunktionens hovedbestemmelse Log. Øvelse 2.8. Vis opskrivningerne e z = e Re z, arg e z = Im z Re e z = e Re z os Im z, Im e z = e Re z sin Im z Relog z = log z, Im log z = arg z Øvelse 2.9. Vandrette linjer {x+yi x R} afbildes ved z e z i halvlinjer fra med retningsvinkel y. Lodrette linjer {x + yi y R} afbildes ved z e z i irkler med entrum i og radius e x. Im πi Im i Re Re πi Skitse z-plan og w-billedplan for eksponentialfunktionen

17 2. Elementære funktioner 5 Eksempel 2. (Potenser). Potenser (der er flere) z w kan nu defineres meningsfuldt for alle z,w. () =, w = for w. (2) z = e v, z w = e vw. Potensregneregler (z z 2 ) w = z w zw 2 pånær e 2pπiw z w +w 2 = z w z w 2 pånær e 2pπi(w +w 2 ) Øvelse 2. (Euler). Beregn tallet i i. giver i = e πi 2 i i = e π 2.2 Eksempel 2.2 (Eulers formler). De (hyperbolsk)trigonometriske funktioner defineres for alle komplekse tal z ved os z = eiz + e iz 2 sin z = eiz e iz 2i osh z = ez + e z = os iz 2 sinh z = ez e z = isin iz 2 De opfylder de kendte additionsformler os(z + z 2 ) = os z os z 2 sin z sinz 2 sin(z + z 2 ) = sinz os z 2 + os z sinz 2 osh(z + z 2 ) = osh z osh z 2 + sinh z sinh z 2 sinh(z + z 2 ) = sinhz osh z 2 + osh z sinh z 2 Eksempel 2.3. Lad w = os z Så er z = aros w = w i log(w ± 2 ) Tilsvarende for w = sin z er z = arsin w = i log(wi ± w 2 ) Det følger, at funktionerne os og sin er surjektive.

18 6 2. Elementære funktioner Eksempel 2.4. sinz = har løsninger z = pπ, p helt tal os z = har løsninger z = π + pπ, p helt tal 2 Eksempel 2.5. Lad Så er w = tan z = sin z os z z = artan w = 2i log + iw iw Eksempel 2.6 (Enhedsrødder). Løsningerne til ligningen kaldes n-te enhedsrødder og har form w n = w k = e 2πik n, k =,...,n ζ = e 2πi n kaldes en primitiv enhedsrod og der gælder w k = ζ k Im e 2πi 9 Re Skitse Enhedsrødder. Af faktoriseringen (w w )... (w w n ) = w n fås den nyttige formel w + + w n = + + ζ n =

19 Ligningen har for en valgt rod w rødder De første primitive enhedsrødder er 2. Elementære funktioner 7 w n = z, z w k = ζ k w, k =,...,n e 2πi = e 2πi 2 = e 2πi 3 = i e 2πi 4 = i e 2πi = i 4 4 e 2πi 6 = i e 2πi Beregning af ζ = e 2πi 5. Sæt Fra relationen er så x,y er rødder i ligningen Det fås 7 = e 2πi 7 e 2πi = i e 2πi 9 = e 2πi 9 e 2πi = i 4 4 e 2πi = e 2πi e 2πi 3 2 = i x = ζ + ζ 4, y = ζ 2 + ζ 3 + ζ + ζ 2 + ζ 3 + ζ 4 = x + y =, xy = u 2 + u ζ + ζ = og dermed er ζ rod i ligningen ζ ζ + = 2

20 8 2. Elementære funktioner Eksempel 2.7 (Tredjegradsligning). Ligningen redueres ved substitution w 3 + aw 2 + bw + = w = z a 3 p = a2 3 + b q = 2a3 27 ab 3 + til z 3 + pz + q = Rødderne heri z,z,z 2 opfylder og dermed relationerne (z z )(z z )(z z 2 ) = z 3 + pz + q z + z + z 2 =, z z + z z 2 + z z 2 = p, z z z 2 = q Lad ζ = e 2πi 3 = +i 3 2, + ζ + ζ 2 = være en primitiv 3-je enhedsrod. Sæt x = z + ζz + ζ 2 z 2 y = z + ζ 2 z + ζz 2 så er 3z = x + y, 3z = ζ 2 x + ζy, 3z 3 = ζx + ζ 2 y Det fås xy = 3p x 3 y 3 = 27p 3 x 3 + y 3 = 27q så x 3,y 3 er rødder i ligningen u qu 27p 3 = x 3 q 27 = q p3 27, y 3 q 27 = q p3 27 Kubikrødder skal da vælges, så xy = 3p Dette giver tre muligheder og de imponerende formler z = 3 q q p q q p3 27 z = i 3 3 q q p i 3 3 q q p3 27 z 2 = + i 3 3 q q p i 3 3 q q p3 27

21 2. Elementære funktioner 9 Øvelse 2.8. Løs ligningen (Fibonai) w 3 + 2w 2 + w 2 = Denne redueres ved substitution w = z 2 3 til Så er x 3 27 = (352 ) Kubikrødder skal da vælges, så p = 26 3 q = z z = ( ) 26 3, 9 xy = 26 Dette giver x,y R og (352 ) w = w = i 3 (352 ) i 3 (352 ) w 2 = + i 3 (352 ) i 3 (352 ) y 3 27 = ( ) ( ) ( ) ( ) ( ) (352 ) (352 ) ( ) ( ) Approximation w.37 w i w i

22 2 2. Elementære funktioner Opgaver Opgave 2.. Gennemfør udregningen os(x + yi) 2 = os 2 (x) + sinh 2 (y) sin(x + yi) 2 = sin 2 (x) + sinh 2 (y) Opgave 2.2. Angiv formler for log z, arg log z e zi, arg e zi Opgave 2.3. Vandrette linjer {x + yi x R} afbildes ved z sinz i ellipser. Lodrette linjer {x + yi y R} afbildes ved z sin z i hyperbler. Opgave 2.4. Løs ligningerne os z = 4 3 i tan z = 2i Opgave 2.5. Bestem alle værdier af i i Opgave 2.6. En Möbius transformation fører irkler og linjer i den komplekse plan i irkler og linjer, men bevarer ikke altid type eller entrum. (Benyt f.eks. omskrivningen for.) az + b z + d = a ad b z + d Opgave 2.7. Benyt værdien af e 2πi 5 til vise e 2πi = i 4 4 Opgave 2.8. Løs ligningen (Cardano) w 3 8w + 3 =

23 3. Holomorfe funktioner 2 3. Holomorfe funktioner Da C med modulus er identifieret R 2 med norm kan begreberne åbne og lukkede delmængder samt rand i C tillægges den sædvanlige betydning. En lukket og begrænset mængde er kompakt. Ordet område reserveres til en ikke-tom åben sammenhængende delmængde. indre z rand Skitse 3... Et punkt z i det indre. Lad D C, en afbildning f : D C kaldes en kompleks funktion. Der indføres skrivemåden f(x + yi) = u(x,y) + v(x,y)i u = Re f, v = Im f med realdel og imaginærdel. Begreber som grænseværdi, kontinuitet og (reel) partiel differentiabilitet er da i sædvanlig betydning for u, v og de kendte regneregler kan udnyttes. Der er imidlertid en vigtigere form for differentiabilitet, nemlig i det tilfælde, hvor den lineære tilnærmelse er på formen h ah + b. Sammemhæng mellem disse begreber er hovedtema i dette afsnit. Beviser for regnereglerne er ord for ord som i det reelle tilfælde. Definition 3.. En funktion f defineret i en åben mængde D kaldes holomorf i D, hvis for alle z D, differenskvotienten har en grænseværdi, differentialkvotienten, f(z + h) f(z) h I så fald fås tilnærmelsen f (z) = df dz (z), h f(z + h) f(z) f (z)h f = df dz er den afledede funktion og f er stamfunktion til f. Da kompleks multiplikation bevarer vinkler følger, at holomorfe funktioner bevarer vinkler i den komplekse plan, Eksempel 2.. I beviserne forudsættes tilstrækkelig differentiabilitet.

24 22 3. Holomorfe funktioner Sætning 3.2 (Regneregler). Hvis f,g er holomorfe i D, så er holomorfe i D og f + g, fg, f g for g(z) (f + g) (z) = f (z) + g(z) (fg) (z) = f (z)g(z) + f(z)g (z) ( ) f (z) = f (z)g(z) f(z)g (z) g g(z) 2 Sætning 3.3 (Kæderegel, Invers funktion). Hvis f er holomorf i D og g er holomorf i E, f(d) E, så er g f holomorf med, w = f(z), (g f) (z) = g (w)f (z) Hvis f er invers funktion til f, f(z) = w, så er denne holomorf og (f ) (w) = f (z) Eksempel 3.4. Lad A = Den afledede er Den inverse funktion har den afledede h (w) = ( ) a b give Möbius transformationen d w = f(z) = az + b z + d f (z) = ad b (z + d) 2 z = h(w) = dw b w + a ad b (z + d)2 = ( w + a) 2 ad b Eksempel 3.5. De elementære funktioner er holomorfe. Den afledede beregnes ved de kendte formler (z n ) = nz n (e z ) = e z (os z) = sin z (sin z) = os z (osh z) = sinhz (sinh z) = osh z (log z) = z

25 3. Holomorfe funktioner 23 log z er defineret på C fraregnet en halvlinje ud fra. Definition 3.6. For en reel-differentiabel kompleks funktion f(x + yi) = u(x, y) + v(x, y)i er Cauhy-Riemann ligningerne u x = v y v x = u y Ligningerne udtrykker, at de reelle vektorfelter (u, v) og (v, u) begge er rotationsfrie eller at differentialformerne er lukkede. udx v dy og v dx + udy ( v x, v y ) ( u x, u y ) Skitse Gradienter er vinkelrette. Hovedsætning 3.7. f = u + vi er holomorf i et område, hvis og kun hvis u, v er differentiable og Cauhy-Riemann ligningerne er opfyldte. I så fald er f (z) = u (z) + i v x x (z) Bevis. Antag f() = og f () = a + bi. Nær er u(x,y) + v(x,y)i (a + bi)(x + yi) = (ax by) + (bx + ay)i hvis og kun hvis i u x = a = v y v x = b = u y Eksempel 3.8. Lad f = u + vi. Hvis de partielle afledede af u,v eksisterer og er kontinuerte, så er u, v differentiable og hvis Cauhy-Riemann ligningerne er opfyldte, så er f holomorf.

26 24 3. Holomorfe funktioner Eksempel 3.9. Lad f = u + vi og bemærk f dz = f dx + if dy = udx v dy + i(v dx + udy) Cauhy-Riemann ligningerne kan skrives på den mere kompakte form altså differentialformen er lukket. i f x f y = f dz i f x = f y f x Skitse Drejning på π 2. I så fald er den afledede f (z) = f (z) = i f x y (z) Jaobi-determinanten er positiv, idet f 2 u u x y = v v = x y ( ) u 2 + x ( ) v 2 x Altså bevarer en holomorf funktion vinkler og orientering i den komplekse plan i punkter, hvor f (z). Øvelse 3.. Lad f være holomorf i et område D og antag f = på D. Så er f konstant. Øvelse 3.. Antag f er holomorf i et område D og f(d) R. Så er f konstant. Thi f = u + vi og v = giver Så f = på D. u x = v y = = v x = u y Eksempel 3.2. log z er holomorf med (log z) halvlinje ud fra. Hertil skrives = z på C fraregnet en log(x + yi) = log x 2 + y 2 + iartan y x

27 3. Holomorfe funktioner 25 u = 2 log(x2 + y 2 ), v = artan y x u x = x x 2 + y 2, u y = v x = y x 2 + y2 x 2 = v y = x + y2 x 2 = Så Cauhy-Riemanns ligninger er opfyldte og y x 2 + y 2 y x 2 + y 2 x x 2 + y 2 (log z) x = x 2 + y 2 i y x 2 + y 2 = z Im πi Im z = Log w w = e z Re Re πi Skitse z-logaritmer og w-eksponentialer. Øvelse 3.3. Funktionerne z z og z z er ikke holomorfe i noget område. Er z z + z holomorf? Øvelse 3.4. Lad arg z være bestemt som funktion i et område. Bestem de partielle afledede. Er funktionen holomorf? Opgaver Opgave 3.. Angiv stamfunktioner til z n, e z, log z

28 26 3. Holomorfe funktioner Opgave 3.2. Beregn den afledede af aros z, tan z, artan z Opgave 3.3. Lad f være holomorf. Vis, at funktionen er holomorf. z f(z) Opgave 3.4. Vis, direkte, at differentialformen z dz er lukket. Opgave 3.5. Beregn de partielle afledede og afgør om funktionerne er holomorfe. () x 2 + iy. (2) x 2y + (2x + y)i. (3) x 2 y 2 i. Opgave 3.6. Find f = u + vi holomorf, så () u(x,y) = x 3 3xy 2. (2) v(x,y) = e y sin x. Opgave 3.7. Hvis f = u + vi er holomorf (u,v to gange kontinuert differentiable), så er 2 u x u y 2 = 2 v x v y 2 = Opgave 3.8. Antag f er holomorf i et område D. Hvis enten Ref, Imf eller f er konstant i D, så er f konstant. Opgave 3.9. Antag f er holomorf i et område D. Hvis f(d) er indeholdt i en linje, så er f konstant. Opgave 3.. Skriv en funktion på polær form f(re iθ ) = R(r,θ)e iθ(r,θ) Cauhy-Riemann ligningerne har da formen R r = R Θ r θ R θ = Rr Θ r

29 4. Kompleks kurveintegral Kompleks kurveintegral Plan vektoranalyse, kurveintegral og Greens sætning tilpasses som hjælpemiddel for analyse af komplekse funktioner. En kort omtale af omløbstal benyttes ikke senere. Definition 4.. En kurve i C antages at være kontinuert, orienteret med stykkevis kontinuert differentiabel parameter fremstilling z(t), t [α, β]. En kurve er simpel hvis z(t ) z(t 2 ) for t < t 2. Hvis kurven er lukket z(α) = z(β) kaldes denne simpel hvis z(t ) z(t 2 ) for t < t 2 < β. Lœngden af er β β L() = z (t) dt = x (t) 2 + y (t) 2 dt α nemlig grænseværdien af zi+ z i z (t i ) (t i+ t i ) for finere inddeling af kurven. For en kontinuert kompleks funktion f defineret på er kurveintegralet givet ved β f(z)dz = f(z(t))z (t)dt Hvis kurven er lukket bruges også betegnelsen f(z)dz = f(z)dz Kurveintegralet er grænseværdien af summen f(zi )(z i+ z i ) f(z(t i ))z (t i )(t i+ t i ) for finere inddelinger af kurven. α α z(β) (v, u) (u, v) z i z i+ z(α) z i Skitse 4... Kurve med inddeling og vektorfelt. For z = x + yi, f = u + vi er f(z)dz = (u + vi)d(x + yi)

30 28 4. Kompleks kurveintegral = udx v dy + i v dx + udy Kurveintegralet er da det komplekse tal, hvis realdel er integralet af formen udx vdy og hvis imaginær del er integralet af vdx + udy langs kurven. På vektorform f(z)dz = (u, v) (dx,dy) + i (v,u) (dx,dy) er kurveintegralet det komplekse tal, hvis realdel er arbejdet af vektorfeltet (u, v) langs kurven og hvis imaginær del er fluxen af samme felt gennem kurven. De kendte regneregler for kurveintegraler kan udnyttes, speielt ved parameterskift er integralet uændret, når gennemløbsretningen er bevaret, og skifter fortegn ved modsat retning. Øvelse 4.2. For kurver z,z 2 er z z 2 en kurve med (z z 2 ) (t) = z (t)z 2(t) + z (t)z 2 (t) Hvis z er en kurve i et område hvor f(z) er holomorf, så er f(z) en kurve med f(z(t)) = f (z(t))z (t) Øvelse 4.3. For z = x + yi, f = u + vi er β f(z)dz = (u(x(t),y(t))x (t) v(x(t),y(t))y (t))dt α β + i α (v(x(t),y(t))x (t) + u(x(t),y(t))y (t))dt Eksempel 4.4. Linjestykket [a,b] fra a til b i C har en parameterfremstilling z(t) = ( t)a + tb, t [,] Længden er b a dt = b a b a z = ( t)a + tb Skitse Linjestykke.

31 4. Kompleks kurveintegral 29 Cirklen z a = R med entrum i a og radius R samt positiv omløbsretning har en parameterfremstilling Længden er z(t) = a + Re it, t [,2π] 2π R dt = 2πR a R t z = a + Re ti Skitse Cirkel med radius R. Eksempel 4.5. For et helt tal n er (z a) n dz = Thi værdien er z a =R 2π {, n 2πi, n = ir n+ e (n+)it dt Eksempel 4.6. Halvirklen z = i øvre halvplan har en parameterfremstilling z(t) = e it, t [,π] Integralet Ved parameterfremstillingen giver I alt den kendte formel z = z = dz = πi z z (t) = + ti, t [, ] ti z dz = ti 2i + ti ( ti) 2 dt + t 2dt = π 2

32 3 4. Kompleks kurveintegral Im i z (t) + 2ti ti Re Skitse En snu parametrisering. Sætning 4.7. Hvis f(z) M for z gœlder vurderingen f(z)dz M L() Bevis. Der gælder β f(z)dz f(z(t))z (t) dt M L() α Alternativt f(z)dz f(z i )(z i+ z i ) f(z i ) z i+ z i M z i+ z i M L() Eksempel 4.8. Lad u være kurven med parameterfremstilling Da er Thi så for u < z(t) = e it, t [,u] lim e z2 dz = u u e z2 M, z e z2 dz ML( u) = Mu, u u Øvelse 4.9. Lad R være kurven med parameterfremstilling z(t) = Re it, t [, π 4 ] Da er e lim R R z2 z 2 dz =

33 4. Kompleks kurveintegral 3 Definition 4.. En kompakt mængde K, hvis indre er et område og hvis rand består af et sæt,..., m af disjunkte simple lukkede kurver med gennemløbsretning fra K kaldes en indhegning. Punkter i det indre af K er indenfor indhegningen. (Hvis omløbsretningen i C er mod uret, skal K være på venstre hånd ved gennemløb af kurven i positiv retning.) Skitse 4... Generel indhegning. Eksempel 4.. En lukket irkelskive, hvis periferi har positiv omløbsretning er en indhegning. En trekant, et rektangel og mere generelt en polygon med positiv omløbsretning er en indhegning. Skitse 4... Populære indhegninger. Eksempel 4.2. Den udprikkede enhedsirklenskive < z er ikke en lukket delmængde og dermed ikke en indhegning. En lukket irkelring r z R, hvis rand er givet ved kurverne r : t re it, R : t Re it, t [,2π]

34 32 4. Kompleks kurveintegral Skitse Udprikket er ej lukket. Cirkelring er indhegning. er en indhegning. Hovedsætning 4.3 (Greens sætning). Lad f vœre reel-kontinuert differentiabel i et område D. For enhver indhegning K med rand,..., m i D er f(z)dz + + f(z)dz = (i f m K x f y )da Bevis. I en omegn af z er f(z + dz) f(z) + f f (z)dx + x y (z)dy For randen af et infinitisimalt rektangel K er f(z)dz f(z)dx + f(z + dx)idy f(z)idy f(z + idy)dx f(z)dx + (f(z) + f f x (z)dx)idy f(z)idy (f(z) + y (z)dy)dx K (i f x f y )da Et generelt K overdækkes med et fintmasket kvadratnet og så følger påstanden ved videreindeling (svært). Eksempel 4.4. Lad K være en indhegning med rand,..., m. Arealet af K er da A(K) = z dz + + z dz 2i 2i m Øvelse 4.5. En lukket irkelring r z R med rand r : t re it, R : t Re it, t [,2π] har areal A = z dz + z dz 2i r 2i R = 2i 2π re it ( i)re it dt + 2i 2π Re it ire it dt

35 4. Kompleks kurveintegral 33 Skitse Greens situation. = π(r 2 r 2 ) Definition 4.6. Lad være en lukket kurve. For a / er indeks (omløbstal) I(,a) = 2πi z a dz Som det fremgår af beviset nedenfor angiver omløbstallet, hvormange gange man ved at følge kurven kommer helt omkring punktet a regnet med fortegn. Sætning 4.7. Indeks opfylder () I(,a) er et helt tal. (2) I(,a) varierer kontinuert med a. Bevis. Antag a =. () Ved inddeling af kurven vises, at parameterfremstillingen kan skrives på polær form Hvoraf I(,) = 2πi z(t) = r(t)e θ(t)i, t [α,β] β α ( r (t) r(t) + θ(β) θ(α) θ (t)i)dt = 2π er et helt tal, da kurven er lukket. (2) For b i en irkelskive z R som ikke møder forløber kurven med parameterfremstilling z(t) b z(t) helt i irkelskiven z <. Så ved valg af θ som ovenfor fås I(,) =. Det følger I(,b) = I(,) + I(,) = I(,)

36 34 4. Kompleks kurveintegral + +2 Alternativt () opfylder så og dermed g(β) = 2pπi. (2) Skitse Omløbstal per øjemål. g(u) = u α z (t) z(t) dt d du e g(u) z(u) = e g(α) z(α) = e g(β) z(β) I(,b) I(,) max z z b z L() Eksempel 4.8. Lad være randen af irklen z b = R med positiv omløbsretning { a b < R I(,a) = a b > R Thi ved kontinuitet er I(,a) = I(,b) for a b < R og I(,a) = for a. Opgaver Opgave 4.. Beregn længden af kurven L() = β α z (t) dt

37 4. Kompleks kurveintegral 35 hvor z(t) er parameterfremstilling for () Linjestykket fra + i til 2 i. (2) Enheds halvirklen i øvre halvplan. (3) Linjestykket fra til i fortsat med irkelbuen fra i til med radius og entrum i. Opgave 4.2. Beregn integralerne Rez dz, z dz, z 2 dz hvor er kurven () Linjestykket fra til. (2) Enheds halvirklen i øvre halvplan. (3) Linjestykket fra til i fortsat med linjestykket fra i til. Opgave 4.3. Lad R være halvirklen i øvre halvplan. Gør rede for, at R z 2 dz, R og R z 2 eiz dz, R Opgave 4.4. Beregn indeks I(, ) hvor er den lukkede kurve (med positivt omløb) () Cirklen z =. (2) Kvadrat med hjørner + i, + i. i, i. (3) Ellipsen z(t) = aos t + isin t, t [,2π]. Opgave 4.5. Beregn integralerne z i dz, z + i dz, hvor er den lukkede kurve (med positivt omløb) () Cirklen z i =. (2) Cirklen z + i =. (3) Cirklen z = 2. z 2 + dz Opgave 4.6. Hvis en simpel lukket kurve kan sammentrækkes til et punkt i området D, dvs. z : [α,β] [,] D z(α,u) = z(β,u) = z(t,) for alle t,u z(t,) fremstiller

38 36 4. Kompleks kurveintegral så er randen af en indhegning i D. z(t, ) z(t, u) z(t, ) Skitse Sammentrækning af kurve. Opgave 4.7. Hvis en kontinuert funktion f : D C {} har I(f(),) = for enhver lukket kurve i D. Så findes en kontinuert funktion g : D C som giver f = e g Opgave 4.8. Lad z (t),z 2 (t) give lukkede kurver, 2. () Lad være kurven givet ved produktet z (t)z 2 (t), så er I(,) = I( ) + I( 2 ) (2) Hvis z (t) z 2 (t) z (t) for alle t, så er I( ) = I( 2 ) Opgave 4.9. Brouwers fixpunktssœtning. Lad f være kontinuert på irkelskiven z. () Hvis f(z) for z, så er I(f( z = r),) =, r [,] (2) Hvis f(z) for z, så har f et fixpunkt z f(z ) = z

39 5. Cauhys integralsætninger Cauhys integralsætninger Cauhys integralsætninger og -formler fås fra Greens sætning. En række populære resultater udledes, algebraens fundamentalsætning, Liouvilles sætning og maksimumsprinippet. Eksempel 5.. En funktion F er (reel)-stamfunktion til f når differentialerne df = fdz Da df = F F dx + dy, fdz = fdx + ifdy x y opfylder F Cauhy-Riemanns ligninger F x = f, F y = if og er derfor (holomorf)-stamfunktion til f. Polynomier og eksponentialfunktionen har stamfunktioner i ethvert område. Eksempel 5.2. Lad f være en kontinuert funktion på en kurve. Funktionen f(w) F(z) = w z dw er holomorf i C fraregnet. Den afledede er F f(w) (z) = (w z) 2 dw w w z z + h z Skitse Konstruktion af holomorf funktion. F(z + h) F(z) = f(w)( w z h w z )dw h f(w) (w z) 2 dw Sætning 5.3. Lad f vœre kontinuert i et område D. Følgende er œkvivalent () f har en stamfunktion i D.

40 38 5. Cauhys integralsætninger (2) Ethvert lukket kurveintegral f(z)dz = (3) Ethvert kurveintegral f(z)dz afhœnger kun af kurvens endepunkter. Hvis F er en stamfunktion til f og begynder i a og slutter i b, så er f(z)dz = F(b) F(a) Bevis. Hvis F er en stamfunktion, så er d dt F(z) = f(z(t))z (t) Omvendt hvis kurveintegralet kun afhænger af endepunkter, så er F(z) = f(w)dw hvor er en kurve fra et fast punkt til z, en stamfunktion til f, idet F(z + h F(z) = f(w)dw f(z), h h h [z,z+h] Øvelse 5.4. For kurven z(t) = e sin(t t2 i), t beregnes dz. z 2 Da ( z ) = z fås 2 z 2dz = [ z ]esin( i) e = e sin( i) Hovedsætning 5.5 (Cauhys integralsætning). Lad f vœre holomorf i et område D. For enhver indhegning K med rand,..., m i D er f(z)dz + + f(z)dz = m Bevis. Greens sætning giver at venstre siden er (i f x f y )da = fra Cauhys ligninger. K

41 5. Cauhys integralsætninger Skitse Cauhys sætning for en indhegning. Sætning 5.6. En holomorf funktion f i et stjerneområde D har en stamfunktion i D. En holomorf funktion har lokalt en stamfunktion. [a,z] z a Skitse Stjerneområde. Bevis. Trekanter er indhegninger, så fra et udsigtspunkt a er F(z) = f(w)dw en stamfunktion. [a,z] Eksempel 5.7. For enhver indhegning K med rand,..., m er { z a dz + + 2πi, for a indenfor K m z a dz =, for a ikke i K For a indenfor indhegningen er integralets værdi dz = 2πi z a z a =r for en tilpas lille irkel om a. For a ikke i K er integranten holomorf om K. Øvelse 5.8. z har ikke en stamfunktion i C {}. Men log z er stamfunktion i C fraregnet en halvlinje ud fra.

42 4 5. Cauhys integralsætninger a z a = r Skitse En irkel om a tilføjet. Øvelse 5.9. z har en stamfunktion i C fraregnet den negative reelle halvakse. Hovedsætning 5. (Cauhys integralformler). Lad f vœre holomorf i et område D og lad K med rand,..., m vœre en indhegning i D. For alle z indenfor indhegningen er og f(z) = j f (n) (z) = j 2πi j n! 2πi j f(w) w z dw f(w) dw (w z) n+ z w z = r Skitse 5... Afledede i z bestemt i en irkel om z. Bevis. Anvend Cauhys sætning, j =. f(w) f(z) w z

43 5. Cauhys integralsætninger 4 er holomorf, så f(w) f(z) dw = w z Hvoraf f(w) dw = f(z) w z w z dw som med eksempel 5.7 giver den første formel. Dernæst differentier under integraltegnet. Øvelse 5.. For z < er og e z = 2πi w = e w w z dw e z = n! e w dw 2πi w = (w z) n+ Sætning 5.2 (Cauhys uligheder). Lad f vœre holomorf i et åbent område som indeholder irkelskiven z a r. Da vurderes de afledede f (n) (a) n! r n max f(z) z a =r r z a n! r n f(z) Skitse Maksimer langs irkel. Bevis. Integralformlerne. Sætning 5.3 (Liouvilles sætning). En holomorf og begrœnset funktion i hele C er konstant. Bevis. Antag f(z) M. Ved Cauhys uligheder er f (z) M R, R

44 42 5. Cauhys integralsætninger Øvelse 5.4. Samme bevis som ovenfor giver, at en holomorf funktion f i C som opfylder f(z) z n for z stor er et polynomium af grad højst n. Sætning 5.5 (Algebraens fundamentalsætning). Et ikke konstant polynomium p(z) = z n + a z n + + a n har en rod i C. Bevis. Anvend Liouvilles sætning på funktionen p(z) Eksempel 5.6. Et n-te grads polynomium faktoriserer i. grads led z n + a z n + + a n = (z ) (z n ) En ægte brøk rational funktion har en partialbrøkfremstilling i a i (z b i ) n i Et reelt polynomium faktoriserer i reelle. og 2. grads led. En reel ægte brøk rational funktion har en partialbrøkfremstilling a i (x b i ) n + a j x + b j i (x 2 + j j x + d j ) n j i Sætning 5.7 (Åben afbildning). Hvis f er holomorf og ikke konstant i et område D, så er billedmœngden f(d) et område, dvs. åben og sammenhœngende. f(d) w f(a) r Skitse En lille irkelskive om billedpunktet er i billedet.

45 5. Cauhys integralsætninger 43 Bevis. Åben: Antag f() =, ǫ > og f(z) for < z ǫ. Lad w < 2 min z =ǫ f(z) og modsætningsvist f(z) w for z ǫ. Ved Cauhys uligheder fås modstrid w < min z =ǫ f(z) w Eksempel 5.8. Hvis f er holomorf og injektiv i et område D, så er f (z) for alle z D. Den inverse funktion er holomorf på området f(d) med den afledede (f ) = f f Sætning 5.9 (Maksimumsprinippet). Hvis f(a) er et lokalt maksimum for en holomorf funktion f i et område, så er f konstant. Bevis. Åben afbildning sætning. Opgaver Opgave 5.. Beregn Opgave 5.2. Beregn z = z =3 z =3 z 5 2 dz e z z 5 dz e z z dz Opgave 5.3. Beregn e 3z sin iz dz for enhver kurve, der starter i og slutter i 2 πi. Opgave 5.4. Beregn z = sin z z 3 dz Opgave 5.5. Hovedbestemmelsen af logaritmefunktionen er givet ved Log w = f(z)dz [,w] for w i C fraregnet den negative reelle halvakse.

46 44 5. Cauhys integralsætninger Opgave 5.6. Vis, at z(z ) dz = for en simpel lukket kurve som ikke møder linjestykket [,]. Opgave 5.7. Der er ingen bijektiv afbildning af den åbne enhedsirkelskive på den komplekse plan, hvor afbildning og den inverse afbildning begge er holomorfe. Opgave 5.8. Hvis f,g er holomorfe i D og f + g antager et maksimum i D, så er f,g konstante. Opgave 5.9. Hvis f er holomorf i D og så er f =. f = f samt der findes a D,f(a) = f (a) = Opgave 5.. En uforkortelig ægte brøk rational funktion med simple rødder b,...,b n i nævneren har en partialbrøkfremstilling Find fremstillingen af p(z) q(z) = i p(b i ) q (b i ) (z b i) z 3 z 4 6 Opgave 5.. Lad f er holomorf i D som indeholder enhedsirkelskiven. For z D er { f(w) 2πi w = w z dw = f() for z < f() f( z ) for z >

47 6. Potensrækker Potensrækker Konvergensteorien for komplekse potensrækker er analog til det reelle tilfælde. De elementære funktioner udvikles i Taylorrækker. Fra Cauhys integralsætninger følger, at enhver holomorf funktion om ethvert punkt i sit definitionsområde kan udvikles i sin Taylorrække med positiv konvergensradius. Det ses, at den afledede af en holomorf funktion igen er holomorf. Definition 6.. En potensrække om a an (z a) n har konvergensradius R R = lim sup n a n som adskiller konvergens og divergens { an (z a) n z a < R, konvergent z a > R, divergent Hvis < R kaldes sumfunktionen analytisk. konvergent a R divergent Skitse 6... Konvergensradius. Øvelse 6.2 (Kvotientkriteriet). Hvis så er konvergensradius R. lim n a n a n+ = R Øvelse 6.3. For a n z n og b n z n er produktrækken n z n, hvor n = a b n + a b n + + a n b Produktrækkens sumfunktion er produktet af faktorernes sumfunktioner.

48 46 6. Potensrækker Sætning 6.4. Hvis < R er sumfunktionen holomorf i konvergensirkelskiven og har afledet og stamfunktion givet ved f(z) = a n (z a) n f (z) = a n n(z a) n f(z)dz = n + a n(z a) n+ Hovedsætning 6.5 (Taylorrækken). En funktion f som er holomorf i en omegn af a har en Taylorrœkke fremstilling f(z) = a n (z a) n n= a n = n! f(n) (a) a n = f(w) 2πi w a =r (w a) n+dw for en tilpas lille irkel med entrum a. Hvis området D er maksimalt, så er konvergens radius R er givet ved radius af den største åbne irkelskive indeholdt i D. For komplekse funktioner er holomorf og analytisk œkvivalente betingelser. konvergent R a divergent område D Skitse Konvergensradius er størst mulig. Bevis. Identiteten w z = (z a) n (w a) n+ n=

49 6. Potensrækker 47 sammen med Cauhys integralformler for en lille irkel w a = r giver potensrækkefremstillingen f(z) = 2πi n= w a =r f(w) (w a) n+dw (z a)n Eksempel 6.6. De elementære funktioner har Taylorrækker givet ved de kendte formler e z = Log( + z) = os z = sin z = osh z = sinh z = artan z = arsin z = n= n! zn ( ) n n zn n= ( ) n (2n)! z2n n= ( ) n (2n + )! z2n+ n= (2n)! z2n n= (2n + )! z2n+ n= ( ) n (2n + ) z2n+ n= ( ) n ( ) 2 z 2n+ (2n + ) n n= Øvelse 6.7. Funktionen +z Funktionen ez +z har Taylorrække har Taylorrække + z = ( ) n z n n= e z + z = n! zn n= ( ) n z n n=

50 48 6. Potensrækker Eksempel 6.8 (Binomialrækken). For z < er ( ) α ( + z) α = z n n Hvis α ikke er et positivt helt tal, så er konvergensradius netop. Binomialkoeffiienterne er givet ved ( ) ( ) α α α(α ) (α n + ) =, = n n! og opfylder samt Pasals trekant (α ) n= ( ) α = α n ( ) α n + n + n n ( ) α + = n + ( ) α + n + Potensen kommer fra hovedbestemmelsen af logaritmen ( + z) α = e α Log(+z) Fra kvotientkriteriet følger konvergensen og en udregning med binomialkoeffiienter viser ( ) α ( ) α ( + z) z n = z n n n og n= ( + z) d dz n= ( ) α z n = α n n= n= ( ) α z n n Da potensfunktionen ( + z) α opfylder samme regneregler følger identiteten af de to udtryk. I koordinater fås det imponerende udtryk (Abel) ( ) u + vi (x + yi) n = ( + x + yi) u+vi n n= = ( + x) 2 + y 2 u y v Artan e +x ( os(u Artan +i sin(u Artan y + x + v Log ( + x) 2 + y 2 ) y + x + v Log ( + x) 2 + y 2 ) Eksempel 6.9. Den afledede af en holomorf funktion er holomorf. En holomorf funktion har afledede af enhver orden, som igen er holomorfe. )

51 6. Potensrækker 49 Eksempel 6.. Moreras betingelse. En kontinuert funktion f : D C så f(z)dz = for alle lukkede kurver i D, er holomorf. En kontinuert funktion som er holomorf i D {a} er holomorf i hele D. z a = δ a Skitse 6... En lille omvej rundt a. Eksempel 6.. Hvis f er holomorf i D {a} og f(z) for z a så er f holomorf i en åben omegn af a. Øvelse 6.2. Funktionen ez z er holomorf i hele C. Sætning 6.3 (Identitetsprinippet). Hvis f er holomorf i et område D og nulpunkterne for f har et fortœtningspunkt i D, så er f = i D. nulpunkter Skitse Et fortætningspunkt. Bevis. Hvis alle afledede f (n) (a) = er f fremstillet ved -rækken i en omegn af a og det følger at f er konstant. I modsat fald nær a f(z) = (z a) k g(z), g(a) og a ej et fortætningspunkt for f s nulpunkter. Eksempel 6.4. Hvis f, g er holomorfe i et område D og stemmer overens på et ikke-degenereret kurvestykke, så er f = g i hele D. En reel funktion på et interval har højst en udvidelse til en holomorf funktion i et område indeholdende intervallet.

52 5 6. Potensrækker Sætning 6.5 (Maksimumsprinippet). Hvis f(a) er et lokalt maksimum for en holomorf funktion f i et område, så er f konstant. Bevis. Antag a = og f(z) = n= a nz n for z nær. For små r følger det, at 2π f(re it ) 2 dt = a n 2 r 2n 2π og dermed n= a n 2 r 2n = n= Eksempel 6.6 (Shwarz s lemma). Hvis f er holomorf for z <, f(z) og f() =, så er f(z) z og f () med = netop når f(z) = az, a =. Dette følger af maksimumsprinippet for f(z) z. Opgaver Opgave 6.. Vis, at for et reelt tal < r < r n r os θ os nθ = 2r os θ + r 2 n= r n sin nθ = n= r sin θ 2r os θ + r 2 Opgave 6.2. Bestem Taylorrækken for z om a =. Opgave 6.3. Bestem Taylorrækken for sinz z om a =. Opgave 6.4. Bestem ved brug af binomialrækken Taylorrækken for + z om a =. Opgave 6.5. Bestem konvergensradius for Taylorrækken om a = for Opgave 6.6. Vis ved potensrækker (z 2 + 4)(z 2 + 9) os iz isin iz = e z

53 6. Potensrækker 5 Opgave 6.7. En holomorf funktion f med f (a) er injektiv i en omegn af a. Opgave 6.8. Hvis f er holomorf i hele C og så er f et polynomium. f(z) for z Opgave 6.9. Hvis Im f eller Re f har et lokalt maksimum eller minimum for en holomorf funktion f i et område, så er f konstant. (Betragt e f(z) ). Opgave 6.. Hvis f,g er holomorfe i et område D og fg = i D, så er f = eller g =. Opgave 6.. Hvis f er holomorf i hele C og bevarer akser f(r) R, f(ri) Ri så er f ulige f(z) = f( z), for alle z Im f(z) Re f( z) Skitse Fastlægger funktionen fra en delmængde. Opgave 6.2. Vis opskrivningen ( + z) α = + z Re α Im z Im αartan e +Re z ( os(re α Artan +isin(re α Artan Im z + Imα Log + z ) + Rez Im z + Imα Log + z ) + Rez )

54 52 7. Poler 7. Poler Taylorrækken udvides til Laurentrækken. Residuer i poler beregnes i simple tilfælde. I de næste afsnit vises, at dette er nok til bestemmelse af en lang række vigtige integraler. Definition 7.. For en funktion f(z) holomorf i en udprikket irkelskive < z a < r kaldes a et isoleret singulœrt punkt. Der underdeles i 3 tilfælde () hœveligt singulœrt punkt (holomorf). Hvis der findes en holomorf funktion g i en omegn af a så f(z) = g(z)(z a) k, g(a) Hvis k > er a et nulpunkt af orden (multipliitet) k, hvis k = kaldes nulpunktet simpel. (2) pol af orden (multipliitet) k. Hvis der findes en holomorf funktion g i en omegn af a så g(z) = f(z)(z a) k, g(a) Hvis k > er har f en pol af orden k i a, hvis k = kaldes polen simpel. (3) vœsentligt singulœrt punkt. Ikke af ovenstående type. En funktion f er meromorf i et område D, hvis f i ethvert punkt i D enten er holomorf eller har en pol. Hovedsætning 7.2 (Laurentrækken). En funktion f med en isoleret singularitet i a har en Laurentrœkke fremstilling f(z) = a n (z a) n n= konvergent i en udprikket irkelskive om a. a n = f(w) 2πi (w a) n+dw w a =r for en tilpas lille irkel med entrum a. Bevis. Identiteten w z = (z a) n (w a) n+ n= sammen med Cauhys integralformler for en lille irkelring r < z a < r 2 giver fremstillingen f(z) = f(w) 2πi w a =r 2 w z dw f(w) 2πi w a =r w z dw

55 f(z) = 2πi n= 7. Poler 53 w a =r f(w) (w a) n+dw (z a)n w a = r 2 w a = r a z Skitse Cauhys sætning for irkelring. Eksempel 7.3. En funktion f med en isoleret singularitet i a er holomorf i a, hvis f er begrænset i en lille udprikket omegn af a. (Benyt Cauhys ulighed på a n, n < ). Eksempel 7.4. En funktion f med en isoleret singularitet i a har en pol i a, hvis og kun hvis f(z) for z a Eksempel 7.5 (Weierstrass). En funktion f med en isoleret singularitet i a har en væsentlig singularitet i a, hvis og kun hvis ethvert punkt w i C er grænsepunkt for en følge f(z n ) w for z n a. Øvelse 7.6. Funktionen e z har en væsentlig singularitet for z =. Eksempel 7.7. En funktion f som er holomorf i a har et nulpunkt af orden k netop når f(a) = = f (k ) (a) =, f (k) (a) Hvis f(z) = g(z) h(z) hvor g resp. h har et nulpunkt i a af orden m resp. n, så har f et nulpunkt i a af orden m n når m > n og en pol i a af orden n m når m < n i a. Hvis g,h er holomorfe i området D, så er f meromorf i D.

56 54 7. Poler Definition 7.8. For en funktion f(z) med et isoleret singulært punkt i a er residuet kurveintegralet R(f,a) = f(z)dz 2πi z a =r integreret langs en tilpas lille irkel med entrum i a, z(t) = a + re it,t [,2π]. a r Skitse Residuet i en pol. Øvelse 7.9. Residuet er veldefineret. Sætning 7.. En funktion f med en pol af orden k i a kan skrives f(z) = a n (z a) n n k I så fald er residuet R(f,a) = a Bevis. f(z) a z a har en stamfunktion i en lille udprikket irkelskive om a. Øvelse 7.. Ved brug af Taylorrækker ses, at funktionen os z z 2 har en hævelig singularitet i z = og funktionen sin 2 z z 3 har en simpel pol for z = med residue R =. Eksempel 7.2. Hvis f har en pol af orden k i a, så er g(z) = f(z)(z a) k

57 holomorf i en omegn af a og Øvelse 7.3. Funktionen R(f,a) = f(z) = 7. Poler 55 (k )! g(k ) (a) ( + z 2 ) 2 har poler af orden 2 for z = ±i. Residuet i z = i beregnes g(z) = f(z)(z i) 2 = (z + i) 2 g (z) = 2(z + i) 3 R(f,i) = (2 )! g(2 ) (i) = g (i) Beregn residuet for z = i. R(f,i) = 4i = i 4 Im i i Re Skitse Polerne. Eksempel 7.4. Hvis f har en simpel pol i a, så er holomorf i en omegn af a og g(z) = f(z)(z a) R(f,a) = g(a) = lim z a f(z)(z a) Øvelse 7.5. Funktionen f(z) = sin z har poler af orden for z = pπ, p et helt tal. Residuerne 3π 2π π π 2π 3π Re Skitse Poler i fold af π. g(z) = f(z)(z pπ) = z pπ sinz sinpπ

58 56 7. Poler Eksempel 7.6. Hvis R(f,pπ) = os pπ = ( )p f(z) = g(z) h(z) hvor g(a) og h har et simpelt nulpunkt i a, så har f en simpel pol i a og R(f,a) = g(a) h (a) Hvis g har nulpunkt af orden p og h har nulpunkt af orden p + i a så har f en simpel pol i a og R(f,a) = (p + ) g(p) (a) h (p+) (a) Øvelse 7.7. Funktionen f(z) = z n har poler af orden for z = e 2pπi n, p =,...,n. Residuerne beregnes h(z) = z n, h (z) = nz n R(f,e 2pπi n ) = ne 2pπ(n )i n = n e2pπi n Im e 2πi n Re Skitse Polernes plaering. Eksempel 7.8. Antag f(z) = g(z) h(z)

59 7. Poler 57 hvor g har nulpunkt af orden p og h har nulpunkt af orden q i a. Hvis p q så har f nulpunkt af orden p q i a. Hvis p < q så har f en pol af orden k = q p i a. Lad f(z) = a n (z a) n, g(z) = b n (z a) n, h(z) = n (z a) n n n n I pol tilfældet er q... b p R(f,a) = q+ q... b p+ k. q q+k 2 q+k 3... q b p+k 2 q+k q+k 2... q+ b p+k Dette følger af identiteten, a =, (a k + a k+ z + + a z k +...)( q + q+ z +...) = b p + b p+ z +... udtrykt ved matrixmultiplikation og Cramers formler. Øvelse 7.9. Taylorudvikling giver funktionen os z = z2 2! + z4 4! + sin 3 z = ( z! z3 3! + )3 = z 3 z5 2 + f(z) = os z sin 3 z en pol af orden 3 i z =. Residuet beregnes R(f,) = Opgaver = Opgave 7.. Bestem arten af de singulære punkter for funktionerne (). (z 2 ) 2 (2) ez. z 2 (3) sin z. (4) tan z. Opgave 7.2. Find poler og residuer af funktionerne z () z+2. (2) +. z 2 z 3 (3) z 3.

60 58 7. Poler (4) z (5) e z. (6) sinz. z 2 z 3 +a 3. Opgave 7.3. Bestem poler og residuer af funktion z n + Opgave 7.4. Bestem poler og residuer af funktion Gør rede for, at ot z er holomorf i. ot z z Opgave 7.5. Hvis f har isoleret singularitet i a, så har f isoleret singularitet i a og R(f,a) = Opgave 7.6. Vis formlen for residuet af sammensat funktion g f R((g f)f,) = R(g,f()) Opgave 7.7. Hvis f(z) og f( z ) er meromorfe i C, så er f(z) rational, f(z) = P(z) Q(z) for polynomier P(z),Q(z). Opgave 7.8. Antag f(z) er meromorf i C med endelig mange poler. For R stor er f(z)dz = z 2f( z )dz Altså z =R R( z 2f( z ),) = z = R z =R f(z)dz Opgave 7.9. Beregn residuet af i z =. f(z) = ez sin 3 z

61 8. Residuesætningen Residuesætningen Der gives en meget praktisk fortolkning af Cauhys sætninger. Som en anvendelse tælles nulpunkter og poler for en meromorf funktion. Mange flere anvendelser i næste afsnit. Hovedsætning 8. (Residuesætningen). Lad f vœre meromorf i et område D og lad K vœre en indhegning i D med rand,..., m, der ikke går gennem polerne for f. Da er n f(z)dz = 2πi R(f,a k ) j j k= hvor a,...,a n er de endelig mange poler indenfor indhegningen. a a 2 z a 2 = r z a = r z a 3 = r a 3 Skitse 8... Indhegningen uden om polerne. Bevis. Af tegningen fremgår n f(z)dz = k= z a k =r n f(z)dz = 2πi R(f,a k ) k= hvor z a k = r er en tilpas lille irkel med entrum i a k. Sætning 8.2 (argumentprinippet). Lad f vœre meromorf i et område D og lad K vœre en indhegning i D, hvis rand,..., m ikke går gennem poler og nulpunkter for f. Da er j f (z) j f(z) dz = 2πi(N P) hvor N henhv. P er antallet talt med orden af nulpunkter henhv. poler indenfor indhegningen. Bevis. Residuesætningen.

62 6 8. Residuesætningen + nulpunkt pol 2 pol Skitse Nulpunkter og poler med fortegn og multipliiteter. Eksempel 8.3. Lad f,g være holomorfe i et område D og lad K være en indhegning i D, hvis rand,..., m ikke går gennem poler og nulpunkter. Da er f (z) j j f(z) g(z)dz = n i g(a i ) i hvor a i er nulpunkt med multipliitet n i for f indenfor indhegningen. Eksempel 8.4 (Rouhés sætning). Lad f, g være holomorfe i et område D og lad K være en indhegning i D med rand og antag f(z) g(z) < g(z), z Da har f og g samme antal nulpunkter indenfor indhegningen. Dette fås af argumentprinippet for funktionen f(z) g(z). f(z) f(z) g(z) g(z) Skitse Mand-kortsnor-hund samme antal gange om lygtepæl. Øvelse 8.5. Betragt polynomiet p(z) = z n + a z n + + a n

63 8. Residuesætningen 6 Inden for irklen med entrum i og radius R > + a + + a n har p(z) netop n rødder. Sætning 8.6 (Åben afbildning). Hvis f er holomorf og ikke konstant i et område D, så er billedmœngden f(d) et område, dvs. åben og sammenhœngende. Bevis. Åben: Antag f() =, ǫ > og f(z),f (z) for < z ǫ. Lad w < min z =ǫ f(z). Ved argumentprinippet og Rouhés sætning fås = f (z) 2πi f(z) dz = 2πi z dz = 2πi z =ǫ derfor findes z så f(z) = w. f( z =ǫ) z w dz = 2πi Opgaver f( z =ǫ) z =ǫ f (z) f(z) w dz Opgave 8.. Antag f(z) og f( z ) er meromorfe i C. Så er R( z 2f( z ),) = j R(f(z),a j ) hvor a,...,a n er polerne for f(z). Opgave 8.2. Hvis f er holomorf og injektiv i hele C, så er f et. grads polynomium. (hjælp: () z f( z ) har en pol i z =. (2) f er et polynomium.) Opgave 8.3. Hvis f er holomorf med f (a) findes ǫ > så f er injektiv for z a ǫ. Den inverse funktion er givet ved f (w) = zf (z) 2πi f(z) w dz med afledt z a =ǫ (f ) (w) = 2πi z a =ǫ f(z) w dz Opgave 8.4. Hvis f har en pol i a, så har f en pol i a med R(f,a) = Opgave 8.5. Antag f holomorf med et nulpunkt af orden n i a. Ligningen f(x) = b har netop n løsninger tæt ved a for b tæt ved.

64 62 8. Residuesætningen Opgave 8.6. Lad f,g være meromorfe i et område D og antag f(z) + g(z) < f(z) + g(z) på randen af indhegning K i D, der ikke går gennem poler og nulpunkter. Da er N f P f = N g P g hvor N henhv. P er antallet talt med orden af nulpunkter henhv. poler indenfor indhegningen. Opgave 8.7. Lad a > e og vis at f(z) = e z + az n har netop n forskellige nulpunkter i irkelskiven z <. Opgave 8.8. Lad a ], [ og vis, at f(z) = a z e z har netop nulpunkt i øvre halvplan Imz, og at dette er reelt. Opgave 8.9. Lad R være randen af rektanglet med hjørner Ri,π Ri,π + Ri,Ri gennemløbet i positiv retning. Givet R > og k et positivt helt tal. () 2πiR(tan k (z), π 2 ) = R tan k (z)dz (2) tan k (z)dz + tan k (z)dz = [π Ri,π+Ri] [Ri, Ri] (3) lim tan k (z)dz = π( i) k R [ Ri,π Ri] (4) lim tan k (z)dz = πi k R [π+ri,ri] (5) R(tan k (z), π 2 ) = ik+ + ( i) k+ (6) R(tan 2k (z), π 2 ) =,R(tan2k (z), π 2 ) = ( )k 2

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet

Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N

Læs mere

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning

Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion

Læs mere

Kompleks Funktionsteori

Kompleks Funktionsteori Kompleks Funktionsteori Formelræs Holomorfe funktioner Sætning. (Caucy-Riemans ligninger). Funktionen f : G C, f = u+iv er holomorf i z 0 = x 0 + iy 0 hvis og kun hvis i punktet (x 0, y 0 ). du dx = dv

Læs mere

Epistel E2 Partiel differentiation

Epistel E2 Partiel differentiation Epistel E2 Partiel differentiation Benny Lautrup 19 februar 24 Funktioner af flere variable kan differentieres efter hver enkelt, med de øvrige variable fasthol Definitionen er f(x, y) x f(x, y) f(x +

Læs mere

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.

(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene. MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)

Læs mere

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z

z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,

Læs mere

DesignMat Uge 1 Repetition af forårets stof

DesignMat Uge 1 Repetition af forårets stof DesignMat Uge 1 Repetition af forårets stof Preben Alsholm Efterår 008 01 Lineært ligningssystem Lineært ligningssystem Et lineært ligningssystem: a 11 x 1 + a 1 x + + a 1n x n = b 1 a 1 x 1 + a x + +

Læs mere

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Komplekse tal og polynomier

Komplekse tal og polynomier Komplekse tal og polynomier John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal, polynomier og legemsudvidelser. Noterne er beregnet til at blive brugt sammen med

Læs mere

SUPPLERENDE OPGAVER TIL KOMPLEKS FUNKTIONSTEORI F2005

SUPPLERENDE OPGAVER TIL KOMPLEKS FUNKTIONSTEORI F2005 SUPPLERENDE OPGAVER TIL KOMPLEKS FUNKTIONSTEORI F2005 0. maj, 2005 version nr. 8 JØRGEN VESTERSTRØM Indledende bemærkninger De foreliggende opgaver udgør et supplement til lærebogens opgaver. Afsnitsnummereringerne

Læs mere

Komplekse tal. x 2 = 1 (2) eller

Komplekse tal. x 2 = 1 (2) eller Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse

Læs mere

MATEMATIK 3 EN,MP 17. september 2014 Oversigt nr. 1

MATEMATIK 3 EN,MP 17. september 2014 Oversigt nr. 1 MATEMATIK 3 EN,MP 7. september 204 Oversigt nr. Her bringes en samling af de gamle eksamensopgaver: (jan. 204) Betragt begyndelsesværdiproblemet y (t) + 7y (t) + 2y(t) = e t sin(2t) for t > 0, y(0) = 2,

Læs mere

DesignMat Den komplekse eksponentialfunktion og polynomier

DesignMat Den komplekse eksponentialfunktion og polynomier DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen

Læs mere

Mere om differentiabilitet

Mere om differentiabilitet Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget

Læs mere

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader

GEOMETRI-TØ, UGE 11. Opvarmningsopgave 2, [P] 6.1.1 (i,ii,iv). Udregn første fundamentalform af følgende flader GEOMETRI-TØ, UGE Hvis I falder over tryk- eller regne-fejl i nedenstående, må I meget gerne sende rettelser til fuglede@imf.au.dk. Opvarmningsopgave, [P] 5... Find parametriseringer af de kvadratiske flader

Læs mere

DesignMat Uge 1 Gensyn med forårets stof

DesignMat Uge 1 Gensyn med forårets stof DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P

Læs mere

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant.

1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant. Matematik F2 - sæt 2 af 7 blok 4 f(z)dz = 0 1 I denne uge vil vi studere Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en

Læs mere

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013

Komplekse tal. Mikkel Stouby Petersen 27. februar 2013 Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner. Komplekse tal Mike Auerbach Odense 2012 1 Vinkelmål og trigonometriske funktioner Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.

Læs mere

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen

Potensrækker. Morten Grud Rasmussen 1 10. november 2015. Definition 1 (Potensrække). En potensrække er en uendelig række på formen Potensrækker Morten Grud Rasmussen 1 10 november 2015 Definition og konvergens af potensrækker Definition 1 Potensrække) En potensrække er en uendelig række på formen a n pz aq n, 1) hvor afsnittene er

Læs mere

Komplekse tal. enote 29. 29.1 Indledning

Komplekse tal. enote 29. 29.1 Indledning enote 29 1 enote 29 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R forudsætter enoten almindeligt kendskab til de reelle tal,

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen

Læs mere

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015

Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015 Komplekse tal Mike Auerbach Tornbjerg Gymnasium, Odense 2015 Indhold 1 Vinkelmål og trigonometriske funktioner 2 1.1 Radianer................................................ 2 1.2 Cosinus og sinus som

Læs mere

Mat 2KF Minilex. Henrik Dahl 2. januar Definitioner 2. 2 Sætninger 6. 3 Symboler Opskrifter og trix Gennemregnede eksempler 16

Mat 2KF Minilex. Henrik Dahl 2. januar Definitioner 2. 2 Sætninger 6. 3 Symboler Opskrifter og trix Gennemregnede eksempler 16 Mat 2KF Minilex Henrik Dahl 2. januar 2004 Resumé ADVARSEL - dette er et total underground-dokument!. Det er livsfarligt at bruge ukritisk. Der er næsten sikkert graverende fejl. Jeg påtager mig intet

Læs mere

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (30. september oktober 2002) side 1. Komplekse tal Arbejdsplan Matematik Semesteruge 5 6 (30. september -. oktober 2002) side Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med opgaveregning

Læs mere

10. Nogle diofantiske ligninger.

10. Nogle diofantiske ligninger. Diofantiske ligninger 10.1 10. Nogle diofantiske ligninger. (10.1). I dette kapitel betragtes nogle diofantiske ligninger, specielt nogle af de ligninger, der kan behandles via kvadratiske talringe. Ligningerne

Læs mere

Komplekse tal og rækker

Komplekse tal og rækker Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver

Læs mere

Komplekse tal. Preben Alsholm Juli 2006

Komplekse tal. Preben Alsholm Juli 2006 Komplekse tal Preben Alsholm Juli 006 Talmængder og regneregler for tal. Talmængder Indenfor matematikken optræder der forskellige klasser af tal: Naturlige tal. N er mængden af naturlige tal, ; ; 3; 4;

Læs mere

Polynomier af én variabel

Polynomier af én variabel enote 30 1 enote 30 Polynomier af én variabel I denne enote introduceres komplekse polynomier af én variabel. Der forudsættes elementært kendskab til komplekse tal, og kendskab til reelle polynomier af

Læs mere

De Komplekse Tal. Johan Martens og Jens-Jakob Kratmann Nissen 27/8-2011. God made the natural numbers; all else is the work of man.

De Komplekse Tal. Johan Martens og Jens-Jakob Kratmann Nissen 27/8-2011. God made the natural numbers; all else is the work of man. De Komplekse Tal Johan Martens og Jens-Jakob Kratmann Nissen 27/8-2011 1 Tal God made the natural numbers; all else is the work of man. Kronecker Det er ikke meningen, at vi skal dykke ned i teologien

Læs mere

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm.

Spor Matematiske eksperimenter. Komplekse tal af Michael Agermose Jensen og Uwe Timm. Homografier Möbius transformationer Følgende tema, handler om homografier, inspireret af professor Børge Jessens noter, udgivet på Københavns Universitet 965-66. Noterne er herefter blevet bearbejdet og

Læs mere

Opgaver til f(z) = 1 z 4 1, g(z) = 1

Opgaver til f(z) = 1 z 4 1, g(z) = 1 1.17 Opgaver til 1. 1 1.1. Vis, at f(z) = er vilkårligt ofte differentiabel i C \ {, 1}, og z(1 z) find et udtryk for f (n) (z) for alle n. (Vink. Skriv f(z) = 1 z + 1 1 z ). 1.2. Beskriv billedkurverne

Læs mere

Mat H /05 Note 2 10/11-04 Gerd Grubb

Mat H /05 Note 2 10/11-04 Gerd Grubb Mat H 1 2004/05 Note 2 10/11-04 Gerd Grubb Nødvendige og tilstrækkelige betingelser for ekstremum, konkave og konvekse funktioner. Fremstillingen i Kapitel 13.1 2 af Sydsæters bog [MA1] suppleres her med

Læs mere

Matematik F2 Opgavesæt 2

Matematik F2 Opgavesæt 2 Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.

Læs mere

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan

Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige)

Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige) Eksamen i Matematik F2 d. 9. juni 28 Korte svar (ikke fuldstændige Opgave Find realdelen, Re z, og imaginærdelen, Im z, for følgende værdier af z, a z = 2 i b z = i i c z = ln( + i Find realdelen, Re z,

Læs mere

Komplekse tal og algebraens fundamentalsætning.

Komplekse tal og algebraens fundamentalsætning. Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes

Læs mere

Repetition til eksamen. fra Thisted Gymnasium

Repetition til eksamen. fra Thisted Gymnasium Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes

Læs mere

Svar til eksamen i Matematik F2 d. 23. juni 2016

Svar til eksamen i Matematik F2 d. 23. juni 2016 Svar til eksamen i Matematik F d. 3. juni 06 FORBEHOLD FOR FEJL! Bemærk, i modsætning til herunder, så skal det i besvarelsen fremgå tydeligt, hvordan polerne ndes og hvordan de enkelte residuer udregnes.

Læs mere

DesignMat Komplekse tal

DesignMat Komplekse tal DesignMat Komplekse tal Preben Alsholm Uge 7 Forår 010 1 Talmængder 1.1 Talmængder Talmængder N er mængden af naturlige tal, 1,, 3, 4, 5,... Z er mængden af hele tal... 5, 4, 3,, 1, 0, 1,, 3, 4, 5,....

Læs mere

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at

Supplerende opgaver. S1.3.1 Lad A, B og C være delmængder af X. Vis at Supplerende opgaver Analyse Jørgen Vesterstrøm Forår 2004 S.3. Lad A, B og C være delmængder af X. Vis at (A B C) (A B C) (A B) C og find en nødvendig og tilstrækkelig betingelse for at der gælder lighedstegn

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2018 Rybners

Læs mere

MM501 forelæsningsslides

MM501 forelæsningsslides MM50 forelæsningsslides uge 36, 2009 Produceret af Hans J. Munkholm Nogle talmængder s. 3 N = {, 2, 3, } omtales som de naturlige tal eller de positive heltal. Z = {0, ±, ±2, ±3, } omtales som de hele

Læs mere

Besvarelse til eksamen i Matematik F2, 2012

Besvarelse til eksamen i Matematik F2, 2012 Besvarelse til eksamen i Matematik F2, 202 Partiel besvarelse - har ikke inkluderet alle detaljer! Med forbehold for tastefejl. Opgave Find og bestem typen af alle singulariteter for følgende funktioner:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2015 Københavns

Læs mere

Affine transformationer/afbildninger

Affine transformationer/afbildninger Affine transformationer. Jens-Søren Kjær Andersen, marts 2011 1 Affine transformationer/afbildninger Følgende afbildninger (+ sammensætninger af disse) af planen ind i sig selv kaldes affine: 1) parallelforskydning

Læs mere

Komplekse tal. enote Indledning

Komplekse tal. enote Indledning enote 1 1 enote 1 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R, forudsætter enoten almindeligt kendskab til de reelle tal,

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

Differentialligninger. Ib Michelsen

Differentialligninger. Ib Michelsen Differentialligninger Ib Michelsen Ikast 203 2 Indholdsfortegnelse Indholdsfortegnelse Indholdsfortegnelse...2 Ligninger og løsninger...3 Indledning...3 Lineære differentialligninger af første orden...3

Læs mere

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25

t a l e n t c a m p d k Matematik Intro Mads Friis, stud.scient 27. oktober 2014 Slide 1/25 Slide 1/25 Indhold 1 2 3 4 5 6 7 8 Slide 2/25 Om undervisningen Hvorfor er vi her? Hvad kommer der til at ske? 1) Teoretisk gennemgang ved tavlen. 2) Instruktion i eksempler. 3) Opgaveregning. 4) Opsamling.

Læs mere

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde.

Talteori. Teori og problemløsning. Indhold. Talteori - Teori og problemløsning, marts 2014, Kirsten Rosenkilde. Indhold 1 Delelighed, primtal og primfaktoropløsning Omskrivning vha. kvadratsætninger 4 3 Antal divisorer 6 4 Største fælles divisor og Euklids algoritme 7 5 Restklasser 9 6 Restklasseregning og kvadratiske

Læs mere

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.

Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2018 Rybners

Læs mere

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w

z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation

Læs mere

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016

Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016 Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner.

Lektion 1. Tal. Ligninger og uligheder. Funktioner. Trigonometriske funktioner. Grænseværdi for en funktion. Kontinuerte funktioner. Lektion Tal Ligninger og uligheder Funktioner Trigonometriske funktioner Grænseværdi for en funktion Kontinuerte funktioner Opgaver Tal Man tænker ofte på de reelle tal, R, som en tallinje (uden huller).

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2016til juni 2019 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid i

Læs mere

Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009

Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009 Formelsamling - MatF2 Therkel Zøllner og Amalie Christensen 27. juni 2009 1 Indhold 1 Kompleks variabel teori 3 1.1 Komplekse funktioner 825-830........................... 3 1.2 Powerserier af komplekse

Læs mere

Kortfattet svar til eksamen i Matematik F2 d. 21. juni 2017

Kortfattet svar til eksamen i Matematik F2 d. 21. juni 2017 Kortfattet svar til eksamen i Matematik F2 d. 2. juni 27 Opgave Bestem for følgende tilfælde om en funktion f(z) af z = x + iy er analytisk i dele af den komplekse plan, hvis den har real del u(x, y) og

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: maj-juni 2012 Uddannelsescenter

Læs mere

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C

Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene

Læs mere

Gamle eksamensopgaver (MASO)

Gamle eksamensopgaver (MASO) EO 1 Gamle eksamensopgaver (MASO) Opgave 1. (Vinteren 1990 91, opgave 1) a) Vis, at rækken er divergent. b) Vis, at rækken er konvergent. Opgave 2. (Vinteren 1990 91, opgave 2) Gør rede for at ligningssystemet

Læs mere

Indhold. Litteratur 11

Indhold. Litteratur 11 Indhold Forord ii 00-sættet 1 Opgave 1....................................... 1 Spørgsmål (a).................................. 1 Spørgsmål (b).................................. 1 Spørgsmål (c)..................................

Læs mere

π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af π

π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af π can never be expressed in numbers. William Jones og John Machins algoritme til beregning af. Oprindelsen til symbolet Første gang vi møder symbolet som betegnelse for forholdet mellem en cirkels omkreds

Læs mere

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber:

Algebra INTRO. I kapitlet arbejdes med følgende centrale matematiske begreber: INTRO Kapitlet sætter fokus på algebra, som er den del af matematikkens sprog, hvor vi anvender variable. Algebra indgår i flere af bogens kapitler, men hensigten med dette kapitel er, at eleverne udvikler

Læs mere

Polynomier af én variabel

Polynomier af én variabel enote 30 1 enote 30 Polynomier af én variabel I denne enote introduceres komplekse polynomier af én variabel. Der forudsættes elementært kendskab til komplekse tal og kendskab til reelle polynomier af

Læs mere

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET

EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv

Læs mere

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016

Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016 Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December/januar 14/15 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold stx Mat A Karin Hansen

Læs mere

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel

MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 3. fjerdedel MATEMATIK Eksamensopgaver Juni 995 Juni 200, 3. fjerdedel August 998 Opgave. Lad f : R \ {0} R betegne funktionen givet ved f(x) = ex x for x 0. (a) Find eventuelle lokale maksimums- og minimumspunkter

Læs mere

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas

UVB. Skoleår: 2013-2014. Claus Vestergaard og Franka Gallas UVB Skoleår: 2013-2014 Institution: Fag og niveau: Lærer(e): Hold: Teknisk Gymnasium Skive Matematik A Claus Vestergaard og Franka Gallas 3. A Titel 1: Rep af 1. og 2. år + Gocart Titel 2: Vektorer i rummet

Læs mere

Besvarelser til Calculus Ordinær Eksamen Juni 2019

Besvarelser til Calculus Ordinær Eksamen Juni 2019 Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe.

Vi indleder med at minde om at ( a) = a gælder i enhver gruppe. 0.1: Ringe 1. Definition: Ring En algebraisk struktur (R, +,, 0,, 1) kaldes en ring hvis (R, +,, 0) er en kommutativ gruppe og (R,, 1) er en monoide og hvis er såvel venstre som højredistributiv mht +.

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter Arealmomenter af. og. orden side Institut for Matematik, DTU: Gymnasieopgave Arealmomenter Teori: Se lærebøgerne i faget Statiske konstruktionsmodeller og EDB. Se også H&OL bind,., samt bind appendix.3,

Læs mere

Matematiske metoder - Opgaver

Matematiske metoder - Opgaver Matematiske metoder - Opgaver Anders Friis, Anne Ryelund 25. oktober 2014 Logik Opgave 1 Find selv på tre udtalelser (gerne sproglige). To af dem skal være udsagn, mens det tredje ikke må være et udsagn.

Læs mere

Oversigt [S] 8.7, 8.8, 8.9

Oversigt [S] 8.7, 8.8, 8.9 Oversigt [S] 8.7, 8.8, 8.9 Nøgleord og begreber Potensrækker og opgaver Binomialformlen Binomialkoefficienter Binomialrækken Taylor polynomier Vurdering af Taylor s restled Eksponentialrækken konvereger

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Vektorfelter langs kurver

Vektorfelter langs kurver enote 25 1 enote 25 Vektorfelter langs kurver I enote 24 dyrkes de indledende overvejelser om vektorfelter. I denne enote vil vi se på vektorfelternes værdier langs kurver og benytte metoder fra enote

Læs mere

Paradokser og Opgaver

Paradokser og Opgaver Paradokser og Opgaver Mogens Esrom Larsen (MEL) Vi modtager meget gerne læserbesvarelser af opgaverne, samt forslag til nye opgaver enten per mail (gamma@nbi.dk) eller per almindelig post (se adresse på

Læs mere

8 Regulære flader i R 3

8 Regulære flader i R 3 8 Regulære flader i R 3 Vi skal betragte særligt pæne delmængder S R 3 kaldet flader. I det følgende opfattes S som et topologisk rum i sportopologien, se Definition 5.9. En åben omegn U af p S er således

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Analyse 1. Mads Friis Anders Friis Anne Ryelund. 25. maj 2018

Analyse 1. Mads Friis Anders Friis Anne Ryelund. 25. maj 2018 Analyse 1 Mads Friis Anders Friis Anne Ryelund 25. maj 2018 Indhold Introduktion Aksiomer og den matematiske metode Formalistisk struktur Mængder Introduktion Definitioner Delmængder Fællesmængde og foreningsmængde

Læs mere

Maj 2013 (alle opgaver og alle spørgsmål)

Maj 2013 (alle opgaver og alle spørgsmål) Maj 2013 (alle opgaver og alle spørgsmål) Alternativ besvarelse (med brug af Maple til beregninger, incl. pakker til VektorAnalyse2 og Integrator8). Jeg gider ikke håndregne i de simple spørgsmål! Her

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

9.1 Egenværdier og egenvektorer

9.1 Egenværdier og egenvektorer SEKTION 9.1 EGENVÆRDIER OG EGENVEKTORER 9.1 Egenværdier og egenvektorer Definition 9.1.1 1. Lad V være et F-vektorrum; og lad T : V V være en lineær transformation. λ F er en egenværdi for T, hvis der

Læs mere

π er irrationel Frank Nasser 10. december 2011

π er irrationel Frank Nasser 10. december 2011 π er irrationel Frank Nasser 10. december 2011 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2015 til juni 2018 Institution VID gymnasier Uddannelse Fag og niveau Lærer(e) Hold Uddannelsestid

Læs mere

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015

Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015 Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1

Læs mere

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017

Besvarelser til Calculus Ordinær Eksamen - 3. Januar 2017 Besvarelser til Calculus Ordinær Eksamen - 3. Januar 17 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )

Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( ) Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

2.9. Dette er en god simpel projektion for områder nær Ækvator. Hvad er den inverse afbildning, f -1?

2.9. Dette er en god simpel projektion for områder nær Ækvator. Hvad er den inverse afbildning, f -1? 2.9 2.4 Kortprojektioner og kort. Den matematiske baggrund for kortprojektioner er differentialgeometri. Det basale begreb her er mangfoldighed, dvs. om ethvert punkt ligger en omegn, der ligner en del

Læs mere

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03

Besvarelses forslag til Tag-hjemeksamen Vinteren 02 03 IMFUFA Carsten Lunde Petersen Besvarelses forslag til Tag-hjemeksamen Vinteren 02 0 Hvor ikke andet er angivet er henvisninger til W.R.Wade An Introduction to analysis. Opgave a) Idet udtrykket e x2 cos

Læs mere

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013)

Introduktion til Laplace transformen (Noter skrevet af Nikolaj Hess-Nielsen sidst revideret marts 2013) Introduktion til Laplace transformen (oter skrevet af ikolaj Hess-ielsen sidst revideret marts 23) Integration handler ikke kun om arealer. Tværtimod er integration basis for mange af de vigtigste værktøjer

Læs mere