Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder
|
|
|
- Pia Carstensen
- 9 år siden
- Visninger:
Transkript
1 Oersigt [LA],, Prikprodkt Nøgleord og begreber Ortogonlitet Ortogonlt komplement Tømrerprincippet Ortogonl projektion Pthgors formel Kortest fstnd Agst 00, opge 6 Cch-Schwrz lighed For ektorer =,..., n, b = b,..., b n i R n er sklrprodktet n b = i b i og lœngden, normen i= = og fstnden mellem ektorer og b b Clcls Uge Clcls Uge Vinkelret b Vinkerette ektorer For en delmængde f ektorer X V = R n er det ortogonle komplement nderrmmet X = { = 0, X} To ektorer, b i R n er ortogonle, inkelrette, his b = 0. Det skries også b b = 0 Der gælder 0 = V, V = 0 Clcls Uge Clcls Uge eksempel For =, R er det ortogonle komplement { = 0} bestemt ed ligningen, =,, + = 0 - figr spn = =, =, Clcls Uge Clcls Uge Tømrersend Sætning tømrerprincippet For en delmængde f ektorer X V = R n som dspænder et nderrm U V er det ortogonle komplement Altså gælder X = U w U w, X - eksempel For U = spn,,,,, 4 R er det ortogonle komplement U = { = 0, U} bestemt ed ligningssstemet, =,,, + + = = 0 = = Clcls Uge Clcls Uge
2 Nedfæld inkelret - figr Projektion - figr z U=spn,,,,,4,, w = U U Ortogonl projektion på nderrm Clcls Uge Clcls Uge Projektion Projektion på koordintpln For et nderrm U V = R n er den ortogonle projektion f en ektor på U den ektor U som opflder = w U For nderrmet U = spne, e R n er den ortogonle projektion f en ektor =,,..., n på U giet ed proj U = =,, 0,..., 0 Der gælder = + w, U, w U Den ortogonle projektion betegnes proj U = Ses let d = 0, 0,,..., n U Clcls Uge Clcls Uge Projektion på en ektor Projektion på ektor For et nderrm U = spn R n dspændt f netop én ektor 0 er den ortogonle projektion f en ektor på U giet ed = - figr w = U Det skries proj = = λ U = spn Ortogonl projektion = proj på spn λ = Clcls Uge Clcls Uge Projektion på en ektor Projektion på en ektor - rgment For et nderrm U = spn er er den ortogonle projektion på U giet ed = proj = Efteris ltså = = 0 For et nderrm U = spn R dspændt f ektoren =,, er den ortogonle projektion f en ektor =,, på U giet ed proj = = + +,, Clcls Uge Clcls Uge
3 Projektion på ektor Projektion på en ektor - figr =, 8 proj = 9, =, 4 For et nderrm U = spn R dspændt f ektoren =, 4 er den ortogonle projektion f en ektor =, 8 på U giet ed proj = = , 4 =, 4 = 9, Ortogonl projektion proj på spn Clcls Uge Clcls Uge Sætning 7 Ld,..., k R n œre inbrdes ortogonle egentlige ektorer. Antg t de dspœnder nderrmmet U. Så gœlder proj U = k proj j j= er den ortogonle projektion f en ektor på U. Beis Efteris ed tømrerprincippet, t k j= proj j U Ld =,,, =,, R ære inbrdes ortogonle ektorer der dspænder nderrmmet U. Så er den ortogonle projektion proj U = proj + proj = + = + = +,, ,, +,, Clcls Uge Clcls Uge Betrgt =,, 0,, =,,, R 4 smt nderrmmet U = spn,.. Vektorerne og er ortogonle: = = 0 - fortst Betrgt =,, 0,, =,,, R 4 smt nderrmmet U = spn,.. Ld =,, 8, 6 og beregn proj U = proj + proj = + = 9 9, 8, 0, +,,, 8 4 =, 0,, 7 Clcls Uge Clcls Uge Pthgors Pthgors Sætning 8 Pthgors His b, så er Pthgors - figr + b = + b Beis + b b + b = + b + b = + b + b b = + b Pthgors som d kender den + b = + b Clcls Uge Clcls Uge
4 Afstnd til nderrm Mindste fstnd Sætning 9 Ld U V = R n œre et nderrm. Antg t ektoren hr ortogonl projektion på U. Så er den ektor i U, der hr kortest fstnd til. Sætning 9 - figr Beis For en ektor U gælder = + = + i følge Pthgors, Sætning 8, d. Mindste fstnd til nderrm U Clcls Uge Clcls Uge Afstnd til linje Middelærdi [LA]. Mindste kdrters metode For en linje U = spn R dspændt f ektoren =,, er den ektor i U med kortest fstnd til en ektor =,, giet ed Kdrtfstnden er proj = = + +,, proj = m + m + m hor m = ++. Clcls Uge For,..., n il middelærdien minimerer kdrtsmmen m = + + n n m + + n m Sæt =,..., n og =,...,. Så er m bestemt ed m = proj = = + + n n Clcls Uge Opge Mtemtik Alf, Agst 00 Opge 6 Betrgt det lineære nderrm U R 4, der er dspændt f ektorer =,,, og = 0,,, 0. Angi den ektor i U, der hr kortest fstnd til ektoren =,,, 4. I følge Sætning 9 er den ortogonle projektion f på U. Den korteste fstnd er Opge Mtemtik Alf, Agst 00 Opge 6 - fortst Vektorerne =,,, og = 0,,, 0 hr = = 0 Fr Sætning 7 fås projektionen f =,,, 4 = proj U = proj + proj = + = 4 4,,, + 5 0,,, 0 =,, 7, Clcls Uge Clcls Uge Opge Mtemtik Alf, Agst 00 [LA]. Projektion på -dim. nderrm Opge 6 - ekstr Restektoren =,,, 4,, 7, =,,, hr længde, som ngier den mindste fstnd fr til U - figr w = proj =,,, 7 = = 6 proj To ektorer rettet op Clcls Uge Clcls Uge 46. -
5 [LA]. Projektion på -dim. nderrm [LA]. Projektion på -dim. nderrm Bemærkning Ld, ære ikke-prllelle ektorer der dspænder nderrmmet U. Sæt w = proj = Så er, w ortogonle og dspænder U. Den ortogonle projektion f ektoren på U er d proj U = proj + proj w = + w delis 7 side 84 Ld =,,, =,, ære ektorer der dspænder nderrmmet U. Sæt w = proj = =,,,, =, 0, Den ortogonle projektion f ektoren =,.6, 6 på U er d proj U = proj + proj w = + w Clcls Uge Clcls Uge [LA]. Projektion på -dim. nderrm Cch-Schwrz lighed [LA] Andre sætninger om sklrprodkt - fortst For =,,, w =, 0,, =,.6, 6 er projektion f ektoren på U = spn, w proj U = proj + proj w = + w =.6,, +, 0, =.7, 4., 5.7 Sætning 0 Cch-Schwrz lighed For ektorer, gœlder Beis Fr Pthgors, Sætning 8, på de ortogonle ektorer proj, proj fås proj = Forlæng med og ddrg kdrtroden. Clcls Uge Clcls Uge Trekntsligheden [LA] Andre sætninger om sklrprodkt Trekntslighed [LA] Andre sætninger om sklrprodkt Sætning Trekntsligheden For ektorer, gœlder Beis Fr Cch-Schwrz lighed Uddrg kdrtroden = + Trekntslighed - figr + Indlsende trekntslighed + + Clcls Uge Clcls Uge
Definition 13.1 For en delmængde af vektorer X R n er det ortogonale komplement. v 2
Oersigt [LA],, Komplement Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på ektor Projektion på basis Kortest afstand August 00, opgae 6 Tømrermester Januar
Definition. og lœngden, normen. og afstanden mellem vektorer a og b. Der gælder
Oversigt [LA] 11, 1, 13 Prikprodukt Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 00, opgave 6 Cauchy-Schwarz ulighed
Oversigt [LA] 11, 12, 13
Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalitet Ortogonalt komplement Tømrerprincippet Ortogonal projektion Pythagoras formel Kortest afstand August 2002, opgave 6 Cauchy-Schwarz ulighed Calculus
Oversigt [LA] 11, 12, 13
Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar
Nøgleord og begreber Ortogonalt komplement Tømrerprincippet. [LA] 13 Ortogonal projektion
Oversigt [LA] 11, 12, 13 Nøgleord og begreber Ortogonalt komplement Tømrerprincippet Ortogonal projektion Projektion på 1 vektor Projektion på basis Kortest afstand August 2002, opgave 6 Tømrermester Januar
Vektorer. koordinatgeometri
Vektorer og koordintgeometri for gymnsiet, dge 5 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors
Vektorer. koordinatgeometri. for gymnasiet, udgave Karsten Juul
Vektorer og koordintgeometri for gmnsiet, dge 5 7 Krsten Jl VEKTORER Koordinter til pnkt i plnen Koordinter til pnkt i rmmet Vektor: Definition, sprogrg, mm 4 Vektor: Koordinter 5 Koordinter til ektors
Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. 3) Angiv en enhedsvektor u så at den retningsafledede D u f(5, 2) er 0.
Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.
Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
GEOMETRI. Generelt om vinkler. Notation for vinkler: u, A, BAC. Topvinkler er lige store, x = y
GEOMETRI Generelt om inkler Nottion for inkler: u, A, BAC Topinkler er lige store, x y Komplementinkler er inkler, der tilsmmen er 90 u + 90 Supplementinkler er inkler, der tilsmmen er 180 (I stedet for
Opgave 1 Lad R betegne kvartcirkelskiven x 2 + y 2 4, x 0, y 0. (Tegn.) Udregn R x2 y da. Løsning y. Opgave 1 - figur. Calculus 2-2006 Uge 50.
Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
Geometrinoter 2. Brahmaguptas formel Arealet af en indskrivelig firkant ABCD kan tilsvarende beregnes ud fra firkantens sidelængder:
Geometrinoter 2, jnur 2009, Kirsten Rosenkilde 1 Geometrinoter 2 Disse noter omhndler sætninger om treknter, trekntens ydre røringscirkler, to cirklers rdiklkse smt Simson- og Eulerlinjen i en treknt.
Introduktion til Grafteori
Introdktion til Grafteori Jonas Lindstrøm Jensen ([email protected]) IMF, 2007 1 Indledning En graf inden for matematikken er nogle pnkter, kaldet knder, der er forbndet af nogle streger, kaldet kanter. Hor
Opgave 1 - løsning 1) De partielle afledede beregnes. Opgave 1 Betragt funktionen. x + y for x > 0, y > 0. f x = y 1 (x + y) 2.
Oversigt Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
Curling fysik. Elastisk ikke centralt stød mellem to curling sten. Dette er en artikel fra min hjemmeside:
Crling fysik Dette er en artikel fra in hjeeside: www.olewitthansen.dk Ole Witt-Hansen 08 Indhold. Elastisk stød.... Centralt elastisk stød..... Masseidtpnkts systeet. : Centre of ass...3 3. Crling fysik...4
Elementær Matematik. Vektorer i planen
Elementær Mtemtik Vektorer i plnen Køge Gymnsium 0 Ole Witt-Hnsen Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer... 3. Multipliktion f vektor med et tl...3 4. Opløsning
Geometri med Geometer II
hristian Madsen & Frans Kappel Øre, Morsø Gymnasium Geometri med Geometer II I det første forløb om geometri med Geometer beskæftigede i os især med at konstruere på skærmen. Ved hjælp af konstruktionerne
Grafisk bestemmelse - fortsat Støttepunkter. Grafisk bestemmelse y. giver grafen. Niveaukurver og retning u = ( 1
Oversigt [S]. Nøgleord og begreber Retningsafledt Gradientvektor Gradient i flere variable Fortolkning af gradientvektoren Agst, opgave 5 Delvis afledt [S]. Directional derivatives and te... Definition
Oversigt [LA] 10, 11; [S] 9.3
Oversigt [LA] 1, 11; [S] 9.3 Nøgleord og begreber Repetition: enhedsvektor og identitetsmatrix Diagonalmatricer Diagonalisering og egenvektorer Matrixpotens August 22, opgave 2 Skalarprodukt Længde Calculus
Teknisk Matematik. Teknisk Matematik Formler. Preben Madsen. 8. udgave
Teknisk Mtemtik Formler Teknisk Mtemtik Formler Preen Mdsen 8. udge Teknisk mtemtik Formler er et prktisk opslgsærk, der gier et hurtigt oerlik oer lle formler fr læreogens enkelte kpitler. Ud oer formlerne
(a k cos kx + b k sin kx) k=1. cos θk = sin θ 1 ak. , b k. k=1
SEKTION 7 FOURIERANALYSE 7 Fouriernlyse Periodiske funktioner er vigtige i mnge smmenhænge, både videnskbeligt og teknisk Vi vil normlisere, så ntger, t perioden er π Disse funktioner er bedst nlyseret
ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG
ØVEHÆFTE FOR MATEMATIK C POTENS-SAMMENHÆNG INDHOLDSFORTEGNELSE 1 Formelsmling... side 2 Uddbning f visse formler... side 3 2 Grundlæggende færdigheder... side 5 2 Finde konstnterne og b i en formel...
Elementær Matematik. Analytisk geometri
Elementær Mtemtik Anltisk geometri Ole Witt-Hnsen 0 Indhold. koordintsstemet.... Afstndsformlen.... Liniens ligning...4 4. Ortogonle linier...7 5. Liniers skæring. To ligninger med to uekendte....7 6.
Matematik B-A. Trigonometri og Geometri. Niels Junge
Mtemtik B-A Trigonometri og Geometri Niels Junge Indholdsfortegnelse Indledning...3 Trigonometri...3 Sinusreltionen:...6 Cosinusreltionen...7 Dobbeltydighed...7 Smmendrg...8 Retvinklede treknter...8 Ikke
Oversigt Matematik Alfa 1, August 2002
Oversigt [S], [LA] Nøgleord og begreber Egenvektorer, egenværdier og diagonalisering Dobbelt integral og polært koordinatskift Ortogonal projektion og mindste afstand Retningsafledt og gradient Maksimum/minimums
Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.
Opsmling Hvis mn ønsker mere udfordring, kn mn springe den første opgve f hvert emne over Brøkregning, prentesregneregler, kvdrtsætningerne, potensregneregler og reduktion Udregn nedenstående tl i hånden:
Lorentz kraften og dens betydning
Lorentz kraften og dens betydning I dette tillæg skal i se, at der irker en kraft på en ladning, der beæger sig i et agnetfelt, og i skal se på betydninger heraf. Før i gør det, skal i dog kigge på begrebet
Du kan efter ønske opfatte integralet som et Riemann-integral eller et Lebesgue-integral (idet de to er identiske på C([a, b], C) jf. Theorem 11.8.
Anlyse Øvelser Rsmus Sylvester Bryder. og 5. oktober 3 Supplerende opgve Ld C([, b], C) betegne rummet f lle kontinuerte funktioner f : [, b] C, hvor < b, og definér et indre produkt på C([, b], C) ved
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET.. Beregn den retningsafledede D u f(0, 0).
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) JANUAR 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x, y) = x cos(y) + y sin(x). ) Angiv gradienten f. 2) Lad u betegne
STUDENTEREKSAMEN NOVEMBER-DECEMBER 2007 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER
STUDENTEREKSAMEN NOVEMBER-DECEMBER 007 007-8-V MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Tirsdg den 18 december 007 kl 900-1000 BESVARELSEN AFLEVERES KL 1000 Der
Formelsamling for matematik niveau B og A på højere handelseksamen. Appendiks
Formelsmling for mtemtik niveu B og A på højere hndelseksmen Appendiks April Mtemtik B Procentregning Procentvis vækst Værdien f en given vriel x liver ændret fr x til x 1. Den %-vise vækst eregnes ved:
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA], 2, 3, [S] 9.-3 Nøgleord og begreber Koordinatvektorer, talpar, taltripler og n-tupler Linearkombination Underrum og Span Test linearkombination Lineær uafhængighed Standard vektorer Basis
Nøgleord og begreber. Definition 15.1 Den lineære 1. ordens differentialligning er
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 15, 16, 17 Nøgleord og begreber 1. ordens lineær ligning Løsningsmetode August 2002, opgave 7 1. ordens lineært system Løsning ved egenvektor Lille opgave Stor opgave
Eksamen Analyse 1, Juni 2015, Besvarelse 1. Opgave 1. ( ln x) q x p dx =
Eksmen Anlyse, Juni 25, Besvrelse Ld p >, q, og r. Opgve () Vis t integrlet ( ln x)r x p dx konvergerer. [Vink: Smmenlign med x s for pssende vlgt s.] ( ln x)q x p dx. [Vink: Anvend (b) Bevis formlen (
Trigonometri. Matematik A niveau
Trigonometri Mtemtik A niveu Arhus Teh EUX Niels Junge Trigonometri Sinus Cosinus Tngens Her er definitionen for Cosinus Sinus og Tngens Mn kn sige t osinus er den projierede på x-ksen og sinus er den
Matematik F2 Opgavesæt 1
Opgaer uge 1 I denne uge er temaet komplekse tal og komplekse funktioner af en kompleks ariabel. De første opgaer skulle gerne øge jeres fortrolighed med komplekse tal. I kan med fordel repetere de basale
Besvarelse af Eksamensopgaver Juni 2005 i Matematik H1
Besvarelse af Eksamensopgaver Juni 5 i Matematik H Opgave De fire vektorer stilles op i en matrix som reduceres: 4 4 4 8 4 4 (a) Der er ledende et-taller så dim U =. Som basis kan f.eks. bruges a a jfr.
Matematik F2 - sæt 1 af 7, f(z)dz = 0 1
f(z)dz = 0 1 I denne uge er det meningen, at I skal blie fortrolige med komplekse tal og komplekse funktioner af en kompleks ariabel. Vi skal kigge nærmere på, hornår komplekse funktioner er differentiable
Oversigt [LA] 1, 2, 3, [S] 9.1-3
Oversigt [LA] 1, 2, 3, [S] 9.1-3 Nøgleord og begreber Talpar, taltripler og n-tupler Linearkombination og span Test linearkombination Hvad er en matrix Matrix multiplikation Test matrix multiplikation
Pythagoras sætning. I denne note skal vi give tre forskellige beviser for Pythagoras sætning:
Pythgors sætning I denne note skl i gie tre forskellige eiser for Pythgors sætning: Pythgors sætning I en retinklet treknt, hor den rette inkel etegnes med, gælder: + = eis 1 Ld os tegne et stort kdrt
Vejledende besvarelse på august 2009-sættet 2. december 2009
Vejledende besvarelse på august 29-sættet 2. december 29 Det følgende er en vejledende besvarelse på eksamenssættet i kurset Calculus, som det så ud i august 29. Den tjener primært til illustration af,
Arctan x = x x3 3 + x5 (En syvende berømt række er binomialrækken, [S] 8.8.) Eksempel
Oversigt [S] 8.5, 8.6, 8.7, 8.0 Nøgleord og begreber Seks berømte potensrækker Potensrække Konvergensrdius Differentition og integrtion f potensrækker Tylor og McLurin rækker August 00, opgve 4 Den geometriske
Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse matricer Test invers
Nøgleord og begreber. Definition multiplikation En m n-matrix og en n p-matrix kan multipliceres (ganges sammen) til en m p-matrix.
Oversigt [LA] 3, 4, 5 Matrix multiplikation Nøgleord og begreber Matrix multiplikation Identitetsmatricen Transponering Fra matrix til afbildning Fra afbildning til matrix Test matrix-afbildning Inverse
er en n n-matrix af funktioner
Oversigt [S] 7.2, 7.5, 7.6; [LA] 18, 19 Ligning og løsning Nøgleord og begreber Eksistens og entdighed Elementære funktioner Eksponential af matrix Retningsfelt Hastighedsfelt for sstem for sstem Stabilitet
Elementær Matematik. Plangeometri
Elementær Mtemtik Plngeometri Ole Witt-Hnsen Køge Gymnsium 006 Kp Indhold. Plngeometriens Aksiomer.... Vinkler.... Et pr simple geometriske sætninger...3 Kp. Trekntskonstruktion...5. Kongruenssætningerne...5.
Elementær Matematik. Vektorer i planen
Elementær Mtemtik Vektorer i plnen Ole Witt-Hnsen 0 Indhold. Prllelforskydninger i plnen. Vektorer.... Sum og differens f to vektorer.... Multipliktion f vektor med et tl... 4. Opløsning f en vektor efter
Vektorer. koordinatgeometri
Vektorer og koordintgeometri for gmnsiet 0 Krsten Juul Vektorer og koordintgeometri for gmnsiet Ä 0 Krsten Juul Dette håfte kn downlodes fr mtdk/noterhtm HÅftet mç ruges i undervisningen hvis låreren med
Matematik. Kompendium i faget. Tømrerafdelingen. 1. Hovedforløb. a 2 = b 2 + c 2 2 b c cos A. cos A = b 2 + c 2 - a 2 2 b c
Kompendium i fget Mtemtik Tømrerfdelingen 1. Hovedforlø. Trigonometri nvendes til eregning f snd længde og snd vinkel i profiler. Sinus Cosinus Tngens 2 2 + 2 2 os A os A 2 + 2-2 2 Svendorg Erhvervsskole
Besvarelser til de to blokke opgaver på Ugeseddel 7
Besvarelser til de to blokke opgaver på Ugeseddel 7 De anførte besvarelser er til dels mere summariske end en god eksamensbesvarelse bør være. Der kan godt være fejl i - jeg vil meget gerne informeres,
( ) Projekt 7.17 Simpsons formel A A A. Hvad er matematik? 3 ISBN
Projekt 7.7 Simpsons formel Simpson vr søn f en selvlært væver, og skulle egentlig selv hve været en væver, men en solformørkelse vkte hns interesse for mtemtik og nturvidensk og mod lle odds lykkedes
Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM02)
SYDDANSK UNIVERSITET ODENSE UNIVERSITET INSTITUT FOR MATEMATIK OG DATALOGI Skriftlig eksamen Vejledende besvarelse MATEMATIK B (MM2) Fredag d. 2. januar 22 kl. 9. 3. 4 timer med alle sædvanlige skriftlige
Michel Mandix (2010) INDHOLDSFORTEGNELSE:... 2 EN TREKANTS VINKELSUM... 3 PYTHAGORAS LÆRESÆTNING... 4 SINUSRELATIONERNE... 4 COSINUSRELATIONERNE...
MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: FERUAR 04 Michel Mndi (00) Side f 35 Indholdsfortegnelse: INDHOLDSFORTEGNELSE:... EN TREKANTS VINKELSUM... 3 PYTHAGORAS
x 2 + y 2 dx dy. f(x, y) = ln(x 2 + y 2 ) + 2 1) Angiv en ligning for tangentplanen til fladen z = f(x, y) i punktet
Eksamensopgaver fra Matematik Alfa 1 Naturvidenskabelig Kandidateksamen August 1999. Matematik Alfa 1 Opgave 1. Udregn integralet 1 1 y 2 (Vink: skift til polære koordinater.) Opgave 2. Betragt funktionen
Implicit differentiation Med eksempler
Implicit fferentition Implicit fferentition Indhold. Implicit fferentition.... Tngent til ellipse og hperel... 3. Prisme i hovedstillingen...3 3. Teoretisk rgument for hovedstillingen...4 Ole Witt-Hnsen
Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet
Oversigt [S] 7.2, 7.5, 7.6; [LA] 17, 18 Nøgleord og begreber Eksistens og entydighed Retningsfelt Eulers metode Hastighedsfelt Stabilitet Calculus 2-2004 Uge 49.2-1 Ligning og løsning [LA] 17 Generel ligning
Ny Sigma 9, s Andengradsfunktioner med regneforskrift af typen y = ax + bx + c, hvor a 0.
Ny Sigm 9, s 110 Andengrdsfunktioner med regneforskrift f typen y = x + x + c, hvor 0 Lineære funktioner (førstegrdsfunktioner) med regneforskrift f typen y = αx + β Grfen for funktioner f disse typer
Lineær Algebra - Beviser
Lineær Algebra - Beviser Mads Friis 8 oktober 213 1 Lineære afbildninger Jeg vil i denne note forsøge at give et indblik i, hvor kraftfuldt et værktøj matrix-algebra kan være i analyse af lineære funktioner
ANALYSE 1, 2014, Uge 3
ANALYSE 1, 2014, Uge 3 Forelæsninger Tirsdg. Vi generliserer tlrækker til funktionsrækker ved t udskifte tllene med funktioner (TL Afsnit 12.5). Det svrer til forrige uges skridt fr tlfølger til funktionsfølger.
Lineær Algebra eksamen, noter
Lineær Algebra eksamen, noter Stig Døssing, 20094584 June 6, 2011 1 Emne 1: Løsninger og least squares - Løsning, ligningssystem RREF (ERO) løsninger Bevis at RREF matrix findes Løsninger til system (0,
Det dobbelttydige trekantstilfælde
Det dobbelttydige trekntstilfælde Heine Strømdhl, Københvns Kommunes Ungdomsskoler Formålet med denne rtikel er t formulere en meget simpel grfisk løsningsmetode til det dobbelttydige trekntstilfælde med
Det skrå kast uden luftmodstand
Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET
EKSAMENSOPGAVELØSNINGER CALCULUS 2 (2005) AUGUST 2006 AARHUS UNIVERSITET H.A. NIELSEN & H.A. SALOMONSEN Opgave. Lad f betegne funktionen f(x,y) = x 3 + x 2 y + xy 2 + y 3. ) Angiv gradienten f. 2) Angiv
TAL OG BOGSTAVREGNING
TAL OG BOGSTAVREGNING De elementære regnerter I mtemtik kn vi regne med tl, men vi kn også regne med bogstver, som gør det hele en smugle mere bstrkt. Først skl vi se lidt på de fire elementære regnerter,
Eksamensspørgsmål: Potens-funktioner
Eksmensspørgsmål: Potens-funktioner Definition:... 1, mønt flder ned:... 1 Log y er en liner funktion f log x... 2 Regneforskrift... 2... 2 Smmenhæng mellem x og y ved potens-vækst... 3 Tegning f grf for
Projekt 6.5 Vektorers beskrivelseskraft
Hvd er mtemtik? ISBN 978877066879 Projekt 65 Vektorers eskrivelseskrft Indhold Vektorer i gymnsiet Linjestykker og prllelogrmmer Bevis inden for den klssiske geometri Bevis med nvendelse f vektorer 3 Digonlerne
Bølgeligningen. Indhold. Udbredelseshastighed for bølger i forskellige stoffer 1
Udbredelseshastighed for bølger i forskellige stoffer 1 Bølgeligningen Indhold 1. Bølgeligningen.... Udbredelseshastigheden for bølger på en elastisk streng...3 3. Udbredelseshastigheden for longitudinalbølger
Noget om Riemann integralet. Noter til Matematik 2
Noget om Riemnn integrlet. Noter til Mtemtik 2 Arne Jensen Afdeling for Mtemtik og Dtlogi Institut for Elektroniske Systemer Alborg Universitetscenter Fredrik Bjers Vej 7 9220 Alborg Ø 4. pril 1991 Revideret
Matematikken bag perspektivet I
Supperende mterie ti erspektiv med GeoMeter Mtemtikken bg perspektivet I Som udgngspunkt for t diskutere de vigtigste mtemtiske sætninger bg perspektivtegninger vi vi benytte noge eementære egenskber for
MATEMATISK FORMELSAMLING
MATEMATISK FORMELSAMLING GUX Grønlnd Mtemtisk formelsmling til B-niveu, GUX Grønlnd Deprtementet for uddnnelse 05 Redktion: Rsmus Andersen, Jens Thostrup MtemtiskformelsmlingtilB-niveu GUX Grønlnd FORORD
3. Vilkårlige trekanter
3. Vilkårlige treknter 3. Vilkårlige treknter I dette fsnit vil vi beskæftige os med treknter, der ikke nødvendigvis er retvinklede. De formler, der er omtlt i fsnittet om retvinklede treknter, kn ikke
Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave
Oversigt [S] 7.3, 7.4, 7.5, 7.6; [LA] 14, 15 Nøgleord og begreber Separable ligninger 1. ordens lineær ligning August 2002, opgave 7 Rovdyr-Byttedyr system 1. ordens lineært system Opgave Calculus 2-2005
Projekt 2.3 Euklids konstruktion af femkanten
Projekter: Kapitel. Projekt.3 Euklids konstruktion af femkanten Projekt.3 Euklids konstruktion af femkanten Et uddrag af sætninger fra Euklids Elementer, der fører frem til konstruktionen af den regulære
Hilbert rum. Chapter 3. 3.1 Indre produkt rum
Chapter 3 Hilbert rum 3.1 Indre produkt rum I det følgende skal vi gøre brug af komplekse såvel som reelle vektorrum. Idet L betegner enten R eller C minder vi om, at et vektorrum over L er en mængde E
Linjer på skift. Figurer. Format 5. Nr. 15. a a Tegn AB, BC, AE, CD og CF, GH, GI. b Tegn de to parallelle linjestykker, der kan tegnes til GH.
Linjer på skift Nr. 15 Tegn B, BC, E, CD og CF, GH, GI. Tegn de to prllelle linjestykker, der kn tegnes til GH. c Hvd hedder de to linjestykker? d Tegn det vinkelrette linjestykke til GH, der endnu ikke
Vektorer i planen. Et oplæg Karsten Juul
Vektorer i planen Et oplæg 3 4 4 2 2007 Karsten Juul Dette hæfte er tænkt brugt som et oplæg der skal gennemgås før man begynder på en lærebogs fremstilling af emnet vektorer. Formålet med øvelserne er
MATEMATIK NOTAT MATEMATISKE BEVISER AF: CAND. POLYT. MICHEL MANDIX
MATEMATIK NOTAT MATEMATISKE EVISER AF: CAND. POLYT. MICHEL MANDIX SIDSTE REVISION: AUGUST 07 Michel Mndi (07) Indholdsfortegnelse Side f 4 Indholdsfortegnelse: Indholdsfortegnelse:... 0 - En treknts vinkelsum...
Om Riemann-integralet. Noter til Matematik 1
Om Riemnn-integrlet. Noter til Mtemtik 1 Jon Johnsen Institut for Mtemtiske Fg, Alborg Universitet Fredrik Bjers Vej 7G, 9220 Ålborg Ø 3. december 2001 1 Indledning Integrlregning går tilbge til Newtons
LINEÆR OPTIMERING JESPER MICHAEL MØLLER. Resumé. Disse noter handler om dualitet i lineære optimeringsprogrammer.
LINEÆR OPTIMERING JESPER MICHAEL MØLLER Indhold 1 Introduktion 1 2 Kanoniske programmer 2 3 Standard programmer 2 4 Svag dualitet for standard programmer 3 5 Svag dualitet for generelle lineære programmer
Værktøjskasse til analytisk Geometri
Værktøjskasse til analytisk Geometri Frank Villa. september 04 Dette dokument er en del af MatBog.dk 008-0. IT Teaching Tools. ISBN-3: 978-87-9775-00-9. Se yderligere betingelser for brug her. Indhold
