Matematik F2 - sæt 1 af 7, f(z)dz = 0 1
|
|
|
- Bertram Lassen
- 10 år siden
- Visninger:
Transkript
1 f(z)dz = 0 1 I denne uge er det meningen, at I skal blie fortrolige med komplekse tal og komplekse funktioner af en kompleks ariabel. Vi skal kigge nærmere på, hornår komplekse funktioner er differentiable og introducerer i den forbindelse Cauchy-Riemann betingelserne. Af og til er der nogle kommentarer i en parentes, såsom (er det åbenlyst?) eller (enig?). Meningen med disse er, at I skal standse op og tænke oer om det er åbenlyst. Som i den gamle historie om, at en barber i en landsby i Zartidens Rusland hade sat skiltet op: Her bor den barber, der barberer alle dem, der ikke baberer sig sel. Sar på spørgsmålet: Barberer han sig sel? kræer en smule tankeirksomhed. (Specifikationen Zartidens Rusland gør det lette sar, at barberen er en kinde, usandsynlig.) Nederst I opgaesættet finder I en inspirationsopgae eller måske snarere en række kommentarer. I denne opgae drejer det sig om at koble translation og rotation i en plan sammen med komplekse tal. F.eks. I kantemekanik iser det sig, at rotation er en igtig operation. Jeg regner med, at der er opgaer nok til at fylde tiden ud. Når I ikke dem alle er det ikke nogen katastrofe. 1. Angi z = 1 + i 2 2 på formen z = r exp(iφ). Udregn z 2 og z 3 både for formen x + iy og r exp(iφ). Had er lettest? 2. For at løse den kubiske ligning x 3 = 3px + 2q gør følgende: (a) Få den geniale ide at sætte x = s + t og is, at x er løsning his st = p og s 3 + t 3 = 2q. (b) Eliminer t fra disse to ligninger og løs den resulterende kadratiske ligning i s 3. (c) Bestem så også t. Det kan gøres uden regning ud fra en symmetribetragtning og at s 3 + t 3 = 2q (d) Find så at x = 3 q + q 2 p q q 2 p 3 (e) Benyt metoden på x 3 = 15x + 4. Et hurtigt gæt iser også at ligningen har et heltal som løsning. Vis at de to løsninger stemmer oerens. (Det er ikke helt let)
2 f(z)dz = Lad c = a + ib ære et fast komplekst tal og lad R ære et reelt tal. Vis at z c = R er ligningen for en cirkel med centrum c og radius R. Gør det først ed at regne og dernæst ed at lae en figur i den komplekse plan. Find nu maximum og minimum for z his z + 3 4i = 2 - dette gøres absolut lettest på en figur. 4. Vis at med a og b faste komplekse tal er z a = z b ligningen for en ret linie og bestem hilken linie. Det gøres lettest på en figur. (Det kan også gøres ed at regne). 5. Betragt ligningen (z 1) 10 = z 10 (a) Vis geometrisk at de 9 løsninger ligger på en ertikal ret linie med Rz = 1/2 ((Tegnet R betyder realdelen af; imaginærdelen er I) Tip: Brug foregående opgae og at (z 1) 10 = z 10 z 1 = z Oerej! - det omendte gælder ikke) (b) Diider begge sider med z 10. Dette gier ligningen w 10 = 1, med w = (z 1)/z. Løs så den oprindelige ligning. (c) Udtryk z på formen x + iy og erificer (a). 6. Vis at for z = 1 er z I (z + 1) = 0 2 Gør det først ed at regne, altså sæt z = exp(iθ) og så bare derudaf. Prø dernæst at finde et geometrisk argument. 7. For en reel funktion af en reel ariable kan i i et x y-koordinatsystem på et plant stykke papir tegne en funktion y = f(x) og med et enkelt blik på den, har i en god fornemmelse af den. For en kompleks funktion af en kompleks ariabel er det lidt særere. Vi kan skrie w = f(z) = u(x, y) + i(x, y), hor w = u + i og z = x + iy og x, y, u, er reelle. Så i skal bruge fire dimensioner til en tegning. Og det kan i ikke. Lidt fornemmelse kan i godt få alligeel. Betragt fx w = z 2. Horledes il en halcirkel i z-planen (z = re iθ, r konstant og θ [0, π] komme til at se ud i w-planen? Horledes il en linie gennem origo z = re iθ, r [0, [, θ konstant komme til at se ud? Betragt nu omendt først u = konstant og dernæst = konstant Hilke kurer sarer det til x, y-planen? (Tip Find ud af had ligninger for hyperbler er).
3 f(z)dz = Eulerformlen e iφ = cos φ + i sin φ begrundes ofte i potensrækkeudiklingen. His I ikke har set det, så gør det: Skri potensrækken for eksponentialfunktionen af en imaginær ariabel. Find realdel og imaginærdel her for sig og identificer de to potensrækker med cosinus og sinus. En anden mulighed er at udnytte Cauchy-Riemann betingelserne (CR) sammen med det naturlige kra at e z skal ære differentiabel og at e x+iy = e x e iy = u(x, y)+ i(x, y) = e x φ(y) + ie x ψ(y). Løs de fremkomne differentialligninger med naturlige begyndelsesbetingelser. 9. For en kotientrække gælder: 1 + z + z z n 1 = zn 1 z 1 Sæt n = 2m og is at summen så kan skries S l + S u med S l = 1 + z 2 + z z 2m 2 S u = z + z z 2m 1 Vis at S u = zs l og bestem dermed S u. Indsæt z = exp(iθ) og is ed at se på realdel og imaginærdel her for sig, at cos θ + cos 3θ + + cos(2n 1)θ = sin 2nθ 2 sin θ og at sin θ + sin 3θ + + sin(2n 1)θ = sin2 (nθ) sin θ Inspirationsopgae Lad T betegne en translation af den komplekse plan med det (komplekse) tal, altså T z = z +. To på hinanden følgende translationer skries T T w og har effekten: T T w z = T (T w z) = (z + w) + = z + (w + ) = T w+ z Den inerse til T skries T 1 og det gælder at T T 1 = T 1 hor I er den identiske afbildning. Desuden er T 1 T = I = T Er det åbenlyst?
4 f(z)dz = 0 4 En rotation omkring et punkt a med en inkel θ il i skrie R θ a. Det er formentlig åbenlyst at en rotation omkring origo R θ 0 kan skries R θ 0z = e iθ z Vis nu ed at benytte at R θ a = T a R θ 0 Ta 1 (his det ikke er oplagt så la en tegning og tænk oer det) at R θ az = e iθ z + a(1 e iθ ) = e iθ z + k Vi kan altså skrie R θ a = T k R θ 0. En rotation omkring et punkt a kan altså betragtes som en rotation omkring origo efterfulgt af en translation med a(1 e iθ ). Prø at tegne et simpelt eksempel med a reel. Find billedet af et punkt b på den reelle akse b > a direkte ed en rotation om a og ed formlen oenfor. Omendt kan en rotation omkring origo R θ 0 efterfulgt af en translation T a altid skries som en enkelt rotation: T R θ 0 = R θ c Vis at c = /(1 e iθ ) Det omendte gælder også: R α 0 T a = R α p Bestem p For to på hinanden følgende rotationer gælder: hor R φ b Rθ a = R φ+θ c, c = aeiφ (1 e iθ ) + b(1 e iφ ) 1 e i(φ+θ) Vis at dette gælder his φ + θ ikke er et multiplum af 2π. His på den anden side φ + θ = 2nπ med n et heltal så er e i(φ+θ) = 1. Vis at i dette tilfælde gælder: R φ b Rθ a = T med = (1 e iφ )(b a) His fx φ = θ = π fås Illustrer dette på en figur. R π b R π a = T 2(b a) Endelig kan man definere en dilatations operation D r,θ a. (Dilatation findes i Retskriningsordbogen med eksempel: dilatationsfuge, men det findes ikke i Nudansk ordbog.
5 f(z)dz = 0 5 Det betyder noget i retning af udidelse. Meningen er at Da r,θ z drejer z om punktet a med inklen θ og samtidig forstørrer (formindsker) længden med faktoren r. Så D r,θ a D r,θ 0 z = re iθ z Dilatation omkring et ilkårligt punkt fås så præsist som rotation om et ilkårligt punkt: = T a D r,θ 0 T 1 a. En måske interessant opgae Den komplekse plan kan naturligis også opfattes som en to-dimensional Euklidisk plan, således at z = x + iy skries som en ektor ( ) x z = y I det følgende er et bogsta skreet med fed type en ektor, medens det samme bogsta i normal type er det samme punkt som komplekst tal. For ektorer er der to operationer af særlig interesse nemlig prikproduktet mellem to ektorer a og b giet ed a b = a b cos θ, hor θ er inklen mellem a og b. Ligeledes er krydsproduktet giet ed a b = a b sin θ Sædanligis er krydsproduktet en ektor, der stikker ud af planen. Her il i imidlertid blie i planen, i har kun en to-dimensional Euklidisk plan. Krydsproduktet blier så reinterpreteret som arealet udspændt af de to ektorer. Dette areal fås med fortegn - nemlig fortegnet af sin θ. Vis at der gælder: a b = a b + ia b (Bemærk at dette er i modstrid med alt had I hidtil har lært: at man ikke kan addere en skalar og en ektor!) Lad der nu ære giet en firkant med hjørner a, b, c, d, hor a, b, c, d følger efter hinanden mod uret. Antag at origo O ligger inde i firkanten. Arealet af firkanten A kan findes som summen af arealerne af de fire trekanter Oab, Obc, Ocd og Oda. Vis at A er giet ed A = 1 2 I(a b + b c + c d + d a) His nu origo O ligger udenfor firkanten gælder formlen så stadig? (Husk at arealer har fortegn.)
Matematik F2 Opgavesæt 1
Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale
Matematik F2 Opgavesæt 2
Opgaver uge 2 I denne uge kigger vi nærmere på Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en ve i den komplekse plan.
Komplekse tal. x 2 = 1 (2) eller
Komplekse tal En tilegnelse af stoffet i dette appendix kræver at man løser opgaverne Komplekse tal viser sig uhyre nyttige i fysikken, f.eks til løsning af lineære differentialligninger eller beskrivelse
Kinematik. Ole Witt-Hansen 1975 (2015) Indhold. Kinematik 1
Kinematik Kinematik Indhold. Retlinet beægelse.... Jæn retlinet beægelse...3 3. Ujæn beægelse...4 4. Konstant accelereret beægelse...5 5. Tilbagelagt ej ed en konstant accelereret beægelse...8 6. Frit
Trigonometri. for 8. klasse. Geert Cederkvist
Trigonometri Ved konstruktion af bygningsærker, hor der kræes stor nøjagtighed, er der ofte brug for, at man kan beregne sider og inkler i geometriske figurer. Alle polygoner kan deles op i trekanter,
Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1
Udbredelseshastighed for bølger i forskellige stoffer 1 Bølgeligningen Indhold 1. Bølgeligningen.... Udbredelseshastigheden for bølger på en elastisk streng...3 3. Udbredelseshastigheden for longitudinalbølger
Det skrå kast uden luftmodstand
Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
MM501 forelæsningsslides
MM501 forelæsningsslides uge 37, 2010 Produceret af Hans J. Munkholm 2009 bearbejdet af Jessica Carter 2010 1 Hvad er et komplekst tal? Hvordan regner man med komplekse tal? Man kan betragte udvidelsen
z j 2. Cauchy s formel er værd at tænke lidt nærmere over. Se på specialtilfældet 1 dz = 2πi z
Matematik F2 - sæt 3 af 7 blok 4 f(z)dz = 0 Hovedemnet i denne uge er Cauchys sætning (den der står i denne sides hoved) og Cauchys formel. Desuden introduceres nulpunkter og singulariteter: simple poler,
Introduktion til Grafteori
Introdktion til Grafteori Jonas Lindstrøm Jensen ([email protected]) IMF, 2007 1 Indledning En graf inden for matematikken er nogle pnkter, kaldet knder, der er forbndet af nogle streger, kaldet kanter. Hor
Matematik 1 Semesteruge 5 6 (1. oktober oktober 2001) side 1 Komplekse tal Arbejdsplan
Matematik 1 Semesteruge 5 6 (1. oktober - 12. oktober 2001) side 1 Komplekse tal Arbejdsplan I semesterugerne 5 og 6 erstattes den regulære undervisning (forelæsninger og fællestimer) af selvstudium med
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra
1. Vis, at hvis realdelen af en holomorf (analytisk) funktion er konstant (på et åbent område) er funktionen konstant.
Matematik F2 - sæt 2 af 7 blok 4 f(z)dz = 0 1 I denne uge vil vi studere Cauchy-Riemann betingelserne, potensrækker, konvergenskriterier og flertydige funktioner. Vi skal også se på integration langs en
Mere om differentiabilitet
Mere om differentiabilitet En uddybning af side 57 i Spor - Komplekse tal Kompleks funktionsteori er et af de vigtigste emner i matematikken og samtidig et af de smukkeste I bogen har vi primært beskæftiget
Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2
Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar
Komplekse Tal. 20. november 2009. UNF Odense. Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet
Komplekse Tal 20. november 2009 UNF Odense Steen Thorbjørnsen Institut for Matematiske Fag Århus Universitet Fra de naturlige tal til de komplekse Optælling af størrelser i naturen De naturlige tal N (N
Svar til eksamen i Matematik F2 d. 23. juni 2016
Svar til eksamen i Matematik F d. 3. juni 06 FORBEHOLD FOR FEJL! Bemærk, i modsætning til herunder, så skal det i besvarelsen fremgå tydeligt, hvordan polerne ndes og hvordan de enkelte residuer udregnes.
Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning
Oversigt [S] App. I, App. H.1 Nøgleord og begreber Komplekse tal Test komplekse tal Polære koordinater Kompleks polarform De Moivres sætning Test komplekse tal Komplekse rødder Kompleks eksponentialfunktion
Komplekse tal. Mikkel Stouby Petersen 27. februar 2013
Komplekse tal Mikkel Stouby Petersen 27. februar 2013 1 Motivationen Historien om de komplekse tal er i virkeligheden historien om at fjerne forhindringerne og gøre det umulige muligt. For at se det, vil
Lorentz kraften og dens betydning
Lorentz kraften og dens betydning I dette tillæg skal i se, at der irker en kraft på en ladning, der beæger sig i et agnetfelt, og i skal se på betydninger heraf. Før i gør det, skal i dog kigge på begrebet
Curling fysik. Elastisk ikke centralt stød mellem to curling sten. Dette er en artikel fra min hjemmeside:
Crling fysik Dette er en artikel fra in hjeeside: www.olewitthansen.dk Ole Witt-Hansen 08 Indhold. Elastisk stød.... Centralt elastisk stød..... Masseidtpnkts systeet. : Centre of ass...3 3. Crling fysik...4
Komplekse tal og rækker
Komplekse tal og rækker John Olsen 1 Indledning Dette sæt noter er forelæsningsnoter til foredraget Komplekse tal og rækker. Noterne er beregnet til at blive brugt sammen med foredraget. I afsnit 2 bliver
FORSØGSVEJLEDNING. Kasteparablen
Fysik i idræt - Idræt i fysik 006 FORSØGSVEJLEDNING Kasteparablen Formål: At bestemme kastelængden (x-positionen) for kast ed forskellige afleeringsinkler: o Ca. 30 o. o Ca. 45 o. o Ca. 60 o. og ed brug
Noter om komplekse tal
Noter om komplekse tal Preben Alsholm Januar 008 1 Den komplekse eksponentialfunktion Vi erindrer først om den sædvanlige og velkendte reelle eksponentialfunktion. Vi skal undertiden nde det nyttigt, at
(c) Opskriv den reelle Fourierrække for funktionen y(t) fra (b), og afgør dernæst om y(t) er en lige eller ulige funktion eller ingen af delene.
MATEMATIK 3 EN,MP 4. februar 2016 Eksamenopgaver fra 2011 2016 (jan. 2016) Givet at 0 for 0 < t < 1 mens e (t 1) cos(7(t 1)) for t 1, betragt da begyndelsesværdiproblemet for t > 0: y (t) + 2y (t) + 50y(t)
Hvad er matematik? C, i-bog ISBN 978 87 7066 499 8
Et af de helt store videnskabelige projekter i 1700-tallets Danmark var kortlægningen af Danmark. Projektet blev varetaget af Det Kongelige Danske Videnskabernes Selskab og løb over en periode på et halvt
Vektorer og lineær regression
Vektorer og lineær regression Peter Harremoës Niels Brock April 03 Planproduktet Vi har set, at man kan gange en vektor med et tal Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden
Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.
Komplekse tal Mike Auerbach Odense 2012 1 Vinkelmål og trigonometriske funktioner Inden der siges noget om komplekse tal, vil der i dette afsnit blive gennemgået en smule teori om trigonometriske funktioner.
Komplekse tal. enote 29. 29.1 Indledning
enote 29 1 enote 29 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R forudsætter enoten almindeligt kendskab til de reelle tal,
Komplekse tal. Mike Auerbach. Tornbjerg Gymnasium, Odense 2015
Komplekse tal Mike Auerbach Tornbjerg Gymnasium, Odense 2015 Indhold 1 Vinkelmål og trigonometriske funktioner 2 1.1 Radianer................................................ 2 1.2 Cosinus og sinus som
DesignMat Den komplekse eksponentialfunktion og polynomier
DesignMat Den komplekse eksponentialfunktion og polynomier Preben Alsholm Uge 8 Forår 010 1 Den komplekse eksponentialfunktion 1.1 Definitionen Definitionen Den velkendte eksponentialfunktion x e x vil
Differentialkvotient af cosinus og sinus
Differentialkvotient af cosinus og sinus Overgangsformler cos( + p ) = cos sin( + p ) = sin cos( -) = cos sin( -) = -sin cos( p - ) = - cos sin( p - ) = sin cos( p + ) = -cos sin( p + ) = -sin (bevises
Geometri med Geometer II
hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne
Vektorer og lineær regression. Peter Harremoës Niels Brock
Vektorer og lineær regression Peter Harremoës Niels Brock April 2013 1 Planproduktet Vi har set, at man kan gange en vektor med et tal. Et oplagt spørgsmål er, om man også kan gange to vektorer med hinanden.
Keplers ellipse. Perihel F' Aphel
Keplers ellipse Keplers udgangspunkt er ellipsen opfattet som en fladtrykt cirkel. Han har selfølgelig stadigæk brug for brændpunkter mm. Konstruktionen af disse er simpel ud fra ellipsens omskrene rektangel.
Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig
Analyse : Eulers formel Sebastian rsted 9. maj 015 Idenne note giver vi et eksempel på, hvorledes det er vigtigt at holde sig for øje, hvor de matematiske resultater kommer fra, og hvad de baseres på;
Besvarelser til Calculus Ordinær Eksamen Juni 2017
Besvarelser til Calculus Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C
Det teknisk-naturvidenskabelige basisår Matematik 1A, Efterår 2005, Hold 3 Prøveopgave C Opgaven består af tre dele, hver med en række spørgsmål, efterfulgt af en liste af teorispørgsmål. I alle opgavespørgsmålene
Eksamen i Matematik F2 d. 19. juni Opgave 2. Svar. Korte svar (ikke fuldstændige)
Eksamen i Matematik F2 d. 9. juni 28 Korte svar (ikke fuldstændige Opgave Find realdelen, Re z, og imaginærdelen, Im z, for følgende værdier af z, a z = 2 i b z = i i c z = ln( + i Find realdelen, Re z,
LotusLive. LotusLive Engage og LotusLive Connections Brugervejledning
LotusLie LotusLie Engage og LotusLie Connections Brugerejledning LotusLie LotusLie Engage og LotusLie Connections Brugerejledning Note Læs oplysningerne i Bemærkninger på side 181, før du bruger denne
Formelsamling - MatF2. Therkel Zøllner og Amalie Christensen 27. juni 2009
Formelsamling - MatF2 Therkel Zøllner og Amalie Christensen 27. juni 2009 1 Indhold 1 Kompleks variabel teori 3 1.1 Komplekse funktioner 825-830........................... 3 1.2 Powerserier af komplekse
En sumformel eller to - om interferens
En sumformel eller to - om interferens - fra borgeleo.dk Vi ønsker - af en eller anden grund - at beregne summen og A x = cos(0) + cos(φ) + cos(φ) + + cos ((n 1)φ) A y = sin (0) + sin(φ) + sin(φ) + + sin
z + w z + w z w = z 2 w z w = z w z 2 = z z = a 2 + b 2 z w
Komplekse tal Hvis z = a + ib og w = c + id gælder z + w = (a + c) + i(b + d) z w = (a c) + i(b d) z w = (ac bd) + i(ad bc) z w = a+ib c+id = ac+bd + i bc ad, w 0 c +d c +d z a b = i a +b a +b Konjugation
Matematik 1 Semesteruge 4 5 (25. september - 6. oktober 2006) side 1 Komplekse tal Arbejdsplan
Matematik 1 Semesteruge 4 5 (25. september - 6. oktober 2006 side 1 Komplekse tal Arbejdsplan I semesterugerne 4 og 5 erstattes den regulære undervisning (forelæsninger og fællestimer af selvstudium med
Projekt 2.3 Euklids konstruktion af femkanten
Projekter: Kapitel. Projekt.3 Euklids konstruktion af femkanten Projekt.3 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære
Kortfattet svar til eksamen i Matematik F2 d. 21. juni 2017
Kortfattet svar til eksamen i Matematik F2 d. 2. juni 27 Opgave Bestem for følgende tilfælde om en funktion f(z) af z = x + iy er analytisk i dele af den komplekse plan, hvis den har real del u(x, y) og
Vektorer. koordinatgeometri
Vektorer og koordintgeometri for gymnsiet, dge 5 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors
Eulers equidimensionale differentialligning
Eulers equidimensionale differentialligning Projektbesvarelse for MM501, udformet af Hans J. Munkholm Differentialligningen September-oktober 2009 For at kunne referere let og elegant gentages differentialligningen
Komplekse tal. enote Indledning
enote 1 1 enote 1 Komplekse tal I denne enote introduceres og undersøges talmængden C, de komplekse tal. Da C betragtes som en udvidelse af R, forudsætter enoten almindeligt kendskab til de reelle tal,
Vektorfunktioner. (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium
Vektorfunktioner (Parameterkurver) x-klasserne Gammel Hellerup Gymnasium Indholdsfortegnelse VEKTORFUNKTIONER... Centrale begreber... Cirkler... 5 Epicykler... 7 Snurretoppen... 9 Ellipser... 1 Parabler...
Analytisk geometri. Et simpelt eksempel på dette er en ret linje. Som bekendt kan en ret linje skrives på formen
Analtisk geometri Mike Auerbach Odense 2015 Den klassiske geometri beskæftiger sig med alle mulige former for figurer: Linjer, trekanter, cirkler, parabler, ellipser osv. I den analtiske geometri lægger
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 2018
Besvarelser til Calculus Ordinær Eksamen - 5. Januar 18 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Produkter af vektorer i 2 dimensioner. Peter Harremoës Niels Brock
Produkter af vektorer i dimensioner Peter Harremoës Niels Brock Septemer 00 Indledning Disse noter er skrevet som supplement og delvis erstatning for tilsvarende materiale i øgerne Mat B og Mat A. Vi vil
Komplekse tal og algebraens fundamentalsætning.
Komplekse tal og algebraens fundamentalsætning. Michael Knudsen 10. oktober 2005 1 Ligningsløsning Lad N = {0,1,2,...} betegne mængden af de naturlige tal og betragt ligningen ax + b = 0, a,b N,a 0. Findes
Polynomier af én variabel
enote 30 1 enote 30 Polynomier af én variabel I denne enote introduceres komplekse polynomier af én variabel. Der forudsættes elementært kendskab til komplekse tal, og kendskab til reelle polynomier af
Impedans. I = C du dt (1) og en spole med selvinduktionen L
Impedans I et kredsløb, der består af andre netværkselementer end blot lække (modstande) og kilder vil der ikke i almindelighed være en simpel proportional, tidslig sammenhæng mellem strøm og spænding,
Introduktion til cosinus, sinus og tangens
Introduktion til cosinus, sinus og tangens Jes Toft Kristensen 24. maj 2010 1 Forord Her er en lille introduktion til cosinus, sinus og tangens. Det var et af de emner jeg selv havde svært ved at forstå,
matx.dk Differentialregning Dennis Pipenbring
mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten
Besvarelser til Calculus Ordinær Eksamen Juni 2017
Besvarelser til Calculus Ordinær Eksamen - 12. Juni 217 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder.
2. Matematiske hjælpemidler. Koordinater. 2.1 De mange bredder. 2.1 I Figur 1.1 i kapitel 1 er der vist et ideelt Kartesiske eller Euklidiske koordinatsystem, med koordinater ( X, Y, Z) = ( X 1, X 2, X
Elementær Matematik. Trigonometriske Funktioner
Elementær Matematik Trigonometriske Funktioner Ole Witt-Hansen Indhold. Gradtal og radiantal.... sin x, cos x og tan x... 3. Trigonometriske ligninger...3 4. Trigonometriske uligheder...5 5. Harmoniske
MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel
Juni 2000 MATEMATIK 11 Eksamensopgaver Juni 1995 Juni 2001, 4. fjerdedel Opgave 1. (a) Find den fuldstændige løsning til differentialligningen y 8y + 16y = 0. (b) Find den fuldstændige løsning til differentialligningen
Lineære 2. ordens differentialligninger med konstante koefficienter
enote 13 1 enote 13 Lineære 2. ordens differentialligninger med konstante koefficienter I forlængelse af enote 11 og enote 12 om differentialligninger, kommer nu denne enote omkring 2. ordens differentialligninger.
Besvarelser til Calculus Ordinær Eksamen Juni 2019
Besvarelser til Calculus Ordinær Eksamen - 14. Juni 2019 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
To find the English version of the exam, please read from the other end! Eksamen i Calculus
To find the English version of the exam, please read from the other end! Se venligst bort fra den engelske version på bagsiden hvis du følger denne danske version af prøven. Eksamen i Calculus Første Studieår
Lineære 1. ordens differentialligningssystemer
enote enote Lineære ordens differentialligningssystemer Denne enote beskriver ordens differentialligningssystemer og viser, hvordan de kan løses enoten er i forlængelse af enote, der beskriver lineære
Besvarelser til Calculus Ordinær Eksamen Januar 2019
Besvarelser til Calculus Ordinær Eksamen - 14. Januar 19 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
DesignMat Lineære differentialligninger I
DesignMat Lineære differentialligninger I Preben Alsholm Uge 9 Forår 2010 1 Lineære differentialligninger af første orden 1.1 Normeret lineær differentialligning Normeret lineær differentialligning En
Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 2016
Besvarelser til Calculus Ordinær eksamen - Efterår - 8. Januar 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har
Besvarelse til eksamen i Matematik F2, 2012
Besvarelse til eksamen i Matematik F2, 202 Partiel besvarelse - har ikke inkluderet alle detaljer! Med forbehold for tastefejl. Opgave Find og bestem typen af alle singulariteter for følgende funktioner:
Algebra - Teori og problemløsning
Algebra - Teori og problemløsning, januar 05, Kirsten Rosenkilde. Algebra - Teori og problemløsning Kapitel -3 giver en grundlæggende introduktion til at omskrive udtryk, faktorisere og løse ligningssystemer.
Eksamensspørgsmål: Trekantberegning
Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 2016
Besvarelser til Calculus Ordinær eksamen - Forår - 6. Juni 16 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Additionsformlerne. Frank Villa. 19. august 2012
Additionsformlerne Frank Villa 19. august 2012 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Indhold 1 Introduktion
Projektopgave 1. Navn: Jonas Pedersen Klasse: 3.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/ Vejleder: Jørn Christian Bendtsen Fag: Matematik
Projektopgave 1 Navn: Jonas Pedersen Klasse:.4 Skole: Roskilde Tekniske Gymnasium Dato: 5/9-011 Vejleder: Jørn Christian Bendtsen Fag: Matematik Indledning Jeg har i denne opgave fået følgende opstilling.
Flemmings Maplekursus 1. Løsning af ligninger
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er
3 Overføringsfunktion
1 3 Overføringsfunktion 3.1 Overføringsfunktion For et system som vist på figur 3.1 er overføringsfunktionen givet ved: Y (s) =H(s) X(s) [;] (3.1) Y (s) X(s) = H(s) [;] (3.2) Y (s) er den Laplacetransformerede
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er
Storcirkelsejlads. Nogle definitioner. Sejlads langs breddeparallel
Storcirkelsejlads Denne note er et udvidet tillæg til kapitlet om sfærisk geometri i TRIPs atematik højniveau 1, ved Erik Vestergaard. Nogle definitioner I dette afsnit skal vi se på forskellige aspekter
TREKANTER. Indledning. Typer af trekanter. Side 1 af 7. (Der har været tre kursister om at skrive denne projektrapport)
Side 1 af 7 (Der har været tre kursister om at skrive denne projektrapport) TREKANTER Indledning Vi har valgt at bruge denne projektrapport til at udarbejde en oversigt over det mest grundlæggende materiale
Geometri, (E-opgaver 9d)
Geometri, (E-opgaver 9d) GEOMETRI, (E-OPGAVER 9D)... 1 Vinkler... 1 Trekanter... 2 Ensvinklede trekanter... 2 Retvinklede trekanter... 3 Pythagoras sætning... 3 Sinus, Cosinus og Tangens... 4 Vilkårlige
Kalkulus 1 - Opgaver. Anne Ryelund, Anders Friis og Mads Friis. 20. januar 2015
Kalkulus 1 - Opgaver Anne Ryelund, Anders Friis og Mads Friis 20. januar 2015 Mængder Opgave 1 Opskriv følgende mængder med korrekt mængdenotation. a) En mængde A indeholder alle hele tal fra og med 1
Analyse 1, Prøve 4 Besvarelse
Københavns Universitet Prøve ved Det naturvidenskabelige Fakultet juni 2011 1 Analyse 1, Prøve 4 Besvarelse Lad Opgave 1 (50%) M = {T R 2 T er en åben trekant} og lad A : M R være arealfunktionen, dvs.
Matematisk modellering og numeriske metoder. Lektion 5
Matematisk modellering og numeriske metoder Lektion 5 Morten Grud Rasmussen 19. september, 2013 1 Euler-Cauchy-ligninger [Bogens afsnit 2.5, side 71] 1.1 De tre typer af Euler-Cauchy-ligninger Efter at
