Kasteparabler i din idræt øvelse 1

Størrelse: px
Starte visningen fra side:

Download "Kasteparabler i din idræt øvelse 1"

Transkript

1 Kasteparabler i din idræt øvelse 1 Vi vil i denne første øvelse arbejde med skrå kast i din idræt. Du skal lave en optagelse af et hop, kast, spark eller slag af en person eller genstand. Herefter skal vi analysere bevægelsen og modellere en formel for bevægelsesmønstret med inspiration af Newtons indsigter. Vi vil her gennemgå et eksempel med et kast med en basketbold, så I kan se, hvad I skal gøre med jeres ene billedoptagelser fra jeres idræt. I reglen skal man have flere billeder end vi har her, men for enkelthedens skyld viser vi det med fire billeder. Vi har optaget følgende billeder: Bemærk de grønne markeringsspot i bunden af billedet, der sikrer, at vi kan arbejde korrekt med billederne i forhold til hinanden. Vores opgave er, at få rekonstrueret boldens bane og dernæst få lavet en formel for boldens bevægelse i kastet. Dette kan gøres på flere måder. Til forskel fra Newton anvender vi moderne værktøjer som computerprogrammer og moderne it-regression. Men bortset fra det, er principperne i at overføre observationer om genstandes bevægelser til matematiks sprog i princippet det samme som Newtons. Målet er at få sat naturen på formel, så vi kan forudsige og forstå naturen. Vi anvender både GeoMeter og TI-interactive for at arbejde med vores digitale billeder. Vi starter med at kopier første billede ind i GeoMeter, for at sætte boldens position ind i et koordinatsystem: Start med at kalde koordinatsystemet frem: Morten Birk Christensen

2 Vi indfører nu vores billede ind i GeoMeter. Det gøres ved at kopiere billedet fra et andet program, f.eks. Paint. Vi vælger indsæt i GeoMeter i Rediger-menuen. Vi kan trække i billedets nederste venstre hjørne og justrere billedets størrelse og form så der står fint i forhold til akserne i koordinatsuystemet og/eller fixpunkter (f.eks. de grønne markeringsspot) anbringes på bestemte steder i koordinatsystemet. Det sikrer, at vi kan placere næste billede korrekt i forhold til det første. Derefter afsætter vi et punkt lige midt i bolden på billedet. Herefter indføres det andet billede ovenpå det første. Her bruges de grønne markeringer, samt billedramme. Der afsættes en prik i boldens centrum. Vi skal nu have fjernet andet billede igen så første billede står alene tilbage. Derefter indføres tredje billede ovenpå det første og bolden markeres på samme måde som før. Således fortsættes til vi har en række punkter på boldens bevægelsesbane. Vi finder punkternes koordinater ved at højreklikke på punktet. Nu har vi boldens positioner angivet i et koordinatsystem, med den vandrette afstand ud af x-aksen og den boldens højde ud af y-aksen. Vi har m.a.o. indført variablerne afstand og højde. Morten Birk Christensen

3 Nu skal vi bruge TI-interactive. Vi skal indsætte vores koordinatsæt i en liste. Du åbner listemenuen ved knappen list Vi har værktøj brug for et i TI, der tilpasser den bedste linie gennem punkterne. Vi vælger kvadratisk regression, for at se om en andengradsfunktion passer nogenlunde. Vi skal markere de tal vi skal lave regression på og åbne Stat Calculation Tool. Nu vælges Quadratic Regression og vi får et udtryk for den bedste kvadratiske 2 linie gennem vores punkter. Når R -værdien ligger tæt på 1 indicerer det, at punkterne beskrives godt ved den fundne formel. Vi hakker alle værdierne af og gemmer resultatet, der bliver overført til vores IT-dokument. Morten Birk Christensen

4 Vi har nu næsten modelleret en formel, som vi kan taste ind i vores grafvindue i GeoMeter. Dette gøres i Plot ny funktion i grafmenuen. Da kun en del af grafen giver mening, kan vi afgrænse definitionsmængden ved at højreklikke på grafen i GeoMeter og gå ind i egenskaber. (se illustration næste side). Man kan overveje og diskutere hvor grafen skal starte fra. Her vælges det sted hvor personen kaster fra, nemlig ved x = 1. Basketkurven er ved x = 8, hvorfor vi stopper grafen her. M.a.o. er definitionsmængden [ 1 ;8]. Denne afgrænsning styres under fanebladet Plot i vinduet for egenskaber. Vi har nu en matematisk formel for vores basketkast, hvor vi bekræfter Newtons og Galileis opdagelse af, at genstande vi kaster med i en skrå udgangsvinkel tilnærmet kan beskrives som en andengradsfunktion altså en parabel. Hvad kan man bruge det til? Er man sportsudøver kan man f.eks. analysere forskellige personer med god teknik og analysere og sammenligne med egne kasteparabler. Man kan også analysere forskellige bolde eller genstande og Morten Birk Christensen

5 dermed evaluere effektiviteten af forskellige boldtyper og materialer mm. Mht. egne eller dyrs spring, kan man således analysere bevægelsen, og bruge det som afsæt til ny træning. Men måske du selv kan se flere anvendelsesmuligheder. Hastighed i kasteparabler øvelse 2 For at måle genstandens (boldens) hastighed skal vi bruge en film, hvor vi ved hvor lang tid der er gået på et billede i forhold til hvornår (genstanden) bolden blev skudt af sted. Vi bruger en laboratoriumopstilling, hvor en kugl sendes af sted fra en lille kanon (findes i frontermappen Tyngdekraften i din idræt i mappen AT-forløb ). De 1 fleste kameraer tager 25 billeder pr. sekund; dvs. der er et billede pr. sekund Denne film er godt nok utraditionel da den tager 20 billeder pr. sekund Vi skal nu tage stilbilleder ind i GeoMeter, på samme måde som basketbillederne og markere boldens placering. Da vi ved der er et billede pr. 1 sekund, kan vi regne 20 tiden ud il en given placering af kuglen. Vi åbner filmen og bruger piletasterne på tastaturet, til at steppe et billede frem ad gangen. Jeg vælger at starte med tidtagningen fra det sted, hvor kuglen er for starten af den vandrette lineal. Jeg kan derefter regne tilbage og finde hastigheden ved udgangspunktet. Jeg vælger også kun at tage hvert andet billede, så jeg har en tidsforøgning på 2 sekund pr. boldobservation. Jeg får 14 billeder ud fra filmen, 20 som jeg tager ind i GeoMeter og registrere kuglens placering. (Bemærk tallene på linealerne. Når man ligger billederne over hinanden kan man styre, at omgivelserne på billederne ligger lige over hinanden). 2 1 Enkelte kameraer tager med frekvensen ; dvs. et billede pr sekund. 25 Morten Birk Christensen

6 Allerede ved denne indtastning, ser det meget ud til at vi har fået en parabelstruktur som forventet. Vi finder koordinaterne og indfører dem i TIinteractive. Når vi åbner TI-interactive, indfører vi også tidsparameteren. Dette ved at vi giver hver billede et nummer og i parameteren Tid udregnes ved billede-nr. multipliceret med den valgte billedfrekvens; her 2 sekund. Derved har vi 20 opstillet en korrekt tidsforskel mellem de kugleplaceringer vi har koordinater for. Vi regner altså tiden ud på en given kugleplaceringen i forhold til valgte begyndelsespunkt. Vi taster koordinatplaceringerne ind i samme liste. Vi laver nu en Kvadratisk regression; dvs. vi finder den bedst tilnærmede kvadratiske funktion til de punkter vi har i GeoMeter. Men sidst gjorde vi det på den parabelbue vi kunne se i kuglebanen; altså højden som funktion af afstanden. Skulle vi se en kurve for tiden som funktion af højden kan vi vælge Morten Birk Christensen

7 kolonnen Tid og kolonnen Afstand, hvorefter vi vælger grafvisningsværktøjet i TI-interactive. Vi kan lave regression på både kasteparablen i GeoMeter, som vi gjorde det sidst. Husk at tjekke, at Hoejde og afstand står rigtigt i input! Vi kan indføre funktionen i GeoMeter, som vi gjorde sidst. Vi kan også lave kvadratisk regression på højden som funktion af tiden (den graf vi lavede i TI-interactive). Morten Birk Christensen

8 I TI-interactive åbnes grafvinduet og under fanebladet defineres funktionen (man kan copy-paste formlen fra regressionen). I GeoMeter ses det, at parablen bliver mere stejl, da tiden mellem punkerne er numerisk mindre end længden mellem punkterne. Vi overfører tidsparablen til et nyt koordinatsystem i GeoMeter. Ved at vælge rektangulært gitter i grafmenuen, kan vi trække i x-aksen og lave parablen flad. Vi kan nu finde den reelle hastighed ved at se på hældningen til tangenten i et givent punkt. Vi husker vi gjorde det ved at plotte faste punkter på x-aksen og derefter vælge tangentværktøjet i makromenuen (kræver, at du har opgraderet dit GeoMeterprogram). Morten Birk Christensen

9 Vi har her fundet hastighederne ved tiden 0.1 sekund og 0.4 sekund efter det valgte starttidspunkt. Dvs. at hastigheden ved tiden 0.1 sek. efter start er 8.96 m/s og efter 0.4 sek. er 4.6 m/s. Vi husker, at vi også kunne bruge f (x) metoden, ved at højreklikke på funktionen og vælge Differentialkvotient. Vi kan nu finde en række punkter for hastigheden, som vi gjorde i det oprindelige eksempel med basketbolden men nu er de i enheden meter pr. sekund Vi ser at hvis kuglen var fløjet i jorden var det med en hastighed på omkring -7.5 m/s. I kan finde tiden hvor hastigheden på kuglen er nul, dvs. tyngdekraften og den afsendingskraft der er tilbage ophæver hinanden. Vis hvordan! Gå tilbage til GeoMetergrafen med den faktiske kasteparabel og vis hvornår på kurven har sit højeste punkt (toppunktet) Morten Birk Christensen

10 Kan du vise, at der er en sammenhæng mellem x-værdien ved kasteparablens toppunkt og den x-værdi, der svarer til den tid hastighedsparablen har hastigheden nul. Hvis vi nu afbilleder hastigheden som funktion af tiden Får vi en aftagende ret linje. Hastigheden falder altså i takt med afstanden fra kastestedet. Men hvilken formel tilpasser hastighedspunkterne bedst? Vi havde jo funktionen for en vilkårlig hastighed i GeoMeter, som var f `(x). Men hastighedsværdierne var netop fremkommet ved forskellige x-værdier i f `(x). Så Derfor bør f `(x) være den linie der passer præcist til punkterne, Vi kunne også se af formlen, at f `(x) var en lineær funktion altså en ret linie. Hvordan? Nedenfor er det vist, at f `(x) er en ret linie og tilnærmer punkterne præcist. Differentialkvotienten f `(x) vil altid være en lineær funktion, hvis f (x) er en kvadratfunktion; altså en parabel. Morten Birk Christensen

11 Havde vi haft en bevægelse, der ikke var en parabelfunktion og fandt f `(x) ville vi ikke få en ret linie. Tangenternes hældning til en sådan ville være accelerationen Men tager vi hældningen af linien ovenfor er det også accelerationen på kuglen eller rettere decelerationen; dvs. hvordan kuglen langsomt falder i hastighed pr. tidsenhed. Helt som Galileo så det, tilnærmer decelerationen for legemer frit i luften tyngdekraften Grunden til vi får omkring 9.3 er, at der også er en luftmodstand, der påvirker kuglen til at tage farten af. Galileo opdagede tyngdekraften med lodrette kast, men ellers er princippet det samme. Morten Birk Christensen

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0

i x-aksens retning, så fås ). Forskriften for g fås altså ved i forskriften for f at udskifte alle forekomster af x med x x 0 BAndengradspolynomier Et polynomium er en funktion på formen f ( ) = an + an + a+ a, hvor ai R kaldes polynomiets koefficienter. Graden af et polynomium er lig med den højeste potens af, for hvilket den

Læs mere

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså

Lineære modeller. Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Lineære modeller Opg.1 Taxakørsel: Et taxa selskab tager 15 kr. pr. km man kører i deres taxa. Hvis vi kører 2 km i taxaen koster turen altså Hvor meget koster det at køre så at køre 10 km i Taxaen? Sammenhængen

Læs mere

Opgaver om koordinater

Opgaver om koordinater Opgaver om koordinater Formålet med disse opgaver er dels at træne noget matematik, dels at give oplysninger om og træning i brug af Mathcad: Matematik: Øge grundlæggende indsigt vedrørende koordinater

Læs mere

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.

Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder. Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.

Læs mere

Lektion 7 Funktioner og koordinatsystemer

Lektion 7 Funktioner og koordinatsystemer Lektion 7 Funktioner og koordinatsystemer Brug af grafer og koordinatsystemer Lineære funktioner Andre funktioner lignnger med ubekendte Lektion 7 Side 1 Pris i kr Matematik på Åbent VUC Brug af grafer

Læs mere

Michael Jokil 11-05-2012

Michael Jokil 11-05-2012 HTX, RTG Det skrå kast Informationsteknologi B Michael Jokil 11-05-2012 Indholdsfortegnelse Indledning... 3 Teori... 3 Kravspecifikationer... 4 Design... 4 Funktionalitet... 4 Brugerflade... 4 Implementering...

Læs mere

Kom i gang-opgaver til differentialregning

Kom i gang-opgaver til differentialregning Kom i gang-opgaver til differentialregning 00 Karsten Juul Det er kortsigtet at løse en opgave ved blot at udskifte tallene i en besvarelse af en tilsvarende opgave Dette skyldes at man så normalt ikke

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD

MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD MATEMATIK, MUNDTLIG PRØVE TEMA: KUGLESTØD Kuglestød er en af atletikkens kastediscipliner, hvor man skal forsøge at støde en metalkugle længst muligt. Historisk set kan kuglestød føres tilbage til antikkens

Læs mere

Bevægelse i to dimensioner

Bevægelse i to dimensioner Side af 7 Bevægelse i to dimensioner Når man beskriver bevægelse i to dimensioner, som funktion af tiden, ser man bevægelsen som var den i et almindeligt koordinatsystem (med x- og y-akse). Ud fra dette

Læs mere

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse.

Matematik C. Cirkler. Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse. Cirkler Skrevet af Jacob Larsen 3.år HTX Slagelse Udgivet i samarbejde med Martin Gyde Poulsen 3.år HTX Slagelse Side Indholdsfortegnelse Cirklen ligning Tegning af cirkler Skæring mellem cirkel og x-aksen

Læs mere

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering

Optimale konstruktioner - når naturen former. Opgaver. Opgaver og links, der knytter sig til artiklen om topologioptimering Opgaver Opgaver og links, der knytter sig til artiklen om solsikke Opgave 1 Opgave 2 Opgaver og links, der knytter sig til artiklen om bobler Opgave 3 Opgave 4 Opgaver og links, der knytter sig til artiklen

Læs mere

Matematikprojekt Belysning

Matematikprojekt Belysning Matematikprojekt Belysning 2z HTX Vibenhus Vejledning til eleven Du skal nu i gang med matematikprojektet Belysning. Dokumentationen Din dokumentation skal indeholde forklaringer mm, således at din tankegang

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot

På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Jørgen Erichsen På opdagelse i Mandelbrot-fraktalen En introduktion til programmet Mandelbrot Hvad er en fraktal? Noget forenklet kan man sige, at en fraktal er en geometrisk figur, der udmærker sig ved

Læs mere

sammenhänge for C-niveau i stx 2013 Karsten Juul

sammenhänge for C-niveau i stx 2013 Karsten Juul LineÄre sammenhänge for C-niveau i stx y 0,5x 2,5 203 Karsten Juul : OplÄg om lineäre sammenhänge 2 Ligning for lineär sammenhäng 2 3 Graf for lineär sammenhäng 2 4 Bestem y når vi kender x 3 5 Bestem

Læs mere

Andengradsfunktionen

Andengradsfunktionen Andengradsfunktionen 1. Find først diskriminanten og efterfølgende også toppunktet for følgende andengradsfunktioner. A y = 2 x 2 + 4 x + 3 B y = 1 x 2 + 6 x + 2 C y = 1 / 2 x 2 + 2 x 2 D y = 1 x 2 + 6

Læs mere

Talrækker. Aktivitet Emne Klassetrin Side

Talrækker. Aktivitet Emne Klassetrin Side VisiRegn ideer 3 Talrækker Inge B. Larsen ibl@dpu.dk INFA juli 2001 Indhold: Aktivitet Emne Klassetrin Side Vejledning til Talrækker 2-4 Elevaktiviteter til Talrækker 3.1 Talrækker (1) M-Æ 5-9 3.2 Hanoi-spillet

Læs mere

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010

Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 2010 Temaopgave: Parameterkurver Form: 6 timer med vejledning Januar 1 Parameterkurver Vi har tidligere set på en linjes parameterfremstilling, feks af typen: 1 OP = t +, hvor t R, og hvor OP er stedvektor

Læs mere

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens. Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,

Læs mere

for matematik på C-niveau i stx og hf

for matematik på C-niveau i stx og hf VariabelsammenhÄnge generelt for matematik på C-niveau i stx og hf NÅr x 2 er y 2,8. 2014 Karsten Juul 1. VariabelsammenhÄng og dens graf og ligning 1.1 Koordinatsystem I koordinatsystemer (se Figur 1):

Læs mere

Forsøgsvejledning - Hoppehøjde

Forsøgsvejledning - Hoppehøjde Forsøgsvejledning - Hoppehøjde Indledning: Indenfor idrættens verden er det ofte af stor vigtighed at man kan hoppe højt. Det være sig selvsagt i højdespring, hvor det er målet i sig selv, men også fx

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Undersøgelse af funktioner i GeoGebra

Undersøgelse af funktioner i GeoGebra Undersøgelse af funktioner i GeoGebra GeoGebra er tænkt som et dynamisk geometriprogram, men det kan også anvendes til undersøgelser og opdagelser omkring funktioner. Eksempel Tegn linjen med ligningen:

Læs mere

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).

Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1). Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,

Læs mere

Differentialregning Infinitesimalregning

Differentialregning Infinitesimalregning Udgave 2.1 Differentialregning Infinitesimalregning Noterne gennemgår begreberne differentialregning, og anskuer dette som et derligere redskab til vækst og funktioner. Noterne er supplement til kapitel

Læs mere

Delprøven uden hlælpemidler

Delprøven uden hlælpemidler Matematik B - Juni 2014 Af hensyn til CAS-programmet er der anvendt punktum som decimaltegn. Delprøven uden hlælpemidler Opgave 1 AB=8, A1B=12, AC=10 Opgave 2 Hvor y er salget af øko. fødevarer i mio.

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

American Football. I det følgende ser vi nærmere på, hvilke pladser, der er på et american football hold.

American Football. I det følgende ser vi nærmere på, hvilke pladser, der er på et american football hold. American Football Opgaven Jeres klasse er blevet udtaget til at deltage i en american football turnering. I skal stille med 2 hold. Der kan vindes store præmier, så I ønsker naturligvis at stille med to

Læs mere

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning

For at få tegnet en graf trykkes på knappen for graftegning. Knap for graftegning Graftegning på regneark. Ved hjælp af Excel regneark kan man nemt tegne grafer. Man åbner for regnearket ligger under Microsoft Office. Så indtaster man tallene fra tabellen i regnearkets celler i en vandret

Læs mere

LINEÆR PROGRAMMERING I EXCEL

LINEÆR PROGRAMMERING I EXCEL LINEÆR PROGRAMMERING I EXCEL K A P P E N D I X I lærebogens kapitel 29 afsnit 3 er det med 2 eksempler blevet vist, hvordan kapacitetsstyringen kan optimeres, når der er 2 produktionsmuligheder og flere

Læs mere

MATEMATIK, MUNDTLIG PRØVE TEMA: STANDSELÆNGDE

MATEMATIK, MUNDTLIG PRØVE TEMA: STANDSELÆNGDE MATEMATIK, MUNDTLIG PRØVE TEMA: STANDSELÆNGDE Når en bilist opdager en fare på vejen - legende børn, en hund, der løber på kørebanen, en kvinde i kørestol eller lignende - vil man forsøge at undgå ulykken.

Læs mere

Matematik A studentereksamen

Matematik A studentereksamen Xxxx Side 1 af 11 Opgave 7 Jeg aflæser af boksplottet for personbeskatningen i 2007 medianen til. Første og anden kvartil aflæser jeg til hhv. og. Den mindst observerede personbeskatning i år 2007 var

Læs mere

Formler og diagrammer i OpenOffice Calc

Formler og diagrammer i OpenOffice Calc Formler i Calc Regneudtryk Sådan skal det skrives i Excel Facit 34 23 =34*23 782 47 23 =47/23 2,043478261 27³ =27^3 19683 456 =KVROD(456) 21,3541565 7 145558 =145558^(1/7) 5,464829073 2 3 =2*PI()*3 18,84955592

Læs mere

Projekt 1.3 Brydningsloven

Projekt 1.3 Brydningsloven Projekt 1.3 Brydningsloven Når en bølge, fx en lysbølge, rammer en grænseflade mellem to stoffer, vil bølgen normalt blive spaltet i to: Noget af bølgen kastes tilbage (spejling), hvor udfaldsvinklen u

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Trigonometri. Store konstruktioner. Måling af højde

Trigonometri. Store konstruktioner. Måling af højde Trigonometri Ordet trigonometri er sammensat af de to ord trigon og metri, hvor trigon betyder trekant og metri kommer af det græske ord metros, som kan oversættes til måling. Så ordet trigonometri er

Læs mere

Betjeningsvejledning. for. UniRace

Betjeningsvejledning. for. UniRace Betjeningsvejledning for UniRace 2007 Et konkurrence indtastningsprogram. Indholdsfortegnelse Indholdsfortegnelse... 2 Figur fortegnelse... 3 Indledning... 4 Race info... 4 Indtastning af deltagere...

Læs mere

Grupperede observationer

Grupperede observationer Grupperede observationer Tallene i den følgende tabel viser antallet af personer på Læsø 1.januar 2012, opdelt i 10-års intervaller. alder antal 0 131 10 181 20 66 30 139 40 251 50 318 60 421 70 246 80

Læs mere

Grønland. Matematik A. Højere teknisk eksamen

Grønland. Matematik A. Højere teknisk eksamen Grønland Matematik A Højere teknisk eksamen Onsdag den 12. maj 2010 kl. 9.00-14.00 Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Ved valgopgaver må kun det anførte antal afleveres

Læs mere

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet

Højere Teknisk Eksamen maj 2008. Matematik A. Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING. Undervisningsministeriet Højere Teknisk Eksamen maj 2008 HTX081-MAA Matematik A Forberedelsesmateriale til 5 timers skriftlig prøve NY ORDNING Undervisningsministeriet Fra onsdag den 28. maj til torsdag den 29. maj 2008 Forord

Læs mere

Introduktion til TI-Interactive!

Introduktion til TI-Interactive! Introduktion til TI-Interactive! TI-Interactive! er et program, som befinder sig i grænseområdet mellem almindelig tekstbehandling, regneark og egentlige tunge matematikprogrammer. Man kan gøre mange af

Læs mere

Materiale sammenskrevet af:

Materiale sammenskrevet af: Det skrå kast med 1.b 006 Bjørn Felsager & Brian Olesen Haslev Gymnasium og HF Materiale sammenskrevet af: Brian M.V. Olesen Haslev Gymnasium og HF Juli 009 05-07-009 18:4 Indholdsfortegnelse Introduktion...

Læs mere

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse

Det skrå kåst. Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse Det skrå kåst Af Allan Tobias Langhoff, Nikolaj Egholk Jakobsen og Suayb Köse 19/12-2012 Matematik Opstil stedfunktionen s x (t) og s y (t) for den lodrette og den vandrette bevægelse, som funktion af

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985

Svingningsrapport. Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Projektopgave 2, 41035 Dynamik og Svingninger Danmarks Tekniske Universitet Jakob Wulff Andersen, s112985 Opgaverne er udregnet i samarbejde med Thomas Salling, s110579 og Mikkel Seibæk, s112987. 11/12-2012

Læs mere

i tredje sum overslag rationale tal tiendedele primtal kvotient

i tredje sum overslag rationale tal tiendedele primtal kvotient ægte 1 i tredje 3 i anden rumfang år 12 måle kalender hældnings a hældningskoefficient lineær funktion lagt n resultat streg adskille led adskilt udtrk minus (-) overslag afrunde præcis skøn formel andengradsligning

Læs mere

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB

GUX. Matematik. B-Niveau. Fredag den 29. maj 2015. Kl. 9.00-13.00. Prøveform b GUX151 - MAB GUX Matematik B-Niveau Fredag den 29. maj 2015 Kl. 9.00-13.00 Prøveform b GUX151 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.

Læs mere

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul

Funktioner generelt. for matematik pä B- og A-niveau i stx og hf. 2014 Karsten Juul Funktioner generelt for matematik pä B- og A-niveau i st og hf f f ( ),8 014 Karsten Juul 1 Funktion og dens graf, forskrift og definitionsmängde 11 Koordinatsystem I koordinatsystemer (se Figur 1): -akse

Læs mere

Hvor hurtigt kan du køre?

Hvor hurtigt kan du køre? Fart Hvor hurtigt kan du køre? I skal nu lave beregninger over jeres testresultater. I skal bruge jeres testark og ternet papir. Mine resultater Du skal beregne gennemsnittet af dine egne tider. Hvilket

Læs mere

Oversigt. funktioner og koordinatsystemer

Oversigt. funktioner og koordinatsystemer Et koordinatsystem er et diagramsystem, der har to akser, en vandret akse og en lodret akse - den vandrette kaldes x-aksen, og den lodrette kaldes y-aksen. (2,4) (5,6) (8,6) Et punkt skrives altid som

Læs mere

Gratisprogrammet 27. september 2011

Gratisprogrammet 27. september 2011 Gratisprogrammet 27. september 2011 1 Brugerfladen: Små indledende øvelser: OBS: Hvis et eller andet ikke fungerer, som du forventer, skal du nok vælge en anden tilstand. Dette ses til højre for ikonerne

Læs mere

Ikke-lineære funktioner

Ikke-lineære funktioner I elevernes arbejde med funktioner på tidligere klassetrin har hovedvægten ligget på sammenhænge, der kan beskrives med lineære funktioner. Dette kapitel berører ligefrem proportionalitet og stykkevist

Læs mere

Analytisk Geometri. Frank Nasser. 12. april 2011

Analytisk Geometri. Frank Nasser. 12. april 2011 Analytisk Geometri Frank Nasser 12. april 2011 c 2008-2011. Dette dokument må kun anvendes til undervisning i klasser som abonnerer på MatBog.dk. Se yderligere betingelser for brug her. Bemærk: Dette er

Læs mere

Vejledning til at lave almindelige bordkort i Draw Side 1

Vejledning til at lave almindelige bordkort i Draw Side 1 Side 1 Når du åbner skabelonen til alm. bordkort ser du en side med 10 bordkort. For at få de stiplede linjer frem skal du evt. lige klikke i linealen foroven eller i siden. De stiplede linjer er for at

Læs mere

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1

xxx xxx xxx Potensfunktioner Potensfunktioner... 2 Opgaver... 8 Side 1 Potensfunktioner Potensfunktioner... Opgaver... 8 Side Potensfunktioner Funktioner der kan skrives på formen y a = b kaldes potensfunktioner. Her er nogle eksempler på potensfunktioner: y = y = y = - y

Læs mere

Excel tutorial om lineær regression

Excel tutorial om lineær regression Excel tutorial om lineær regression I denne tutorial skal du lære at foretage lineær regression i Microsoft Excel 2007. Det forudsættes, at læseren har været igennem det indledende om lineære funktioner.

Læs mere

DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE.

DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. Geogebra. DENNE LILLE MANUAL TIL GEOGEBRA DÆKKER NOGENLUNDE DE EMNER, DER VEDRØRER FOLKESKOLEN TIL OG MED 10. KLASSE. (dvs. det er ikke alle emner i SYMBOLLINIEN, der beskrives). Navnet GEOGEBRA er en

Læs mere

Rygtespredning: Et logistisk eksperiment

Rygtespredning: Et logistisk eksperiment Rygtespredning: Et logistisk eksperiment For at det nu ikke skal ende i en omgang teoretisk tørsvømning er det vist på tide vi kigger på et konkret logistisk eksperiment. Der er selvfølgelig flere muligheder,

Læs mere

Vejledende Matematik A

Vejledende Matematik A Vejledende Matematik A Prøvens varighed er 5 timer. Alle hjælpemidler er tilladt. Af opgaverne 10A, 10B, 10C og 10D skal kun én opgave afleveres til bedømmelse. Hvis flere end én opgave afleveres, bedømmes

Læs mere

Uafhængig og afhængig variabel

Uafhængig og afhængig variabel Uddrag fra http://www.emu.dk/gym/fag/ma/undervisningsforloeb/hf-mat-c/introduktion.doc ved Hans Vestergaard, Morten Overgaard Nielsen, Peter Trautner Brander Variable og sammenhænge... 1 Uafhængig og afhængig

Læs mere

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a

gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.

Læs mere

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her:

Kinematik. Lad os betragte en cyklist der kører hen ad en cykelsti. Vi kan beskrive cyklistens køretur ved hjælp af en (t,s)-tabel, som her: K Kinematik Den del af fysikken, der handler om at beskrive bevægelser hedder kinematik. Vi kan se på tid, position, hastighed og acceleration, men disse ting må altid angives i forhold til noget. Fysikere

Læs mere

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul

Start pä matematik. for gymnasiet og hf. 2010 (2012) Karsten Juul Start pä matematik for gymnasiet og hf 2010 (2012) Karsten Juul Til eleven Brug blyant og viskelåder när du skriver og tegner i håftet, sä du fär et håfte der er egnet til jåvnligt at slä op i under dit

Læs mere

FORSØGSVEJLEDNING. Kasteparablen

FORSØGSVEJLEDNING. Kasteparablen Fysik i idræt - Idræt i fysik 006 FORSØGSVEJLEDNING Kasteparablen Formål: At bestemme kastelængden (x-positionen) for kast ed forskellige afleeringsinkler: o Ca. 30 o. o Ca. 45 o. o Ca. 60 o. og ed brug

Læs mere

Regneark II Calc Open Office

Regneark II Calc Open Office Side 1 af 10 Gangetabel... 2 Udfyldning... 2 Opbygning af gangetabellen... 3 Cellestørrelser... 4 Øveark... 4 Facitliste... 6 Sideopsætning... 7 Flytte celler... 7 Højrejustering... 7 Kalender... 8 Dage

Læs mere

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik.

Dynamik. 1. Kræfter i ligevægt. Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. M4 Dynamik 1. Kræfter i ligevægt Overvejelser over kræfter i ligevægt er meget vigtige i den moderne fysik. Fx har nøglen til forståelsen af hvad der foregår i det indre af en stjerne været betragtninger

Læs mere

Det skrå kast uden luftmodstand

Det skrå kast uden luftmodstand Det skrå kast uden luftmodstand I dette lille tillæg skal i smart benytte ektorer til at udlede udtryk for stedfunktionen og hastigheden i det skrå kast uden luftmodstand. Vi il gøre brug af de fundamentale

Læs mere

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt

grafer og funktioner trin 1 brikkerne til regning & matematik preben bernitt brikkerne til regning & matematik grafer og funktioner trin 1 preben bernitt brikkerne til regning & matematik grafer og funktioner, trin 1 ISBN: 978-87-92488-11-4 1. Udgave som E-bog 2003 by bernitt-matematik.dk

Læs mere

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010

Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Introduktion til MatLab Matematisk Modellering af Dynamiske Modeller ved Kasper Bjering Jensen, RUC, februar 2010 Computere er uvurderlige redskaber for personer der ønsker at arbejde med matematiske modeller

Læs mere

Vejledende besvarelse

Vejledende besvarelse Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer

Læs mere

Morten Gjeddebæk, Moral og dobbeltmoral i klimadebatten. 1

Morten Gjeddebæk, Moral og dobbeltmoral i klimadebatten. 1 Morten Gjeddebæk, Moral og dobbeltmoral i klimadebatten. 1 Arbejdspapir til modul (1) matematik. 1. Grundlæggende håndtag i Gapminder.org. Åbn www.gapminder.org og vælg Gapminder World. Klik på andenaksen

Læs mere

Dansk Naturvidenskabsfestival Faldskærm i fart!

Dansk Naturvidenskabsfestival Faldskærm i fart! Dansk Naturvidenskabsfestival Faldskærm i fart! Mads Clausen Instituttet Sønderborg - 1 - Dette hæfte kan anvendes på en række forskellige måder: Som den første introduktion til fysik i gymnasiet/htx.

Læs mere

Differentialregning. Et oplæg Karsten Juul L P

Differentialregning. Et oplæg Karsten Juul L P Differentialregning Et oplæg L P A 2009 Karsten Juul Til eleven Dette hæfte kan I bruge inden I starter på differentialregningen i lærebogen Det meste af hæftet er små spørgsmål med korte svar Spørgsmålene

Læs mere

Projekt 2.5 Brændpunkt og ledelinje

Projekt 2.5 Brændpunkt og ledelinje Projekter. Kapitel. Projekt.5 Brændpunkt og ledelinje Projekt.5 Brændpunkt og ledelinje En af de vigtigste egenskaber ved en parabel er dens brændpunkt og en af parablens vigtigste anvendelser er som profilen

Læs mere

Excel-4: Diagrammer og udskrift

Excel-4: Diagrammer og udskrift Excel-4: Diagrammer og udskrift Udfra indtastede tal og formler kan Excel oprette forskellige typer meget flotte diagrammer: grafer, kurver, søjler og cirkeldiagrammer. OPGAVE: Men der skal være nogle

Læs mere

En verden af fluider bevægelse omkring en kugle

En verden af fluider bevægelse omkring en kugle En verden af fluider bevægelse omkring en kugle Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 29. marts 2012 Indhold

Læs mere

Fig. 1 Billede af de 60 terninger på mit skrivebord

Fig. 1 Billede af de 60 terninger på mit skrivebord Simulation af χ 2 - fordeling John Andersen Introduktion En dag kastede jeg 60 terninger Fig. 1 Billede af de 60 terninger på mit skrivebord For at danne mig et billede af hyppighederne flyttede jeg rundt

Læs mere

Vektorfunktioner vha. CAS

Vektorfunktioner vha. CAS Vektorfunktioner vha. CAS 1 Forord Vi skal i de kommende uger arbejde med emnet Vektorfunktioner ved: 1) at I selv arbejder med siderne 3 10 som en opstart. Siderne baserer sig på CAS-programmet TI-Nspire.

Læs mere

Kuglers bevægelse i væske

Kuglers bevægelse i væske Kuglers bevægelse i væske Øvelsens formål er - at eftervise v 2 -loven for bevægelse i væsker: For et legeme der bevæger sig i vand. - at se at legemet i vores forsøg er så stort, at vi ikke har laminar

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Teknologi Projekt. Trafik - Optimal Vej

Teknologi Projekt. Trafik - Optimal Vej Roskilde Tekniske Gymnasium Teknologi Projekt Trafik - Optimal Vej Af Nikolaj Seistrup, Henrik Breddam, Rasmus Vad og Dennis Glindhart Roskilde Tekniske Gynasium Klasse 1.3 7. december 2006 Indhold 1 Forord

Læs mere

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter

Institut for Matematik, DTU: Gymnasieopgave. Arealmomenter Arealmomenter af. og. orden side Institut for Matematik, DTU: Gymnasieopgave Arealmomenter Teori: Se lærebøgerne i faget Statiske konstruktionsmodeller og EDB. Se også H&OL bind,., samt bind appendix.3,

Læs mere

Søren Christiansen 22.12.09

Søren Christiansen 22.12.09 1 2 Dette kompendie omhandler simpel brug af Excel til brug for simpel beregning, såsom mængde og pris beregning sammentælling mellem flere ark. Excel tilhører gruppen af programmer som samlet kaldes Microsoft

Læs mere

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger

Fysikøvelse Erik Vestergaard www.matematikfysik.dk. Musik og bølger Fysikøvelse Erik Vestergaard www.matematikfysik.dk Musik og bølger Formål Hovedformålet med denne øvelse er at studere det fysiske begreb stående bølger, som er vigtigt for at forstå forskellige musikinstrumenters

Læs mere

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen:

Arbejdet på kuglens massemidtpunkt, langs x-aksen, er lig med den resulterende kraft gange strækningen: Forsøgsopstilling: En kugle ligger mellem to skinner, og ruller ned af den. Vi måler ved hjælp af sensorer kuglens hastighed og tid ved forskellige afstand på rampen. Vi måler kuglens radius (R), radius

Læs mere

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015

Relativitetsteori. Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Relativitetsteori Henrik I. Andreasen Foredrag afholdt i matematikklubben Eksponenten Thisted Gymnasium 2015 Koordinattransformation i den klassiske fysik Hvis en fodgænger, der står stille i et lyskryds,

Læs mere

Bevægelses analyse med SkillSpector. Version 1.0 Sidste opdatering: 14/05-2008

Bevægelses analyse med SkillSpector. Version 1.0 Sidste opdatering: 14/05-2008 Bevægelses analyse med SkillSpector Version 1.0 Sidste opdatering: 14/05-2008 Hvad er SkillSpector SkillSpector er software program til video baseret bevægelses analyse. Der er følgende muligheder med

Læs mere

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard

Kompendium i faget. Matematik. Tømrerafdelingen. 2. Hovedforløb. Y = ax 2 + bx + c. (x,y) Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Kompendium i faget Matematik Tømrerafdelingen 2. Hovedforløb. Y Y = ax 2 + bx + c (x,y) X Svendborg Erhvervsskole Tømrerafdelingen Niels Mark Aagaard Indholdsfortegnelse for H2: Undervisningens indhold...

Læs mere

I Indledning. I Indledning Side 1. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

I Indledning. I Indledning Side 1. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Side 1 0101 Beregn uden hjælpemidler: a) 2 9 4 6+5 3 b) 24:6+4 7 2 13 c) 5 12:4+39:13 d) (1+4 32) 2 55:5 0102 Beregn uden hjælpemidler: a) 3 6+11 2+2½ 10 b) 49:7+8 11 3 12 c) 4 7:2+51:17 d) (5+3 2) 3 120:4

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

Excel-1: kom godt i gang!!

Excel-1: kom godt i gang!! Excel-1: kom godt i gang!! Microsoft Excel er et såkaldt regneark, som selvfølgelig bliver brugt mest til noget med tal men man kan også arbejde med tekst i programmet. Excel minder på mange områder om

Læs mere

Teknologi & Kommunikation

Teknologi & Kommunikation Side 1 af 6 Indledning Denne note omhandler den lineære funktion, hvis graf i et koordinatsystem er en ret linie. Funktionsbegrebet knytter to størrelser (x og y) sammen, disse to størrelser er afhængige

Læs mere

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt

brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner basis+g preben bernitt brikkerne til regning & matematik grafer og funktioner, G ISBN: 978-87-9288-11-4 2. Udgave som E-bog 2010 by bernitt-matematik.dk

Læs mere

Lærerorientering til opgaver pa Bakken og i Dyrehaven:

Lærerorientering til opgaver pa Bakken og i Dyrehaven: Lærerorientering til opgaver pa Bakken og i Dyrehaven: Opgaverne er alle bygget op efter samme koncept; eleverne laver observationer i Dyrehaven og på Bakken og bruger derefter observationerne til at lave

Læs mere

Eksamensspørgsmål: Trekantberegning

Eksamensspørgsmål: Trekantberegning Eksamensspørgsmål: Trekantberegning Indhold Definition af Sinus og Cosinus... 1 Bevis for Sinus- og Cosinusformlerne... 3 Tangens... 4 Pythagoras s sætning... 4 Arealet af en trekant... 7 Vinkler... 8

Læs mere

Projekt 3.4 Introduktion til geometri med TI-Nspire

Projekt 3.4 Introduktion til geometri med TI-Nspire Projekt 3.4 Introduktion til geometri med TI-Nspire 1. Introduktion til geometriværktøjerne i TI-Nspire cas... 2 1.2. Åben en geometriapplikation... 2 1.2. Klik-Flyt-Klik... 2 Eksempel: Tegn en cirkel...

Læs mere

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk

Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd. www.matematikhjaelp.tk Matematik A-niveau STX 24. maj 2016 Delprøve 2 VUC Vestsjælland Syd www.matematikhjaelp.tk Opgave 7 - Eksponentielle funktioner I denne opgave, bliver der anvendt eksponentiel regression, men først defineres

Læs mere

Differentialkvotient bare en slags hældning

Differentialkvotient bare en slags hældning Differentialkvotient bare en slags hældning Et kort eksperiment som indledning til differentialregning Forfatter: Behrndt Andersen, Texas Instruments, behrndt@ti.com Matematisk område+niveau: Differentialregning

Læs mere

Kort om Eksponentielle Sammenhænge

Kort om Eksponentielle Sammenhænge Øvelser til hæftet Kort om Eksponentielle Sammenhænge 2011 Karsten Juul Dette hæfte indeholder bl.a. mange småspørgsmål der gør det nemmere for elever at arbejde effektivt på at få kendskab til emnet.

Læs mere