MAT B GSK juni 2007 delprøven uden hjælpemidler
|
|
|
- Christine Markussen
- 8 år siden
- Visninger:
Transkript
1 MAT B GSK juni 007 delprøven uden hjælpemidler Opg 1 Grafen for funktionen f er vist på bilag 1. Løs ligningen f() = 4 og uligheden f() < 4. Svar : f() = 4 <=> =, = 1, = 1 eller = 3 ; L = { ; 1;1;3} (ses ved aflæsning) f() < 4 <=> < < 1 eller 1 < < 3 (ses ved aflæsning) Opg Prisen på en vare er 79,5 kr. Den forventes at stige med % pr. år. Bestem funktionen, der beskriver den forventede pris på varen efter år. Svar : Eksponentiel funktion f() = 79,5 1,0 ; = antal år Opg 3 Bestem en forskrift for den lineære funktion g, hvis graf går igennem punkterne (1;5 1 1 ) og ( 1;1 ). Svar : Lineære funktion = g() = a + b Stigningstal a = = = 1 ( 1)) Konstantled b = 1 a 1 = a = 1 ( 1) = 5 1 = 3 1 Dvs. = g() = (1;5,5) f()=+3.5 Serie 4 g()=+3,5 3 (-1;1,5)
2 Opg 4 Den retvinklede ABC på figuren er ligebenet og har arealet 18. Beregn længderne af kateterne. Svar : a = b og areal T = 1 a b = 18 <=> 1 a = 18 <=> a = 36 <=> a = b = 6 Hpotenusen c findes i øvrigt vha. Pthagoras : a + b = c <=> a = c = 7 <=> c = 7 8,49 Opg 5 Funktionen f har forskriften f() = 3 ( 4) Bestem en ligning for den vandrette tangent til grafen for f. Svar : f() = 3 ( 4) = Den vandrette tangent findes ved differentiation og løse ligningen f () = 0 f () = f () = 0 <=> = 0 <=> = Tangentens ligning : = f() + f () ( ) <=> = f() = f ()=0 =1 f()=-3^+1 f()= f() = - 3 /
3 juni 007 delprøven med hjælpemidler Opg 1 Efter en sommerlejr 175 teenagere svarer om pengeforbrug til sodavand og is. Se Bilag. a) Gør skemaet færdigt. Svar : De manglende tal som skal indsættes, har jeg markeret med fed. Kr. [ i 1 ; i [ Intervalmidtpunkt m i Intervalhppighed h( i ) Intervalfrekvens f( i ) Summeret frekvens F( i ) [0;40[ 0 3 0,13 0,13,60 [40;80[ ,41 0,54 4,60 [80;10[ ,5 0,79 5,00 [10;160[ ,13 0,9 18,0 [160;00[ ,08 1,00 14,40 I alt 175 1,00 84,80 b) Hvilken af værdierne median eller gennemsnit størst? Begrund dit svar. Svar : Gennemsnit μ = = 5 i = 1 Produkt m i f( i ) m f i i = m 1 f m 5 f 5 =, ,40 = 84,80 Medianen ligger i intervallet [40;80[ (se summeret frekvens), dvs. middeltal er størst. Opg Trekanten herunder er ligebenet med AB = BC a)beregn længden af vinkelhalveringslinjen fra B. Svar : ABC er ligebenet og deler vinkelhalveringslinjen v B ABC i to kongruente.5 v retvinklede trekanter. Sinusrelationen giver = B sin(5 ) <=> sin(c).5sin(65 ) v B = 5,36 sin(5 ) b) Beregn radius i trekantens indskrevne cirkel. A r A Svar : tan( ) = <=> r =,5 tan( ) 1,59. 5 ( r = radius i trekantens indskrevne cirkel) Vinkelhalveringslinjerne skærer hinanden i samme punkt som er centrum for trekantens indskrevne cirkel.
4 Opg 3 Radio- og TV varer med flere muligheder for betaling. Eks : Storskærm sælges for enten kr. kontant eller udbetaling på 0 % af kontantpris, og restbeløbet betales med 48 lige store månedlige delser. Renten er 1,6 % pr. måned. a) Beregn udbetaling og restbeløb, når storskærmen ikke sælges kontant. Svar: Udbetaling = 0 % af kr = kr. Restbeløb = kr kr. = kr. b) Beregn den månedlige delse A0 r Svar : = n ; A 1 (1 + r) 0 = kr.; r = 1,6%; n = * Dvs. = ,1 kr En anden storskærm sælges med en udbetaling på 5 %, hvorefter restbeløbet udgør kr. c) Hvad er kontantprisen for denne storskærm? Svar : 75 % svarer til kr., dvs. 100 % svarer til kr. Opg 4 Sølvsmed sælger sølvmønt 8 kr. pr. bogstav og en sølvmønt med navnet Magnus indgraveret koster samlet 168 kr. a) Bestem en forskrift for en lineær funktion f, der angiver den samlede pris for en mønt med bogstaver. Svar : Lineær funktion på formen = f() = a + b; f() = 8 + b; f(6) = 168 <=> b = 10 Forskrift : = f() = b) Bestem en forskrift for en lineær funktion, der angiver, hvor mange bogstaver, der kan indgraveres, når der er kr. til rådighed til sølvmønt og indgravering Svar : = <=> = =
5 Opg 5 Virksomheden X-Pe A/S startede 1/ Omsætningen i første 1 måneder : R() = 0, , ,5 ; є ]0;1]. R() opgøres i kr. = antal år efter virksomhedens start a) Beskriv vha. monotoniforhold og ekstrema for R, hvorledes omsætningen i X-Pe A/S har udviklet sig siden starten i Svar : Finde monotoniforhold og ekstremer ved differentiation og løse R () = 0 R () = 0, ,5 + = ( 0,16 + 1,5 + 1). R () = 0 <=> = 0 eller 0,16 + 1,5 + 1 = 0 0,16 + 1,5 + 1 = 0 <=> = 10 eller = 0,65 Dvs. R () = 0 <=> = 0 eller = 10 eller = 0,65 Da є ]0;1[ udelukker vi = 0,65 R () > 0 for 0 < < 10 og R () < 0 for 10 < 1; R () har fortegn + 0 omkring = 10 Dvs. omsætningen vokser for 0 < 10 og omsætningen aftager for 10 1 b) I hvilket år var omsætningen størst, og hvor stor var denne omsætning? Svar : maksimum i R(10) = 150 dvs. efter 10 år omsætning enhed (10;150) f()=-0.04^4+0.5^3+0.5^ R()=-0, antal år
6 Opg 6 Funktionerne f og g har forskrifterne f() = 4 + og g() = + 4 a) Vis, at tangenten med røringspunktet (1;f(1)) på grafen for f og tangenten med røringspunktet (3;g(3)) på grafen for g har samme hældningskoefficient. Svar : Finde tangenternes stigningstal/hældningskoefficienter ved differentiation : f () = 4 og g () = + 4 ; f (1) = og g (3) = dvs. f (1) = g (3) = dvs. tangenterne har samme stigningstal Tangenternes ligninger er : = f (1)( 1) + f(1) <=> = ( 1) 1 <=> = + 1 = g (3)( 3) + g(3) <=> = ( 3) + 1 <=> = + 7 b) Beregn afstanden mellem røringspunkterne for de to tangenter. Svar : Anvend afstandsformlen f(1) = 1; f (1) = ; g(3) = 1; g (3) = og disse værdier indsættes i afstandsformlen : Afstanden d = ( g (3) f (1)) + (3 1) = 8 =,83 f()=^-4+ f()=-^ =-+7 f()=-+1 f()=-+7 Serie f()=- =-+1 3 f()= d=, (3;1) g()= (1;-1) -
7 Opg 7A Alma får 8 kr. for hver bakke solbær og 5 kr. for hver bakke ribs. Solbær : 9 min og ribs : 4½ min. Alma kan højst tjene 350 kr. om dagen og højst arbejde 6 timer pr. dag. Størst mulig omsætning til bæravler. Han får 14 kr. pr. bakke solbær og 8 kr. pr. bakke ribs. Hvor mange bakker solbær hhv. ribs vil bæravleren have Alma til at plukke pr. dag? Svar : Solbær () Ribs () Maksimum Plukning 9 min 4½ min 360 min Indtjening Alma 8 kr. 5 kr. 350 kr. Omsætning bæravler 14 kr. 8 kr. Kriteriefunktion : f(,) = ; = antal bakker solbær, = antal bakker ribs Niveaulinier: N(0): = 0 <=> = 4 7 ; N(30): = 30 <=> = Betingelser: 9 + 4½ 360 <=> 80 og <=> 70 1,6 Finde skæringspunkt(er) mellem begrænsningslinierne = 80 og = 70 1,6 Ved parallelforskdning af niveaulinierne i pilens retning ses, at maksimale omsætning fås i punktet (5;30) med f(5;30) = = 590 Ved at tjekke hjørnepunkterne fås : f(0;70) = 560; f(40;0) = 560; f(5;30) = 590 Dvs. 5 pakker solbær og 30 bakker ribs 80 (0;70) N(0) f()=-+80 Skravering f()= Skravering 1 f()=-1.75 f()= Serie Serie =-+80 N(30) (5;30) =-1,6+70 (40;0)
8 Opg 7B Funktionen f har forskriften + 9 og grafen for f har tre punkter fælles med koordinatsstemets akser. a) Bestem koordinaterne til de tre fællespunkter. Svar : f() = + 9 og Dm(f) = [ 3;3] f() = 0 <=> + 9 = 0 <=> = 3 eller = 3 = 0 => f(0) = 9 = 3 dvs. fællespunkterne er ( 3;0); (3;0) og (0;3) b) Vis, at den trekant, der hjørner i de tre fællespunkter er retvinklet. Svar : Lad A( 3;0); B(3;0) og C(0;3) dvs. AB = 6; AC = 18 = 3 og BC = 3 dvs. AC + BC = = 36 = AB Altså : AC + BC = AB som er Pthagoras læresætning for retvinklede trekanter. Dvs. ABC er retvinklet. 4 f()=(-^+9 )^0.5 Serie (0;3) 3 f()=v(- +9) (-3;0) (3;0)
Højere Handelseksamen Handelsskolernes enkeltfagsprøve juni 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time
Højere Handelseksamen Handelsskolernes enkeltfagsprøve juni 2007 07-0-3-U Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen
MAT B GSK august 2007 delprøven uden hjælpemidler
Opg MAT B GSK august 007 delprøven uden hjælpemidler Funktionen f har forskriften f() = ( + ) ( + ) ( ) Beregn nulpunkterne for f. Svar : f() = 0 = eller = eller = ; L = { ; ; } Polnomiers faktorisering
(3 ;3 ) (2 ;0 ) f(x)=3 *x-6 -1 1 2 3 4 5 6. Serie 1 Serie 2
MAT B GSK august 008 delprøven uden hjælpemidler Opg Grafen for en funktion f er en ret linje, med hældningskoefficienten 3 og skærer -aksen i punktet P(;0). a) Bestem en forskrift for funktionen f. Svar
MAT B GSK december 2009 delprøven uden hjælpemidler
MAT B GSK december 009 delprøven uden hjælpemidler Opg Sumkurven for alderen i måneder på en HHX-klasses mobiltelefoner. 90%-fraktilen er 0, måneder a) Giv en fortolkning af 90%-fraktilen og bestem kvartilsættet..
Svar : d(x) = s(x) <=> x + 12 = 2 6 = 2. x = 4 <=> d(4) = s(4) = 8 dvs. Ligevægtsprisen er 8. Opg 2. <=> x = 4 eller x = 1; <=> x =
MAT B GSK august 009 delprøven uden hjælpemidler Opg 1 For en vare er sammenhængen mellem pris og efterspørgsel bestemt ved funktionen d() = + 1 0 1 hvor angiver den efterspurgte mængde og d() angiver
Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4
Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat
MAT B GSK december 2008 delprøven uden hjælpemidler
MAT B GSK december 008 delprøven uden hjælpemidler Opg Nedenstående diagram viser sumkurven F() for fordelingen af målte hastigheder højst 60 km/t. Bestem kvartilsættet (bent bilag ) og bestem hvor mange
Løsninger til eksamensopgaver på B-niveau 2017
Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver
Løsningsforslag Mat B August 2012
Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave
Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.
Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f
Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time
Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2007 07-0-6-U Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen
Differentialregning ( 16-22)
Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)
STUDENTEREKSAMEN MAJ-JUNI 2009 2009-8-2 MATEMATISK LINJE 2-ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER
STUDENTEREKSAMEN MAJ-JUNI 009 009-8- MATEMATISK LINJE -ÅRIGT FORLØB TIL B-NIVEAU MATEMATIK DELPRØVEN UDEN HJÆLPEMIDLER Mandag den 11. maj 009 kl. 9.00-10.00 BESVARELSEN AFLEVERES KL. 10.00 Der tildeles
Løsninger til eksamensopgaver på B-niveau 2018
Løsninger til eksamensopgaver på B-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler Opgave 1: Da trekant ABC er retvinklet, kan længden af hypotenusen bestemmes med Pythagoras: 2 2 2 AB AC BC 2 2
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Løsninger til eksamensopgaver på A-niveau 2016
Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det
1 Geometri & trigonometri
1 Geometri & trigonometri 1.0.1 Generelle forhold Trigonometri tager sit udgangspunkt i trekanter, hvor der er visse generelle regler: vinkelsum areal A trekant = 1 2 h G A B C = 180 o retvinklet trekant
Løsningsforslag MatB December 2013
Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum
Matematik 2011/2012 Skovbo Efterskole Trigonometri. Trigonometri
Trigonometri Spidse og stumpe vinkler En vinkel kaldes spids, når den er mindre end 90. En vinkel kaldes ret, når den er 90. En vinkel kaldes stump, når den er større end 90. En vinkel kaldes lige, når
Spørgsmål Nr. 1. Spørgsmål Nr. 2
Spørgsmål Nr. 1 TITEL: Statistik Definition af beskrivende statistik Opdeling af beskrivende statistik i grupperede observationer og ikke grupperede observationer Deskriptorerne typetal og middelværdi
Løsninger til eksamensopgaver på A-niveau 2017
Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på
Stx matematik B maj 2009
Ib Michelsen Svar stxb maj 2009 1 Stx matematik B maj 2009 Opgave 1 Bestem f ' ( x), idet f (x )=2 x 3 +4 x 2 f ' ( x)=(2 x 3 +4 x 2 )'=(2 x 3 )'+(4 x 2 )'=2 ( x 3 )' +4 ( x 2 )'=2 3 x 3 1 +4 2 x 2 1 =6
Matematik A August 2016 Delprøve 1
Anvendelse af løsningerne læses på hjemmesiden www.matematikhfsvar.page.tl Sættet løses med begrænset tekst og konklusion. Formålet er jo, at man kan se metoden, og ikke skrive af! Opgave 1 - Vektorer,
Differentialregning 2
Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()
Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 2008. Matematik Niveau B. Delprøven uden hjælpemidler
Højere Handelseksamen Handelsskolernes enkeltfagsprøve August 008 HHX08-MAB Matematik Niveau B Delprøven uden hjælpemidler Dette opgavesæt består af 5 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse
Løsninger til eksamensopgaver på A-niveau 2018
Løsninger til eksamensopgaver på A-niveau 2018 25. maj 2018: Delprøven UDEN hjælpemidler 2 Opgave 1: 2 2 12 0 Man kan løse andengradsligningen med diskriminantmetoden, men man kan også som her forkorte
Besvarelse af stx_081_matb 1. Opgave 2. Opgave 1 2. Ib Michelsen, 2z Side B_081. Reducer + + = + + = Værdien af
Ib Michelsen, z Side 1 7-05-01 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 Besvarelse af stx_081_matb 1 Opgave 1 Reducer ( x + h) h( h + x) ( x h) h( h x) + + = x h xh h h x x + + = Værdien
Ib Michelsen Vejledende løsning stxb 101 1
Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er
GUX Matematik Niveau B prøveform b Vejledende sæt 1
GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve
Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 16. august 2010. kl. 9.00-14.00
Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh10-mat/a-1608010 Mandag den 16. august 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består af
Studentereksamen i Matematik B 2012
Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er
MATEMATIK A-NIVEAU 2g
NETADGANGSFORSØGET I MATEMATIK APRIL 2009 MATEMATIK A-NIVEAU 2g Prøve April 2009 1. delprøve: 2 timer med formelsamling samt 2. delprøve: 3 timer med alle hjælpemidler Hver delprøve består af 14 spørgsmål,
Forslag til løsning af Opgaver til analytisk geometri (side 338)
Forslag til løsning af Opgaver til analytisk geometri (side 8) Opgave Linjerne har ligningerne: a : y x 9 b : x y 0 y x 8 c : x y 8 0 y x Der må gælde: a b, da Skæringspunkt mellem a og b:. Det betyder,
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau B. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.
Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006 05-B-2-U Typeopgave 2 Matematik Niveau B Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består af 5 opgaver, der indgår
Løsningsforslag Mat B 10. februar 2012
Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.
Løsninger til eksamensopgaver på B-niveau 2014
Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.
gl. Matematik A Studentereksamen Torsdag den 14. august 2014 kl gl-stx142-mat/a
gl. Matematik A Studentereksamen gl-stx142-mat/a-14082014 Torsdag den 14. august 2014 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål.
GU HHX MAJ 2009 MATEMATIK B. Onsdag den 13. maj 2009. Kl. 9.00 13.00 GL091-MAB. Undervisningsministeriet
GU HHX MAJ 009 MATEMATIK B Onsdag den 13. maj 009 Kl. 9.00 13.00 Undervisningsministeriet GL091-MAB Matematik B Prøvens varighed er 4 timer. Alle hjælpemidler er tilladt. Af opgaverne 8A, 8B, 8C, 8D og
11. Funktionsundersøgelse
11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med
Løsning til aflevering - uge 12
Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store
Delprøve 1 UDEN hjælpemidler Opgave 1 Der er givet to trekanter, da begge er ensvinklet, da er forstørrelsesfaktoren
Matematik B, 5 december 2014 Løses af www.matematikhfsvar.page.tl NB: Når du læser løsningerne, så satser vi på du selv sidder med sættet. Figurer mv. bliver ikke indsat. Delprøve 1 UDEN hjælpemidler Opgave
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,
Delprøven uden hjælpemidler
Opgave 1 a) Ved aflæsning på graf fås følgende: Median: 800 kr. Andel dyrere end 1000 kr.: 45%. Opgave 2 Givet funktionen: f (x)= 3x 2 8x +5. a) F(x)= x 3 4x 2 +5x + k. Delprøven uden hjælpemidler Vi finder
Da der er tale om ét indskud og renten er fast, benytter vi kapitalfremskrivningsformlerne til beregningen, hvor
Opgave 1 Da trekant ABC er retvinklet, kan sætningen mk = hyp*sin(v) benyttes. De kendte tal indsættes: BC = 6,4 sin(37) = 3,85 BC = 3,9 Tilsvarende gælder for den hosliggende katete: hk = hyp*os(v) og
Matematik A STX december 2016 vejl. løsning Gratis anvendelse - læs betingelser!
Matematik A STX december 2016 vejl. løsning www.matematikhfsvar.page.tl Gratis anvendelse - læs betingelser! Opgave 1 Lineær funktion. Oplysningerne findes i opgaven. Delprøve 1: Forskrift Opgave 2 Da
STUDENTEREKSAMEN AUGUST 2007 MATEMATIK B-NIVEAU. Torsdag den 16. august Kl STX072-MAB
STUDENTEREKSAMEN AUGUST 2007 MATEMATIK B-NIVEAU Torsdag den 16. august 2007 Kl. 09.00 13.00 STX072-MAB Bedømmelsen af det skriftlige eksamenssæt I bedømmelsen af besvarelsen af de enkelte spørgsmål og
MATEMATIK A-NIVEAU-Net
STUDENTEREKSAMEN MAJ AUGUST 2007 2011 MATEMATIK A-NIVEAU-Net torsdag 11. august 2011 Kl. 09.00 14.00 frs112-matn/a-11082011 Opgavesættet er delt i to dele. Delprøve 1: 2 timer med autoriseret formelsamling
GUX. Matematik. B-Niveau. August 2015. Kl. 9.00-13.00. Prøveform b GUX152 - MAB
GUX Matematik B-Niveau August 2015 Kl. 9.00-13.00 Prøveform b GUX152 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen
Matematik B. Højere handelseksamen. 1. Delprøve, uden hjælpemidler kl Mandag den 15. august 2011 kl hhx112-mat/b
Matematik B Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx112-mat/b-15082011 Mandag den 15. august 2011 kl. 9.00-13.00 Matematik B Prøven uden hjælpemidler Prøvens varighed er
Ang. skriftlig matematik B på hf
Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2014 Institution Campus Vejle Uddannelse HHX Fag og niveau Matematik B ( Valghold ) Lærer(e) LSP (
Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning
Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001
Side 1 af 10. Undervisningsbeskrivelse. Stamoplysninger til brug ved prøver til gymnasiale uddannelser. Termin Maj-juni 2009/10
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2009/10 Institution Uddannelse Fag og niveau Lærer(e) Hold Handelsskolen Sjælland Syd, Vordingborg
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,
Repetition til eksamen. fra Thisted Gymnasium
Repetition til eksamen fra Thisted Gymnasium 20. oktober 2015 Kapitel 1 Introduktion til matematikken 1. Fortegn Husk fortegnsregnereglerne for multiplikation og division 2. Hierarki Lær sætningen om regnearternes
GUX-2013. Matematik Niveau B prøveform b Vejledende sæt 2
GUX-01 Matematik Niveau B prøveform b Vejledende sæt Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Pythagoras Sætning... 8 Retvinklede trekanter. Beregn den ukendte side markeret med et bogstav.... 9 Øve vinkler
Højere Handelseksamen Handelsskolernes enkeltfagsprøve september Matematik Niveau B
Højere Handelseksamen Handelsskolernes enkeltfagsprøve september 2006 06-0-4 Matematik Niveau B Dette opgavesæt består af 8 opgaver, der indgår i bedømmelsen af den samlede opgavebesvarelse med følgende
Vejledende besvarelse
Ib Michelsen Svar: stx B 29. maj 2013 Side 1 1. Udfyld tabellen Vejledende besvarelse Givet funktionen f (x)=4 5 x beregnes f(2) f (2)=4 5 2 =4 25=100 Den udfyldte tabel er derfor: x 0 1 2 f(x) 4 20 100
Løsningsforslag MatB Juni 2012
Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion
STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ MATEMATIK B-NIVEAU. MATHIT Prøvesæt Kl STXB-MATHIT
STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK B-NIVEAU MATHIT Prøvesæt 2010 Kl. 09.00 13.00 STXB-MATHIT Opgavesættet er delt i to dele. Delprøven uden hjælpemidler: 1 time med autoriseret formelsamling
GUX. Matematik Niveau B. Prøveform b
GUX Matematik Niveau B Prøveform b August 014 GUX matematik B august 014 side 0 af 5 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.
ØVEHÆFTE FOR MATEMATIK C GEOMETRI
ØVEHÆFTE FOR MATEMATIK C GEOMETRI Indhold Begreber i klassisk geometri + formelsamling... 2 Ensvinklede trekanter... 7 Pythagoras Sætning... 10 Øve vinkler i retvinklede trekanter... 15 Sammensatte opgaver....
Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 4. juni 2012. kl. 9.00-14.00
Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hh121-mat/a-04062012 Mandag den 4. juni 2012 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Prøvens varighed er 1 time.
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Juni 2017 Institution HANSENBERG Gymnasium Uddannelse Fag og niveau Lærer(e) Hold htx Matematik A Irina Kristensen
dvs. vinkelsummen i enhver trekant er 180E. Figur 11
Sætning 5.8: Vinkelsummen i en trekant er 180E. Bevis: Lad ÎABC være givet. Gennem punktet C konstrueres en linje, som er parallel med linjen gennem A og B. Dette lader sig gøre på grund af sætning 5.7.
Analytisk plangeometri 1
1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
Matematik B. Studentereksamen
Matematik B Studentereksamen stx103-mat/b-10122010 Fredag den 10. december 2010 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Løsninger til eksamensopgaver på B-niveau 2013
Løsninger til eksamensopgaver på B-niveau 013 Opgave 1: y a x b x 6 y 5 9 4. maj 013: Delprøven UDEN hjælpemidler Metode 1: Man kan bestemme a ved at indsætte de sammenhørende værdier i ligningsudtrykket,
Matematik Terminsprøve 2h3g Ma/3
Matematik Terminsprøve 2h3g Ma/3 Onsdag d. 11/4-2018 Kl. 9.00 13.00 Opgavesættet er delt i to dele Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven med hjælpemidler består
Lærereksemplar. Kun til lærerbrug GEOMETRI 89. Kopiering er u-økonomisk og forbudt til erhvervsformål.
Kun salg ved direkte kontakt mellem skole og forlag. Kopiering er u-økonomisk og forbudt til erhvervsformål. GEOMETRI 89 Side Emne 1 Indholdsfortegnelse 2 Måling af vinkler 3 Tegning og måling af vinkler
Ugesedler til sommerkursus
Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag
Formelsamling Matematik C
Formelsamling Matematik C Ib Michelsen Ikast 2011 Ligedannede trekanter Hvis to trekanter er ensvinklede har de proportionale sider (dvs. alle siderne i den ene er forstørrelser af siderne i den anden
GUX. Matematik. B-Niveau. Torsdag den 26. maj Kl Prøveform b GUX161 - MAB
GUX Matematik B-Niveau Torsdag den 26. maj 2016 Kl. 09.00-13.00 Prøveform b GUX161 - MAB 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.
Matematik A. Studentereksamen
Matematik A Studentereksamen 2stx101-MAT/A-01062010 Tirsdag den 1. juni 2010 kl. 9.00-14.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
1q + 1qs Ikast-Brande Gymnasium maj 2015. 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det.
Emne: procent og rente: 1. Procent og rente Forklar hvad betyder begrebet procent og hvordan man beregner det. Forklar, hvordan man lægger procenter til og trækker procenter fra. Gør rede for begrebet
Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari
Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen
Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006. Typeopgave 2. Matematik Niveau A. Delprøven uden hjælpemidler. Prøvens varighed: 1 time.
Højere Handelseksamen Handelsskolernes enkeltfagsprøve 2006 05-A-2-U Typeopgave 2 Matematik Niveau A Delprøven uden hjælpemidler Prøvens varighed: 1 time. Dette opgavesæt består af 6 opgaver, der indgår
GUX. Matematik. A-Niveau. Torsdag den 26. maj Kl Prøveform b GUX161 - MAA
GUX Matematik A-Niveau Torsdag den 26. maj 2016 Kl. 09.00-14.00 Prøveform b GUX161 - MAA 1 Matematik A Prøvens varighed er 5 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål.
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er
Matematik B. Studentereksamen
Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven
Matematik B-niveau STX 7. december 2012 Delprøve 1
Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme
Elevark Niveau 2 - Side 1
Elevark Niveau 2 - Side 1 Opgave 2-1 Brug (Polygon-værktøjet) og tegn trekanter, der ligner disse: Brug (Tekstværktøjet) til at skrive et stort R under de retvinklede trekanter Se Tip 1 og 2 Elevark Niveau
Matematik. Meteriske system
Matematik Geometriske figurer 1 Meteriske system Enheder: Når vi arbejder i længder, arealer og rummål er udgangspunktet metersystemet: 2 www.ucholstebro.dk. Døesvej 70 76. 7500 Holstebro. Telefon 99 122
