Løsningsforslag Mat B 10. februar 2012
|
|
|
- Benjamin Overgaard
- 9 år siden
- Visninger:
Transkript
1 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal. Vi skitserer linjen i GeoGebra og finder skæring med x-aksen da linjen skærer y-aksen ved 3 som kan aflæses direkte fra forskriften. 1
2 Skæring med x-aksen kan også findes ved at sætte y = 0 og skæring med y- aksen aflæses direkte af ligningen for linjen y = 3. 0 = 3 x + 3 3x = 12 x = 4 4 T = = 6 Opgave 2 (5%) En funktion f er givet ved: f (x) = 2x 3 x a) Bestem ligningen for tangenten til grafen for f i punktet P(1, f (1)). Vi skitserer funktionen og finder punktet hvor tangentligningen rører ved. f (x) = 2x 3 x Indsættes x=1 fås: f (1) = = 2 Punktet er: P(1, 2). Differentieres udtrykket og hældningen af tangenten i x =1 findes: f (x) = 6x 2x 2
3 f (1) = 6 2 = 4 som er hældningen af tangenten ved x = 1. Vi finder tangentens ligning: y y 1 = a(x x 1 ) y 2 = 4(x 1) y 2 = 4x 4 y = 4x 2 Opgave 3 (5%) To linjer l og m er givet ved: l : 4y 8x + 4 = 0 m: 3y + x = 11 a) Beregn koordinaterne til linjernes skæringspunkt. Vi skitserer de to linjer vha. GeoGebra efter vi isolerer y erne sådan at de to linjer bliver: 3
4 y = 2x 1 y = 1 3 x Skæringspunktet findes ved at sætte de to linjer lige med hinanden: 2x 1 = 1 3 x x x = x = 2 Indsættes x = 2 fås y-værdien: y = = 3 y = 3 Opgave 4 (5%) Løs ved beregning ligningen: ln(x + 3) + ln(2x) = 0 Vi skitserer funktionen: Vi finder først definitionsmængden: Dm( f ) : x + 3 > 0 x > 3 4
5 ln(x + 3) + ln(2x) = 0 ln[(x + 3)(2x)] = 0 e ln[(x+3)(2x)] = e 0 (x + 3)(2x) = 1 2x 2 + 6x = 1 2x 2 + 6x 1 = 0 solve(2x 2 + 6x 1 = 0,x) giver følgende: x 1 = 3,16 eller x 2 = 0.16 Da x > 3 ifølge definitionsmængden, vil løsningsmængden være x 2 = 0,16 Opgave 5 (5%) To funktioner f og g er givet ved: f (x) = x og g(x) = 3 x 2 a) Bestem ved beregning ligningen: f (x) = g(x) f (x) = g(x) x = 3 x 2 x(x 2) = 3 5
6 x 2 2x 3 = 0 solve(x 2 2x 3 = 0,x) giver følgende x 1 = 1 eller x 2 = 3 Man kan også skitsere for at se skæringspunkterne: Opgave 6 (15%) I trekant ABC er A = 40 0, b = 5, og C = a) Beregn siderne a og c. b) Beregn længden af højden h a på siden a. c) Beregn trekantens areal. Vi skitserer trekanten: 6
7 a) Siderne a og c kan beregnes ved hjælp af sinusrelationer: B = 180 ( ) = 25 0 sin(40 0 ) a a = 5 sin(400 ) sin(25 0 ) sin(40 0 ) 7,6 = sin(250 ) 5 = 7,6 = sin(1150 ) c c = 7,6 sin(1150 ) sin(40 0 ) = 10,72 b) Højden h a beregnes ved hjælp af trekanten ADC c) Trekantens areal: sin(25 0 ) x h a = 5 sin(650 ) sin(90 0 ) = sin(650 ) = sin(900 ) h a 5 x = 4,53 sin(250 ) sin(65 0 ) = 5 sin(65 0 ) = 4,53 T = 1 2 h a (a + x) = 2,11 T = 1 4,53 (7,6 + 2,11) = 21,99 2 7
8 Opgave 7 (20%) En funktion f er givet ved: f (x) = 6 x a) Bestem funktionens definitionsmængde. b) Bestem ved beregning funktionens monotoniintervaller. c) Beregn koordinaterne til funktionens lokale maksimumpunkt. d) Bestem en ligning for tangenten til funktionens graf i punktet ( 3; f ( 3)). e) Løs ved beregning ligningen: f (x) = 7. a) Vi skitserer funktionen: Dm( f ) :x x 2 3 b) Monotoniintervaller: f (x) = 12x x 4 6x = 0 x = 0 f (0) = 1 8
9 Punktet (0; 1) ser ud til at være lokale maksimum. Fortegnslinjen tegnes: f (x) er voksende i intervallet ] ; 3[ f (x) er voksende i intervallet ] 3;0[ f (x) er aftagende i intervallet ]0; 3[ f (x) er aftagende i intervallet ] 3; [ c) Koordinaterne til den lokale maksimum: x = 0 indsættes f (0) = = 1 dvs. (0; 1) 3 d) En ligning for tangenten i punktet ( 3; f ( 3)). f ( 3) = = = 2 og punktet bliver P( 3;2) 9 3 Vi finder hældningen ved x=-3 f ( 3) = 12 ( 3) ( 3) 4 6( 3) 2 = 1 som er hældningen
10 Vi finder nu tangentens ligning: y y 1 = a(x x 1 ) y 2 = 1(x + 3) y = x + 5 e) Vi løser ligningen f (x) = 7 6 x = 7 6 x 2 3 = 6 6 = 6x x = 0 6x 2 = 24 x 2 = 4 x = ±2 Opgave 8 (10%) En funktion f er givet ved f (x) = e 2x 3 a) Bestem en ligning for tangenten til grafen for f i punktet (2; f (2)). b) Bestem forskriften for den omvendte (inverse) funktion f 1. a) Punktets y-koordinat findes: 10
11 f (2) = e 4 3 = e = 2,72 dvs. punktet er P(2;2,72) Vi differentierer f (x) for at finde hældningen ved x=2 f (x) = e u hvor u = 2x 3 f (x) = u e u f (x) = 2 e 2x 3 f (2) = 2 e = 5,44 som er hældningen i punktet x = 2. Tangentligningen findes: y y 1 = a(x x 1 ) y 2,72 = 5,44(x 2) y = 5,44x 10,87 + 2,72 y = 5,44x 8,15 b) den inverse funktion findes ved at indsætte x i stedet for y: x = e 2y 3 ln(x) = ln(e 2y 3 ) ln(x) = 2y 3 ln(e) ln(x) + 3 = 2y y = ln(x) Og vi finder definitions- og værdimængderne både for f og f 1 : Dm( f ) : ] ; [ og V m( f ) : ]0; [ 11
12 Dm( f 1 ) : ]0; [ og V m( f 1 ) : ] ; [ Og vi skitserer begge funktioner: Opgave 9 (10%) En funktion f er givet ved forskriften: f (x) = x 3 x 2 x + 1 2x + 3 Grafen for f har to tangenter, der er paralllele med linjen med ligningen: y = a) Bestem koordinaterne til røringspunktet for hver af disse tangenter. f (x) = x 3 x Tangenterne er parallele med linjen : y = 2x + 3 Linjens hældning aflæses til a = 2 og skæring med y-aksen y = 3. Vi differentierer og sætte denne til a 12
13 f (x) = 3x 2 2x 1 = 2 3x 2 2x-3=0 solve(3x 2 2x 1 = 0,x) giver følgende rødder: x 1 = 0,72 eller x 2 = 1,39 Indsættes disse i f (x) fås følgende koordinater: f ( 0,72) = ( 0,72) 3 ( 0,72) 2 ( 0,72) + 1 = 0,83 f (1,39) = 81,39) 3 (1,39) 2 (1,39) + 1 = 0,36 ( 0,72;0,83) og (1,39;0,36) Opgave 10 (10%) To funktioner f og g er givet ved f (x) = x og g(x) = 2x + 4 a) Skitser de to funktioners grafer og beregn arealet af det område, der afgrænses af de to grafer. Vi skitserer de to funktioner: 13
14 Areal = 3 1 (g(x) f (x)) dx = 3 1 (2x + 4 x2 1) dx Areal = 3 1 ( x2 + 2x + 3) dx = [ x x x]3 1 = 10,67 GeoGebra kan også finde arelaet vha. kommandoen IntegralBetween: Opgave 11 (10%) To funktioner f og g er givet ved: f (x) = x og g(x) = x a) Bestem regneforskriften og definitionsmængden for den sammensatte funktion f g. a) f g = x Lad os skitsere funktionerne: 14
15 Definitonsmængden findes: x 1 0 (x + 1)(x 1) 0 Uligheden løses ved hjælp af reglerne på side 91 i bog 1: a b > 0 (a > 0 b > 0) (a < 0 (b < 0) (x + 1) 0 (x 1) 0 (x + 1) 0 (x 1) 0) x 1 x 1 x 1 x 1 Da A = 1,så vil løsningesmængden være differensmængden : 1 x 1 15
Løsningsforslag MatB Jan 2011
Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige
Løsningsforslag MatB December 2013
Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor
Løsningsforslag MatB Juni 2012
Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion
Løsningsforslag Mat B August 2012
Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave
11. Funktionsundersøgelse
11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med
Løsning MatB - januar 2013
Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]
Løsningsforslag 27. januar 2011
Løsningsforslag 27. januar 2011 Opgave 1 (5%) Isolér t i udtrykket: 3x + 4 = 2x + t t 3x + 4 = 2x + t t og t 0 t(3x + 4) = 2x + t 3tx + 4t t = 2x t(3x + 4 1) = 2x t = 2x 3x + 3 og G = R\{-1} Opgave 2 (5%)
Løsningsforslag MatB Juni 2014
Løsningsforslag MatB Juni 2014 Opgave 1 (5 %) a) Bestem en ligning for den rette linje l, der indeholder punkterne P( 2,4) og Q(4, 1) Løsning: Da de to punkter er givet kan vi beregne hældningen på følgende
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra januar 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Parallelle linjer En linje l går gennem punktet og er parallel med linjen m der er givet ved:
Løsningsforslag MatB Juni 2013
Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x
Løsningsforslag 7. januar 2011
Løsningsforslag 7. januar 2011 May 9, 2012 Opgave 1 (5%) Funktionen f er givet ved forskriften f(x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). a) Definitionsmængden Logaritmen
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:
Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.
Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x i [,] drejes 36 om x-aksen. Vis,
Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple
Løsningsvejledning til eksamenssæt fra august 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Trigonometri I en trekant ABC får vi opgivet følgende: Vi skitserer trekanten i GeoGebra: Vi beregner
Differentialregning ( 16-22)
Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)
MATEMATIK A-NIVEAU. Kapitel 1
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01
Differentialregning 2
Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()
Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x)
Integralregning 3 Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 1 Skitser det omdrejningslegeme, der fremkommer, når grafen for f ( x) x 1 i [ 1,] drejes 360 om x-aksen.
13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b
3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det
Løsning til aflevering - uge 12
Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store
10. Differentialregning
10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side
GL. MATEMATIK B-NIVEAU
GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver
Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.
Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående
Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.
Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f
Matematik B. Anders Jørgensen
Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren
Differentialregning med TI-Interactive! Indledende differentialregning Tangenter Monotoniforhold og ekstremum Optimering Jan Leffers (2009)
Differentialregning med TI-Interactive! Indledende differentialregning Tangenter Monotoniforhold og ekstremum Optimering Jan Leffers (2009) Indholdsfortegnelse Indholdsfortegnelse...2 Indledende differentialregning...3
Undersøge funktion ved hjælp af graf. For hf-mat-c.
Undersøge funktion ved hjælp af graf. For hf-mat-c. 2018 Karsten Juul Bestemme x og y 1. Bestemme x eller y...1 Andengradspolynomium 2. Forskrift for andengradspolynomium...2 3. Graf for andengradspolynomium...2
Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning
Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001
Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4
Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat
Matematik Aflevering - Æggebæger
Matematik Aflevering - Æggebæger Lavet af Morten Kvist i samarbejde med Benjamin Afleveret d. 17/3-2006 Afleveret til Kristine Htx 3.2 Side 1 af 6 Opgave 1 Delopgave A Først har jeg de to logaritme funktioner,
Løsninger til eksamensopgaver på B-niveau 2017
Løsninger til eksamensopgaver på B-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: 4x 1 17 5x 4x 5x 17 1 9x 18 x Opgave : N betegner antallet af brugere af app en målt i tusinder. t angiver
Matematik B-niveau 31. maj 2016 Delprøve 1
Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =
Ang. skriftlig matematik B på hf
Peter Sørensen: 02-04-2012 Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet
Løsninger til eksamensopgaver på A-niveau 2016
Løsninger til eksamensopgaver på A-niveau 2016 24. maj 2016: Delprøven UDEN hjælpemidler Opgave 1: Da trekanterne er ensvinklede, er forholdene mellem korresponderende linjestykker i de to trekanter det
Løsninger til eksamensopgaver på A-niveau 2019 ( ) ( )
Løsninger til eksamensopgaver på A-niveau 019 1. maj 019: Delprøven UDEN hjælpemidler 1. maj 019 opgave 1: Man kan godt benytte substitutionsmetoden, lige store koefficienters metode eller determinantmetoden,
Differentialregning. Ib Michelsen
Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. , og et punkt er givet ved: P (2, 1).
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant a) Beregn konstanten b således,
Ib Michelsen Vejledende løsning stxb 101 1
Ib Michelsen Vejledende løsning stxb 101 1 Opgave 1 Løs ligningen: 3(2 x+1)=4 x+9 Løsning 3(2 x+1)=4 x+9 6 x+3=4 x+9 6 x+3 3=4 x+9 3 6 x=4 x+6 6x 4 x=4 x+6 4 x 2 x=6 2 x 2 = 6 2 x=3 Opgave 2 P(3,1) er
Elementær Matematik. Funktioner og deres grafer
Elementær Matematik Funktioner og deres grafer Ole Witt-Hansen 0 Indhold. Funktioner.... Grafen for en funktion...3. grafers skæring med koordinat akser...4. To grafers skæringspunkter...4 3. Egenskaber
20 = 2x + 2y. V (x, y) = 5xy. V (x) = 50x 5x 2.
17 Optimering 17.1 Da omkræsen skal være 0cm har vi at 0 = x + y. Rumfanget V for kassen er en funktion der afhænger af både x og y givet ved V (x, y) = 5xy. Isolerer vi y i formlen for omkredsen og indsætter
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver
Aalborg Universitet - Adgangskursus. Eksamensopgaver. Matematik B til A
Aalborg Universitet - Adgangskursus Eksamensopgaver Matematik B til A Undervisningsministeriet Universitetsafdelingen ADGANGSEKSAMEN Til ingeniøruddannelserne Matematik A xxdag den y.juni 00z kl. 9.00
PeterSørensen.dk : Differentiation
PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3
matx.dk Enkle modeller
matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær
Kapitel 8. Hvad er matematik? 1 ISBN Øvelse 8.2
Kapitel 8 Øvelse 8.2 Til Maria Pia broen bruger vi de tre punkter (0,0), (80,60) og (160,0). Disse er indtegnet i et koordinatsstem og vi har lavet andengradsregression. Og Garabit broen: Øvelse 8.8 Definitionsmængden
Ugesedler til sommerkursus
Aalborg Universitet - Adgangskursus Ugesedler til sommerkursus Matematik B til A Jens Friis 12 Adgangskursus Strandvejen 12 14 9000 Aalborg tlf. 99 40 97 70 ak.aau.dk sommer Matematik A 1. Lektion : Mandag
Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. 1, og et punkt er givet ved: (2, 1)
Plangeometri Hvis man ønsker mere udfordring, kan man springe de første 10 opgaver over. Opgave 1 To linjer er givet ved ligningerne: x y 0 og x b y 4 0, hvor b er en konstant. a) Beregn konstanten b således,
DELPRØVE 1. Maj 2008,2009,2010,2012 og 2015
DELPRØVE 1 Maj 2008,2009,2010,2012 og 2015 DELPRØVE 1, maj 2008 Følgende opgaver i delprøve 1 er løst i hånden, hvorefter det er skrevet ind i Word, så det er lettere at læse og evt. kommentere på udregningerne.
gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1
gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud
Matematik A-niveau 22. maj 2015 Delprøve 2. Løst af Anders Jørgensen og Saeid Jafari
Matematik A-niveau 22. maj 2015 Delprøve 2 Løst af Anders Jørgensen og Saeid Jafari Opgave 7 - Analytisk Plangeometri Delopgave a) Vi starter ud med at undersøge afstanden fra punktet P(5,4) til linjen
Kapitel 3 Lineære sammenhænge
Matematik C (må anvendes på Ørestad Gymnasium) Lineære sammenhænge Det sker tit, at man har flere variable, der beskriver en situation, og at der en sammenhæng mellem de variable. Enhver formel er faktisk
Løsninger til eksamensopgaver på A-niveau 2017
Løsninger til eksamensopgaver på A-niveau 017 18. maj 017: Delprøven UDEN hjælpemidler Opgave 1: Alle funktionerne f, g og h er lineære funktioner (og ingen er mere lineære end andre) og kan skrives på
Dernæst vil der komme et vindue frem, hvor man kan ændre på x- og y-aksen samt andre indstillinger så som farve og skrift.
IT Inden du starter med at tegne funktionerne ind i Graph er det en god ide, at indstille akserne til behovet. Det gør man ved at gå op i værktøjslinjen hvor man finder det ikon som her er markeret med
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund
Skabelon til funktionsundersøgelser
Skabelon til funktionsundersøgelser Nedenfor en angivelse af fremgangsmåder ved funktionsundersøgelser. Ofte vil der kun blive spurgt om et udvalg af nævnte spørgsmål. Syntaksen i løsningerne vil være
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
Peter Harremoës Matematik A med hjælpemidler 17. august Stamfunktionen til t 1 /2. Grænserne er indsat i stamfunktionen. a 2 +9.
Opgave 6 Arealet under grafen udregnes. b) Arealet er givet ved M = 4 0 2x x 2 + 9 dx Arealet udregnes ved at integrere funktionen. M = 25 9 t dt Der er foretaget substitution t = x 2 + 9. [ ] 25 M = Stamfunktionen
Stx matematik B december 2007. Delprøven med hjælpemidler
Stx matematik B december 2007 Delprøven med hjælpemidler En besvarelse af Ib Michelsen Ikast 2012 Delprøven med hjælpemidler Opgave 6 P=0,087 d +1,113 er en funktion, der beskriver sammenhængen mellem
VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: Projekt Trigonometri
VUC Vestsjælland Syd, Slagelse Nr. 1 Institution: 333247 2015 Anders Jørgensen, Mark Kddafi, David Jensen, Kourosh Abady og Nikolaj Eriksen 1. Indledning I dette projekt, vil man kunne se definitioner
Løsninger til eksamensopgaver på A-niveau 2019 ny ordning
Løsninger til eksamensopgaver på A-niveau 2019 ny ordning Opgave 1: r ( t) Q( 7,8) 21. maj 2019: Delprøven UDEN hjælpemidler 2t + 1 = 2 t 1 a) Funktionsværdien bestemmes ved indsættelse af t-værdien: 2
Computerundervisning
Frederiksberg Seminarium Computerundervisning Koordinatsystemer og funktioner Elevmateriale 30-01-2009 Udarbejdet af: Pernille Suhr Poulsen Christina Klitlyng Julie Nielsen Opgaver GeoGebra Om at genkende
MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.
MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver
2 Erik Vestergaard www.matematikfysik.dk
Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber
Betydningen af ordet differentialkvotient...2. Sekant...2
PeterSørensen.dk Differentiation Indold Betydningen af ordet differentialkvotient... Sekant... Differentiable funktioner...3 f (x) er grafens ældning i punktet med første-koordinaten x....3 Ikke alle grafpunkter
Vejledende besvarelse
Side 1 Vejledende besvarelse 1. Skitse af et andengradspolynomium Da a>0 og da parablen går gennem (3,-1) skal f(3)=-1. Begge dele er opfyldt, hvis f (x )=x 2 10, hvor en skitse ses her: Da grafen skærer
Eksempler på problemløsning med differentialregning
Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 2015
Besvarelser til Calculus og Lineær Algebra Globale Forretningssystemer Eksamen - 8. Juni 05 Mikkel Findinge Bemærk, at der kan være sneget sig fejl ind. Kontakt mig endelig, hvis du skulle falde over en
Løsninger til matematik B-niveau HF maj 2016 April 2017
Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl Cristina Sissee Jensen Side 1 af 4 Løsninger til matematik B-niveau HF maj 2016 April 2017 www.matematikhfsvar.page.tl
Graph brugermanual til matematik C
Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes
Besvarelse af stx_081_matb 1. Opgave 2. Opgave 1 2. Ib Michelsen, 2z Side B_081. Reducer + + = + + = Værdien af
Ib Michelsen, z Side 1 7-05-01 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 Besvarelse af stx_081_matb 1 Opgave 1 Reducer ( x + h) h( h + x) ( x h) h( h x) + + = x h xh h h x x + + = Værdien
Sammenhæng mellem variable
Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...
Matematik B-niveau STX 7. december 2012 Delprøve 1
Matematik B-niveau STX 7. december 2012 Delprøve 1 Opgave 1 Af trekanterne ABC og DEF ses ABC med b = 6 og c = 10. Der bestemmes for a. Tallene indsættes Så sidelængden er regnet til 8. For at bestemme
Analytisk plangeometri 1
1 Analytisk plangeometri 1 Kære 1. x, Vi begynder dag vores forløb om analytisk plangeometri. Dette bliver en udvidelse af ting i allerede kender til, så noget ved I i forvejen, mens andet bliver helt
Matematik B STX 18. maj 2017 Vejledende løsning De første 6 opgaver løses uden hjælpemidler
ADVARSEL! Før du anvender løsningerne, så husk at læs betingelserne for løsningerne, som du kan finde på hjemmesiden. Indeholder: Matematik B, STX 18 maj Matematik B, STX 23 maj Matematik B, STX 15 august
-9-8 -7-6 -5-4 -3-2 -1 1 2 3 4 5 6 7 8 9. f(x)=2x-1 Serie 1
En funktion beskriver en sammenhæng mellem elementer fra to mængder - en definitionsmængde = Dm(f) består af -værdier og en værdimængde = Vm(f) består af -værdier. Til hvert element i Dm(f) knttes netop
Matematik A, STX. Vejledende eksamensopgaver
Matematik A, STX EKSAMENSOPGAVER Vejledende eksamensopgaver 2015 Løsninger HF A-NIVEAU AF SAEID Af JAFARI Anders J., Mark Af K. & Saeid J. Anders J., Mark K. & Saeid J. Kun delprøver 2 Kun delprøve 2,
M A T E M A T I K B 2
M A T E M A T I K B 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f a x b () Matematik B2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2
Matematik A-niveau STX 1. juni 2010 Øvelse DELPRØVE 1 & DELPRØVE 2 -----------------------------------------------------DELPRØVE 1------------------------------------------------------- Opgave 1 - Reduktion
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010
MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 2016 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 Dette
Løsninger til eksamensopgaver på B-niveau 2015
Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det
GUX Matematik Niveau B prøveform b Vejledende sæt 1
GUX-013 Matematik Niveau B prøveform b Vejledende sæt 1 Matematik B Prøvens varighed er 4 timer. Delprøven uden hjælpemidler består af opgaverne 1 til 6 med i alt 6 spørgsmål. Besvarelsen af denne delprøve
M A T E M A T I K A 2
M A T E M A T I K A 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f 4 () Matematik A2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle
Når eleverne skal opdage betydningen af koefficienterne i udtrykket:
Den rette linje og parablen GeoGebra er tænkt som et dynamisk geometriprogram, som både kan anvendes til euklidisk og analytisk geometri Eksempel Tegn linjen med ligningen: Indtast ligningen i Input-feltet.
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning.
Flemmings Maplekursus 1. Løsning af ligninger a) Ligninger med variabel og kun en løsning. Ligningen løses 10 3 Hvis vi ønsker løsningen udtrykt som en decimalbrøk i stedet: 3.333333333 Løsningen 3 er
Matematik A. Højere handelseksamen. 1. Delprøve, uden hjælpemidler. Mandag den 20. december 2010. kl. 9.00-14.00
Matematik A Højere handelseksamen 1. Delprøve, uden hjælpemidler kl. 9.00-10.00 hhx103-mat/a-01010 Mandag den 0. december 010 kl. 9.00-14.00 Matematik A Prøven uden hjælpemidler Dette opgavesæt består
[FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers. 2.0
MaB Sct. Knud Gymnasium, Henrik S. Hansen % [FUNKTIONER] Hvornår kan vi kalde en sammenhæng en funktion, og hvilke egenskaber har disse i givet fald. Vers..0 Indhold Funktioner... Entydighed... Injektiv...
Mike Vandal Auerbach. Differentialregning (2) (1)
Mike Vandal Auerbach Differentialregning f () www.mathematicus.dk Differentialregning. udgave, 208 Disse noter er skrevet til matematikundervisningen på stx A- og B-niveau efter gymnasiereformen 207. Noterne
Undervisningsbeskrivelse
Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum
Matematik A2. Mike Auerbach (2) (1)
Matematik A2 Mike Auerbach (2) f () Matematik A2. udgave, 205 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet vha. tekstformateringsprogrammet
MAT B GSK juni 2007 delprøven uden hjælpemidler
MAT B GSK juni 007 delprøven uden hjælpemidler Opg 1 Grafen for funktionen f er vist på bilag 1. Løs ligningen f() = 4 og uligheden f() < 4. Svar : f() = 4 =, = 1, = 1 eller = 3 ; L = { ; 1;1;3} (ses
Det grafiske billede af en andengradsfunktion er altid en parabel. En parabels skæring med x-aksen kaldes nulpunkter eller rødder.
Parabler En funktion med grundformlen y = ax 2 + bx + c kaldes en andengradsfunktion. Det grafiske billede af en andengradsfunktion er altid en parabel. 1. Hvis a = 0, er det ikke en andengradsfunktion.
Matematik. 1 Matematiske symboler. Hayati Balo,AAMS. August, 2014
Matematik Hayati Balo,AAMS August, 2014 1 Matematiske symboler For at udtrykke de verbale udsagn matematisk korrekt, så det bliver lettere og hurtigere at skrive, indføres en række matematiske symboler.
Studentereksamen i Matematik B 2012
Studentereksamen i Matematik B 2012 (Gammel ordning) Besvarelse Ib Michelsen Ib Michelsen stx_121_b_gl 2 af 11 Opgave 1 På tegningen er gengivet 3 grafer for de nævnte funktioner. Alle funktionerne er
Kapitel 2. Differentialregning A
Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation
9 Eksponential- og logaritmefunktioner
9 Eksponential- og logaritmefunktioner Hayati Balo, AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2 2. Crone og Rosenquist, Matematiske elementer
