Eksempler Determinanten af en kvadratisk matrix. Calculus Uge
|
|
|
- Ejvind Jensen
- 9 år siden
- Visninger:
Transkript
1 Oversigt [LA] 8 Her skal du lære om 1. Helt simple determinanter 2. En udvidelse der vil noget 3. Effektive regneregler 4. Genkend determinant nul 5. Produktreglen 6. Inversreglen 7. Potensreglen 8. Entydig løsning Calculus Uge
2 Nemme determinanter Eksempler Determinanten af en kvadratisk matrix Calculus Uge
3 Nemme determinanter Eksempler Determinanten af en kvadratisk matrix 1-matrix a 11 = a 11 Calculus Uge
4 Nemme determinanter Eksempler Determinanten af en kvadratisk matrix 1-matrix a 11 = a 11 2-matrix a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21 Calculus Uge
5 Nemme determinanter Eksempler Determinanten af en kvadratisk matrix 1-matrix a 11 = a 11 2-matrix a 11 a 12 a 21 a 22 = a 11a 22 a 12 a 21 3-matrix a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 = a 11 a 22 a 23 a 32 a 33 a 12 a 21 a 23 a 31 a 33 +a 13 a 21 a 22 a 31 a 32 Calculus Uge
6 Udregn determinanter Eksempler 1 2 = ( 1) = Calculus Uge
7 Udregn determinanter Eksempler 1 2 = ( 1) = = = ( ) 2( ) +3( ) = = 12 Calculus Uge
8 Nem vej til areal Areal b 2 a 1 b 1 a 2 Calculus Uge
9 Nem vej til areal Areal b 2 a 1 b 1 a 2 Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2 Calculus Uge
10 Determinant ved rækkeudvikling Definition Lad A ij være den (m 1) (n 1)-matrix, der fremkommer ved at slette i-te række og j-te søjle i en m n-matrix A. Calculus Uge
11 Determinant ved rækkeudvikling Definition Lad A ij være den (m 1) (n 1)-matrix, der fremkommer ved at slette i-te række og j-te søjle i en m n-matrix A. Determinanten af en kvadratisk n-matrix A er givet ved rækkeudvikling efter i-te række A = n ( 1) i+j a ij A ij j=1 Calculus Uge
12 Determinant ved rækkeudvikling Definition Lad A ij være den (m 1) (n 1)-matrix, der fremkommer ved at slette i-te række og j-te søjle i en m n-matrix A. Determinanten af en kvadratisk n-matrix A er givet ved rækkeudvikling efter i-te række A = n ( 1) i+j a ij A ij j=1 Kan skrives A = ( 1) i+1 a i1 A i1 + ( 1) i+2 a i2 A i2 + Calculus Uge
13 Determinant mange veje Determinanten kan beregnes ved søjleudvikling A = n ( 1) i+j a ij A ij i=1 Calculus Uge
14 Determinant mange veje Determinanten kan beregnes ved søjleudvikling A = n ( 1) i+j a ij A ij i=1 Determinanten er uafhængig af valgt række/søjle. Calculus Uge
15 Determinant mange veje Determinanten kan beregnes ved søjleudvikling A = n ( 1) i+j a ij A ij i=1 Determinanten er uafhængig af valgt række/søjle. Eksempel = 4 6 = Calculus Uge
16 Udregn determinant af orden 4 Eksempel = ( 1) = ( 1) = 1 Calculus Uge
17 Trekantsmatrix 0-række/søjle 0 a 12 0 a = 0 0 a 21 a = 0 Calculus Uge
18 Trekantsmatrix 0-række/søjle 0 a 12 0 a = 0 0 a 21 a = 0 Øvre trekantsmatrix a 11 a 12 a 1n 0 a 22 a 2n a nn = a 11 a 22 a nn Calculus Uge
19 Rækkeoperationsmatricer Ombytning af to rækker: = 1 Calculus Uge
20 Rækkeoperationsmatricer Ombytning af to rækker: = 1 Multiplikation af række med tal 0: r = r Calculus Uge
21 Rækkeoperationsmatricer Ombytning af to rækker: = 1 Multiplikation af række med tal 0: r = r Addition af et multiplum af en række til en anden: 1 r 0 1 = 1 Calculus Uge
22 Rækkeregneregler Beregning af determinant Calculus Uge
23 Rækkeregneregler Beregning af determinant Ombytning af to rækker: Determinanten skifter fortegn Calculus Uge
24 Rækkeregneregler Beregning af determinant Ombytning af to rækker: Determinanten skifter fortegn Multiplikation af række med tal: Determinanten multipliceres med samme tal Calculus Uge
25 Rækkeregneregler Beregning af determinant Ombytning af to rækker: Determinanten skifter fortegn Multiplikation af række med tal: Determinanten multipliceres med samme tal Addition af et multiplum af en række til en anden: Determinanten er uændret Calculus Uge
26 Søjleregneregler Beregning af determinant Calculus Uge
27 Søjleregneregler Beregning af determinant Ombytning af to søjler: Determinanten skifter fortegn Calculus Uge
28 Søjleregneregler Beregning af determinant Ombytning af to søjler: Determinanten skifter fortegn Multiplikation af søjle med tal: Determinanten multipliceres med samme tal Calculus Uge
29 Søjleregneregler Beregning af determinant Ombytning af to søjler: Determinanten skifter fortegn Multiplikation af søjle med tal: Determinanten multipliceres med samme tal Addition af et multiplum af en søjle til en anden: Determinanten er uændret Calculus Uge
30 Determinanten er nul Observationer om determinant Calculus Uge
31 Determinanten er nul Observationer om determinant En 0-række eller en 0-søjle: Determinanten er 0 Calculus Uge
32 Determinanten er nul Observationer om determinant En 0-række eller en 0-søjle: Determinanten er 0 To ens rækker eller to ens søjler: Determinanten er 0 Calculus Uge
33 Determinanten er nul Observationer om determinant En 0-række eller en 0-søjle: Determinanten er 0 To ens rækker eller to ens søjler: Determinanten er = 0 Calculus Uge
34 Udregn determinanter Eksempler Reducer til øvre trekantsmatrix = 1 2 = ( 1) 10 = Calculus Uge
35 Udregn determinanter Eksempler Reducer til øvre trekantsmatrix = 1 2 = ( 1) 10 = = = = 1 ( 3) ( 4) = 12 Calculus Uge
36 Determinant af matrixprodukt Sætning 11 (Produktreglen) For to kvadratiske n-matricer A,B gœlder AB = A B Calculus Uge
37 Determinant af matrixprodukt Sætning 11 (Produktreglen) For to kvadratiske n-matricer A,B gœlder AB = A B Bevis For B fast og A en rækkeoperationsmatrix er produktreglen netop rækkeregnereglerne. Ved rækkereduktion kan A skrives som produkt af rækkeoperations-matricer samt enten identitetsmatricen eller en matrix med en 0-række nederst. Produktreglen følger heraf. Calculus Uge
38 Brug produktreglen Eksempel A = = 12 Calculus Uge
39 Brug produktreglen Eksempel AA = A = = = AA = A A = = Calculus Uge
40 Determinant af potens Potenser 1 2 = ( 1) = Calculus Uge
41 Determinant af potens Potenser 1 2 = ( 1) = ( ) k = k = ( 10) k Calculus Uge
42 Determinant af invers matrix Sætning 12 (Inversreglen) En kvadratisk matrix A er invertibel, hvis og kun hvis A 0. Der gœlder hvis A 0. A 1 = 1 A Calculus Uge
43 Determinant af invers matrix Sætning 12 (Inversreglen) En kvadratisk matrix A er invertibel, hvis og kun hvis A 0. Der gœlder hvis A 0. Bevis A 1 = 1 A Hvis A er invertibel så giver produktreglen formlen. Hvis A 0 så kan A skrives som produkt af rækkeoperationsmatricer, som hver er invertible. A er da invertibel. Calculus Uge
44 Brug inversreglen Eksempel Matricen har determinant A = A = 12 Calculus Uge
45 Brug inversreglen Eksempel Matricen har determinant A = A = 12 A er invertibel og den inverse har determinant A 1 = A 1 = 1 12 Calculus Uge
46 Determinant af negative potenser Negative potenser 1 2 = ( 1) = Calculus Uge
47 Determinant af negative potenser Negative potenser 1 2 = ( 1) = ( ) = 1 10 Calculus Uge
48 Determinant af negative potenser Negative potenser 1 2 = ( 1) = ( ) = 1 10 ( ) k = 1 ( 10) k Calculus Uge
49 Determinant af alle potenser Potensreglen for determinant Calculus Uge
50 Determinant af alle potenser Potensreglen for determinant Hvis A 0 så A k = A k for alle hele tal k. Calculus Uge
51 Determinant af alle potenser Potensreglen for determinant Hvis A 0 så A k = A k for alle hele tal k. Hvis A = 0 så A k = 0 for alle hele tal k > 0. Calculus Uge
52 Jacobimatricen [LA] 2.2 Kædereglen i matrix-formulering Definition For en differentiabel afbildning g : R n R n (u 1,...,u n ) (g 1 (u 1,...,u n ),...,g n (u 1,...,u n )) er Jacobideterminanten determinanten af Jacobimatricen g 1 g u u n d u (g) =..... g n u 1... g n u n Calculus Uge
53 Jacobimatricen [LA] 2.2 Kædereglen i matrix-formulering Eksempel For afbildning g : R 2 R 2 er Jacobideterminanten (u 1,u 2 ) (u u 2 2,u 1 u 2 ) d u (g) = d u (g) = g g 1 u 1 g 2 1 u 2 g 2 u 1 u 2 2u 1 2u 2 u 2 u 1 = 2u2 1 2u 2 2 Calculus Uge
54 Ligningssystem og determinant Sætning 13 (Entydig løsning) 1. Et homogent ligningssystem med en kvadratisk koefficientmatrix A har en egentlig løsning (uendelig mange), hvis og kun hvis A = 0. Calculus Uge
55 Ligningssystem og determinant Sætning 13 (Entydig løsning) 1. Et homogent ligningssystem med en kvadratisk koefficientmatrix A har en egentlig løsning (uendelig mange), hvis og kun hvis A = Det inhomogen ligningssystem Ax = b har en og kun en løsning, hvis og kun hvis A 0. Calculus Uge
56 Bestem entydig løsning Opgave For hvilke tal t har det homogene ligningssystem med koefficientmatrix A = 1 t t en entydig løsning. Find løsningsrummet for alle t. Calculus Uge
57 Bestem entydig løsning Opgave - løsning Beregn determinanten A = 1 t 1 = 1 1 t t t 1 = (t 1) 2 Calculus Uge
58 Bestem entydig løsning Opgave - løsning Beregn determinanten A = 1 t 1 = 1 1 t t t 1 = (t 1) 2 For t 1 har det homogene ligningssystem entydig løsning x = 0. Ax = 0 Calculus Uge
59 Bestem alle løsninger Opgave - løsning For t = 1 er den reducerede form af ligningssystemet x 1 + x 2 + x 3 = 0 Calculus Uge
60 Bestem alle løsninger Opgave - løsning For t = 1 er den reducerede form af ligningssystemet Dette giver løsninger x 1 x 2 x 3 x 1 + x 2 + x 3 = 0 = x x Calculus Uge
Nøgleord og begreber
Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel
Eksempel 9.1. Areal = (a 1 + b 1 )(a 2 + b 2 ) a 1 a 2 b 1 b 2 2a 2 b 1 = a 1 b 2 a 2 b 1 a 1 a 2 = b 1 b 2
Oversigt [LA] 9 Nøgleord og begreber Helt simple determinanter Determinant defineret Effektive regneregler Genkend determinant nul Test determinant nul Produktreglen Inversreglen Test inversregel og produktregel
To ligninger i to ubekendte
Oversigt [LA] 6, 7 Nøgleord og begreber Løs ligninger Eliminer ubekendte Rækkereduktion Reduceret matrix Enten-eller princippet Test ligningssystem Rækkeoperationsmatricer Beregn invers matrix Calculus
Figur. To ligninger i to ubekendte. Definition Ved m lineære ligninger med n ubekendte forstås. Definition 6.4 Givet ligningssystemet
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer smængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen Enten-eller
Oversigt [LA] 6, 7, 8
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen
Ligningssystemer - nogle konklusioner efter miniprojektet
Ligningssystemer - nogle konklusioner efter miniprojektet Ligningssystemet Ax = 0 har mere end en løsning (uendelig mange) hvis og kun hvis nullity(a) 0 Løsningerne til et konsistent ligningssystem Ax
Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers
Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse
Oversigt [LA] 10, 11; [S] 9.3
Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus
Oversigt [LA] 6, 7, 8
Oversigt [LA] 6, 7, 8 Nøgleord og begreber Lineære ligningssystemer Løsningsmængdens struktur Test løsningsmængde Rækkereduktion Reduceret matrix Test ligningssystem Rækkeoperationsmatricer Rangformlen
Matricer og lineære ligningssystemer
Matricer og lineære ligningssystemer Grete Ridder Ebbesen Virum Gymnasium Indhold 1 Matricer 11 Grundlæggende begreber 1 Regning med matricer 3 13 Kvadratiske matricer og determinant 9 14 Invers matrix
DesignMat Kvadratiske matricer, invers matrix, determinant
DesignMat Kvadratiske matricer, invers matrix, determinant Preben Alsholm Uge 5 Forår 010 1 Kvadratiske matricer, invers matrix, determinant 1.1 Invers matrix I Invers matrix I Definition. En n n-matrix
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation
Kursusgang 3 Matrixalgebra Repetition
Kursusgang 3 Repetition - froberg@mathaaudk http://peoplemathaaudk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 12 september 2008 1/12 Lineære ligningssystemer Et lineært ligningssystem
DesignMat Uge 1 Gensyn med forårets stof
DesignMat Uge 1 Gensyn med forårets stof Preben Alsholm Efterår 2010 1 Hovedpunkter fra forårets pensum 11 Taylorpolynomium Taylorpolynomium Det n te Taylorpolynomium for f med udviklingspunkt x 0 : P
Lineær algebra 1. kursusgang
Lineær algebra 1. kursusgang Eksempel, anvendelse To kendte punkter A og B på en linie, to ukendte punkter x 1 og x 2. A x 1 x 2 B Observationer af afstande: fra A til x 1 : b 1 fra x 1 til x 2 : b 2 fra
Lineær algebra: Matrixmultiplikation. Regulære og singulære
Lineær algebra: Matrixmultiplikation. Regulære og singulære matricer Institut for Matematiske Fag Aalborg Universitet 2011 Matrixmultiplikation Definition Definition A = [a ij ], B = [b ij ]: AB = C =
LINALG JULENØD 2013 SUNE PRECHT REEH
LINALG JULENØD 203 SUNE PRECHT REEH Resumé I denne julenød skal vi se på lineær algebra for heltallene Z Hvad går stadig godt? og hvad går galt? I de reelle tal R kan vi for ethvert a 0 altid finde R som
Sætning (Kædereglen) For f(u), u = g(x) differentiable er den sammensatte funktion F = f g differentiabel med
Oversigt [S] 3.5, 11.5 Nøgleord og begreber Kædereglen i en variabel Kædereglen to variable Test kædereglen Kædereglen i tre eller flere variable Jacobimatricen Kædereglen på matrixform Test matrixform
Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version
Det Ingeniør-, Natur- og Sundhedsvidenskabelige basisår Matematik 2A, Forår 2007, Hold 4 Opgave A Kommenteret version Opgaven består af et antal delopgaver Disse er af varierende omfang Der er også en
Kvadratiske matricer. enote Kvadratiske matricer
enote enote Kvadratiske matricer I denne enote undersøges grundlæggende egenskaber ved mængden af kvadratiske matricer herunder indførelse af en invers matrix for visse kvadratiske matricer. Det forudsættes,
Matematik for økonomer 3. semester
Matematik for økonomer 3. semester cand.oecon. studiet, 3. semester Planchesæt 2 - Forelæsning 3 Esben Høg Aalborg Universitet 10. september 2009 Institut for Matematiske Fag Aalborg Universitet Esben
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis
Lineær Algebra. Lars Hesselholt og Nathalie Wahl
Lineær Algebra Lars Hesselholt og Nathalie Wahl Oktober 2016 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan måde,
Teoretiske Øvelsesopgaver:
Teoretiske Øvelsesopgaver: TØ-Opgave 1 Subtraktion division i legemer: Er subtraktion division med elementer 0 i legemer veldefinerede, eller kan et element b have mere end ét modsat element -b eller mere
Note om endelige legemer
Note om endelige legemer Leif K. Jørgensen 1 Legemer af primtalsorden Vi har i Lauritzen afsnit 2.1.1 set følgende: Proposition 1 Lad n være et positivt helt tal. Vi kan da definere en komposition + på
Kursusgang 3 Matrixalgebra Repetition
Kursusgang 3 Repetition - [email protected] http://people.math.aau.dk/ froberg/oecon3 Institut for Matematiske Fag Aalborg Universitet 16. september 2008 1/19 Betingelser for nonsingularitet af en Matrix
Indhold. 5. Vektorrum og matricer Koordinattransformationer
Indhold Lineære afbildninger og matricer Talrummene R n, C n Matricer 8 3 Lineære afbildninger 4 Matrix algebra 8 5 Invers matrix 6 6 Transponeret og adjungeret matrix 9 Række- og søjleoperationer Lineære
Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2017
Besvarelser til Lineær Algebra Ordinær Eksamen - 12. Juni 2017 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Undervisningsnotat. Matricer
Undervisningsnotat. Matricer januar, C Definition En matrix er en ordnet mængde tal opstillet i m rækker og n søjler. Matricen A kunne være defineret som vist nedenfor. Hvert element i matricen er forsynet
Forelæsningsnoter til. Lineær Algebra. Niels Vigand Pedersen. Udgivet af. Asmus L. Schmidt. Københavns Universitet Matematisk Afdeling
Forelæsningsnoter til Lineær Algebra Niels Vigand Pedersen Udgivet af Asmus L Schmidt Københavns Universitet Matematisk Afdeling August Revideret 9 ii udgave, oktober 9 Forord Gennem en særlig aftale varetages
Modulpakke 3: Lineære Ligningssystemer
Chapter 1 Modulpakke 3: Lineære Ligningssystemer 1.1 Indledning - typer af ligningesystemer og løsninger Den lineære ligning 2x=3 kan løses umiddelbart ved at dividere med 2 på begge sider, så vi får:
DesignMat Uge 5 Systemer af lineære differentialligninger II
DesignMat Uge 5 Systemer af lineære differentialligninger II Preben Alsholm Efterår 21 1 Lineære differentialligningssystemer 11 Lineært differentialligningssystem af første orden Lineært differentialligningssystem
Matematik H1. Lineær Algebra
Matematik H Forelæsningsnoter til Lineær lgebra Niels Vigand Pedersen Udgivet af smus L Schmidt Københavns Universitet Matematisk fdeling ugust ii oplag, juli 4 Forord Gennem en særlig aftale varetages
Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer
Matematik: Struktur og Form Matrixmultiplikation. Regulære og singulære matricer Martin Raussen Department of Mathematical Sciences Aalborg University 2017 1 / 12 Matrixmultiplikation Am n = [aij ], Bn
Matematik og FormLineære ligningssystemer
Matematik og Form Lineære ligningssystemer Institut for Matematiske Fag Aalborg Universitet 2014 Ligningssystemer og matricer Til et ligningssystem svarer der en totalmatrix [A b] bestående af koefficientmatrix
DesignMat. Preben Alsholm. September Egenværdier og Egenvektorer. Preben Alsholm. Egenværdier og Egenvektorer
DesignMat September 2008 fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum over L (enten R eller C). fortsat Eksempel : et Eksempel 4 () af I II uden I Lad V være et vektorrum
Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Lineær Algebra. Differentialligninger
Lineær Algebra og Differentialligninger til Calculus 1 og 2 Århus 2005 Anders Kock og Holger Andreas Nielsen Indhold 1 Koordinatvektorer........................ 1 2 Matricer..............................
Matematik YY Foråret Kapitel 1. Grupper og restklasseringe.
Matematik YY Foråret 2004 Elementær talteori Søren Jøndrup og Jørn Olsson Kapitel 1. Grupper og restklasseringe. Vi vil i første omgang betragte forskellige typer ligninger og søge efter heltalsløsninger
Besvarelser til Lineær Algebra Reeksamen August 2016
Besvarelser til Lineær Algebra Reeksamen - 9. August 26 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Matricer og Matrixalgebra
enote 3 1 enote 3 Matricer og Matrixalgebra Denne enote introducerer matricer og regneoperationer for matricer og udvikler hertil hørende regneregler Noten kan læses uden andet grundlag end gymnasiet,
Carl Friedrich Gauß ( ), malet af Christian Albrecht Jensen. Lineær algebra. Ib Michelsen
Carl Friedrich Gauß 777 8, malet af Christian Albrecht Jensen Lineær algebra Ikast Ikast Version Hæftet her skal ses som et supplement til Klaus Thomsens forelæsninger på Aarhus Universitet og låner flittigt
Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 2018
Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Januar 08 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
LINEÆR ALGEBRA DIFFERENTIALLIGNINGER
LINEÆR ALGEBRA DIFFERENTIALLIGNINGER NOTER TIL CALCULUS 006 NIELSEN - SALOMONSEN INSTITUT FOR MATEMATISKE FAG AARHUS UNIVERSITET 006 Indhold Forord 5. Vektorer og linearkombinationer 7. Basis og dimension
Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016
Besvarelser til Lineær Algebra Ordinær eksamen - 6. Juni 2016 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Lineær Algebra. Lars Hesselholt og Nathalie Wahl
Lineær Algebra Lars Hesselholt og Nathalie Wahl 2. udgave, oktober 207 Forord Denne bog er beregnet til et første kursus i lineær algebra, men vi har lagt vægt på at fremstille dette materiale på en sådan
Modulpakke 3: Lineære Ligningssystemer
Chapter 4 Modulpakke 3: Lineære Ligningssystemer 4. Homogene systemer I teknikken møder man meget ofte modeller der leder til systemer af koblede differentialligninger. Et eksempel på et sådant system
Matematik og Form 3. Rækkereduktion til reduceret echelonfo. Rang og nullitet
Matematik og Form 3. Rækkereduktion til reduceret echelonform Rang og nullitet Institut for Matematiske Fag Aalborg Universitet 11.2.2013 Reduktion til (reduceret) echelonmatrix Et eksempel Et ligningssystem
1.1 Legemer. Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal.
SEKTION 11 LEGEMER 11 Legemer Legemer er talsystemer udstyret med addition og multiplikation, hvor vi kan regner som vi plejer at gøre med de reelle tal Definition 111 Et legeme F er en mængde udstyret
Besvarelser til Lineær Algebra Ordinær Eksamen Juni 2018
Besvarelser til Lineær Algebra Ordinær Eksamen - 5. Juni 28 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en sådan. Dette dokument har udelukkende
Oversigt [LA] 11, 12, 13
Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar
Lineære ligningssystemer og Gauss-elimination
Lineære ligningssystemer og Gauss-elimination Preben Alsholm 18 februar 008 1 Lineære ligningssystemer og Gauss-elimination 11 Et eksempel Et eksempel 100g mælk Komælk Fåremælk Gedemælk Protein g 6g 8g
Lineær Algebra eksamen, noter
Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 2014
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 3. Juni 204 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over
Ekstremum for funktion af flere variable
Ekstremum for funktion af flere variable Preben Alsholm 28. april 2008 1 Ekstremum for funktion af flere variable 1.1 Hessematricen I Hessematricen I Et stationært punkt for en funktion af flere variable
3.1 Baser og dimension
SEKTION 3 BASER OG DIMENSION 3 Baser og dimension Definition 3 Lad V være et F-vektorrum Hvis V = {0}, så har V dimension 0 2 Hvis V har en basis bestående af n vektorer, så har V dimension n 3 Hvis V
Uge 6 Store Dag. Opgaver til OPGAVER 1. Opgave 1 Udregning af determinant. Håndregning Der er givet matricen A =
OPGAVER Opgaver til Uge 6 Store Dag Opgave Udregning af determinant. Håndregning 0 Der er givet matricen A = 0 2 2 4 0 0. 2 0 a) Udregn det(a) ved opløsning efter en selvvalgt række eller søjle. b) Omform
Her skal du lære om 1. Talfølge og talrække 2. Afsnitssum 3. Konvergens 4. Konvergente rækker har små led 5. Regneregler
Oversigt [S] 8.2 Her skal du lære om. Talfølge og talrække 2. Afsnitssum 3. Konvergens 4. Konvergente rækker har små led 5. Regneregler Calculus - 2003 Uge 4. - Uendelig række Definition Givet en talfølge
Mat10 eksamensspørgsmål
Mat10 eksamensspørgsmål Martin Geisler 9. januar 2002 Resumé Dette dokument er en gennemgang af de eksamensspørgsmål der blev stillet til den mundtlige eksamen i Mat10, januar 2002
Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab)
Noter til LinAlgNat på KU (Lineær Algebra i Naturvidenskab) Nikolai Plambech Nielsen, LPK331 Version 10 2 februar 2016 Indhold 1 Introduktion, lineære afbildninger og matricer 3 11 Talrum (R & C) 3 12
Lineær Algebra - Beviser
Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner
Chapter 3. Modulpakke 3: Egenværdier. 3.1 Indledning
Chapter 3 Modulpakke 3: Egenværdier 3.1 Indledning En vektor v har som bekendt både størrelse og retning. Hvis man ganger vektoren fra højre på en kvadratisk matrix A bliver resultatet en ny vektor. Hvis
Matematik Camp Noter og Opgaver
Matematik Camp 2018 Noter og Opgaver Freja Elbro Simon Skjernaa Erfurth Jonas Rysgaard Jensen Benjamin Muntz Anders Jess Pedersen Eigil Fjeldgren Rischel Nikolaj Jensen Ulrik Indhold Indhold i 1 Introduktion
Lineær algebra Kursusgang 6
Lineær algebra Kursusgang 6 Mindste kvadraters metode og Cholesky dekomposition Vi ønsker at finde en mindste kvadraters løsning til det (inkonsistente) ligningssystem hvor A er en m n matrix. Ax = b,
Ølopgaver i lineær algebra
Ølopgaver i lineær algebra 30. maj, 2010 En stor del af de fænomener, vi observerer, er af lineær natur. De naturlige matematiske objekter i beskrivelsen heraf bliver vektorrum rum hvor man kan lægge elementer
Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005
2010 Matematik 2A hold 4 : Prøveeksamen juni 2010
1 of 7 31-05-2010 13:18 2010 Matematik 2A hold 4 : Prøveeksamen juni 2010 Welcome Jens Mohr Mortensen [ My Profile ] View Details View Grade Help Quit & Save Feedback: Details Report [PRINT] 2010 Matematik
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec.
Noter om Komplekse Vektorrum, Funktionsrum og Differentialligninger LinAlg 2004/05-Version af 16. Dec. 1 Komplekse vektorrum I defininitionen af vektorrum i Afsnit 4.1 i Niels Vigand Pedersen Lineær Algebra
DesignMat Uge 11. Vektorrum
DesignMat Uge 11 (fortsat) Forår 2010 Lad L betegne R eller C. Lad V være en ikke-tom mængde udstyret med en addition + og en multiplikation med skalar. (fortsat) Lad L betegne R eller C. Lad V være en
MASO Uge 7. Differentiable funktioner. Jesper Michael Møller. Uge 7. Formålet med MASO. Department of Mathematics University of Copenhagen
MASO Uge 7 Differentiable funktioner Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 7 Formålet med MASO Oversigt Differentiable funktioner R n R m Differentiable funktioner
MASO Uge 8. Invers funktion sætning og Implicit given funktion sætning. Jesper Michael Møller. Department of Mathematics University of Copenhagen
MASO Uge 8 Invers funktion sætning og Implicit given funktion sætning Jesper Michael Møller Department of Mathematics University of Copenhagen Uge 43 Formålet med MASO Oversigt Invertible og lokalt invertible
DesignMat Egenværdier og Egenvektorer
DesignMat Egenværdier og Egenvektorer Preben Alsholm September 008 1 Egenværdier og Egenvektorer 1.1 Definition og Eksempel 1 Definition og Eksempel 1 Lad V være et vektorrum over L (enten R eller C).
1 Om funktioner. 1.1 Hvad er en funktion?
1 Om funktioner 1.1 Hvad er en funktion? Man lærer allerede om funktioner i folkeskolen, hvor funktioner typisk bliver introduceret som maskiner, der tager et tal ind, og spytter et tal ud. Dette er også
Eksamen i Lineær Algebra
To find the English version of the exam, please read from the other end Eksamen i Lineær Algebra Første Studieår ved Det Teknisk-Naturvidenskabelige Fakultet & Det Sundhedsvidenskabelige Fakultet Onsdag
Lineære ligningssystemer
enote 2 1 enote 2 Lineære ligningssystemer Denne enote handler om lineære ligningssystemer, om metoder til at beskrive dem og løse dem, og om hvordan man kan få overblik over løsningsmængdernes struktur.
MATRICER LINEÆRE LIGNINGER
MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER 6. udgave 2016 FORORD Dette notat viser hvorledes man kan løse lineære ligningssystemer ved Gaussmetode dels uden regnemidler dels med regnemidler.
Symmetriske og ortogonale matricer Uge 7
Symmetriske og ortogonale matricer Uge 7 Preben Alsholm Efterår 2009 1 Symmetriske og ortogonale matricer 1.1 Definitioner Definitioner En kvadratisk matrix A = [ a ij kaldes symmetrisk, hvis aij = a ji
MATRICER LINEÆRE LIGNINGER
MOGENS ODDERSHEDE LARSEN MATRICER og LINEÆRE LIGNINGER med inddragelse af programmerne TI-Nspire og Maple 0 3 4 3 4 0 3 0 3 0 3 4 x x x x 4 udgave 04 FORORD Dette notat giver en gennemgang af de matrixoperationer,
