Ang. skriftlig matematik B på hf

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Starte visningen fra side:

Download "Ang. skriftlig matematik B på hf"

Transkript

1 Peter Sørensen: Ang. skriftlig matematik B på hf Til skriftlig eksamen i matematik B på hf skal man ikke kunne hele pensum. Pensum til skriftlig eksamen kan defineres ved, at opgaverne i opgavehæftet skal kunne regnes. Her er de vigtigste ting, man skal kunne til skr. eksamen: INDHOLD Andengradspolynomiet... 2 Toppunkt... 2 Rødder og faktorisering... 2 Parablen for andengradspolynomiet: p(x) = ax² + bx + c... 2 Polynomier... 4 n te-gradspolynomiet... 4 Regression... 4 Logaritme... 4 Den naturlige logaritme... 4 Differentialregning... 5 Regler for differentiation... 6 CAS-værktøj... 6 Tangent... 7 Monotoniforhold... 7 Maksimum (størsteværdi)... 7 Fortegnsvariation... 7 Minimum (mindsteværdi)... 7 Grafpunkter uden hældning... 8 Stamfunktion og integral... 8 Regler for integration... 9 Det bestemte integral...10 CAS-værktøj...10 Areal og integral...11 Geometri...12 Ensvinklede trekanter...12 Retvinklede trekanter...12 Vilkårlige trekanter...12 Peter Sørensen: Skriftlig matematik B på hf SIDE 1 dato

2 Andengradspolynomiet Andengradspolynomiet er en funktion: p(x) = ax + bx + c, a 0 Toppunkt Grafen er en parabel med toppunkt: (x 0, y 0 ) = ( b d, ) 2a 4a, hvor d = b² - 4ac. Hvis toppunktet er til venstre for y-aksen, har a og b samme fortegn, ellers forskelligt. Hvis parablen skærer x-aksen 2 steder, er d positiv. Hvis parablen ligger helt over eller helt under x-aksen er d negativ Hvis toppunktet ligger på x-aksen, er d = 0. Hvis parablens grene vender opad glad graf er a positiv, ellers negativ. c er parablens skæring med y-aksen. b er parablens hældning ved y-aksen. Rødder og faktorisering Hvis d 0 gælder: Lignignen ax + bx + c = 0 har løsning(er), også kaldet polynomiets rødder, evt. dobbeltrod, og andengradspolynomiet kan skrives a(x-x 1 )(x-x 2 ) hvor x 1 og x 2 er rødderne. (Faktorisering) Øv dig på Parablen for andengradspolynomiet: a Parablens stejlhed Hvis a<0: Trist graf b Hvis b har fortegn som a: Toppunkt er til venstre for 2.aksen c Skæring med 2. aksen d Hvis c<0: Parablen skærer 2.aksens negative del Hvis d<0: Parablen har intet punkt fælles med 1.aksen p(x) = ax² + bx + c Hvis a=0: Det er ikke et 2.gradspolynomium Hvis b=0: toppunkt er på 2.aksen Hvis c=0: Parablen skærer 2.aksens i nul, koordinatsystemets begyndelsespunkt Hvis d=0: Parablen har ét punkt fælles med 1.aksen. Dvs toppunkt er på x-aksen Hvis a>0: Glad graf Hvis b har fortegn modsat a: Toppunkt er tilhøjre for 2.aksen Hvis c>0: Parablen skærer 2.aksens positive del Hvis d>0: Parablen skærer 1.aksen 2 steder Peter Sørensen: Skriftlig matematik B på hf SIDE 2 dato

3 b har samme fortegn som a b = 0 b har forskelligt fortegn fra a d<0 c < 0 a<0 d=0 c < 0 c = 0 c < 0 c = 0 d>0 c > 0 d<0 c > 0 a>0 d=0 c > 0 c = 0 c > 0 c = 0 d>0 c < 0 Bemærk: c er parablens skæring med y-aksen. b er parablens hældning ved y-aksen. Peter Sørensen: Skriftlig matematik B på hf SIDE 3 dato

4 Polynomier n te-gradspolynomiet er en funktion p(x) = a n x n a 2 x 2 + a 1 x + a 0, a n 0 Regression Det mest enkle er at bruge Guide i RegneRobot. Logaritme Logaritmen til et positivt tal er den eksponent man skal give 10 for at få tallet. Det kaldes også 10-tals-logaritmen. Eksempel: Logaritmen til 1000 er 3 fordi 10 3 = Logaritmen til 1000 skrives Log(1000) Bemærk: log(10 3 ) = 3 eller mere generel: log(10 x ) = x. Logaritmefunktionen er især anvendlig til løsning af ligningenr, hvor x er eksponent, idet Log(a x ) = x Log a Eksempel: 7 x = 523 Log(7 x ) = Log(523) x Log(7) = Log(523) x = Log(523) Log(7) x = 3,217 Foruden 10-tals-logaritmen skal vi arbedje med en logaritme, der kaldes den naturlige logaritme. Den naturlige logaritme adskiller sig fra 10-tals-logaritmen ved i stedet for 10 at bygge på et særligt tal, der kaldes e og e = ca 2, Den naturlige logaritme til et positivt tal er den eksponent, man skal give e for at få tallet Eksempel: Den naturlige til e 3 er 3. Den naturlige logaritme til x skrives Ln(x). Bemærk: Ln(e 3 )= 3 eller mere generelt: Ln(e a ) = a eller a = Ln(e a ) Heraf fås: a x = (e Ln(a) ) x = e Ln(a) x Altså: a x = e Ln(a) x Peter Sørensen: Skriftlig matematik B på hf SIDE 4 dato

5 Differentialregning Et firma sælger en vare og vil gerne tjene så meget som muligt. Firmaet kan højst bruge 5 mio kr på rekalmer. Jo mere firmaet investerer i reklamer, jo mere sælges, men hvis firmaet investerer alle 5 mio i reklamer, så bliver reklameomkostningerne så store, at den samlede fortjeneste bliver negativ. Hvis firmaet slet ikke reklamerer, bliver salget så lille at fortjenesten også bliver negativ. Det handler om at finde hvilken reklameomkostning, der vil give maksimal fortjeneste. Til højre herfor ses en graf, der fortæller fortjenesten som funktion af reklameinvesteringen. Grafen svarer til funktionen f(x) = -2x² + 8x 1, Dm(f) = [0;5], både x og f(x) er kroner i mio Ved hjælp af grafen kan man aflæse at en rekaleminvestering på 2 mio kr vil være optimal. Vi skal nu se hvordan, man kan regne sig frem til den mest optimale størrelse af reklameinvesteringen. Der gælder, at funktionens mindsteværdi og størsteværdi enten er ved et grafendepunkt eller hvor, grafen er vandret og det er de steder, der skal checkes. For at kunne beregne hvornår grafen er vandret, vil vi interessere os for grafens hældning. Til enhver x-værdi i definitionsmængden vil ovenstående graf have en hældning, der betegnes f (x). Vi har således en ny funktion med samme definitionsmængde. Denne funktion betegnes f og kaldes den afledede funktion, eller med et fint ord differentialkvotienten af f. At finde differentialkvotienten kaldes at differentiere. Man kan også tale om den afledede af en regneforskrift. Fx betegnes den afledede af 8x-1 såedes: (8x-1) Vi vil ikke præcist definere ordet hældning her, men lige nævne, at hældningen 0 betyder, at grafen er vandret. Ved Positiv hældning er funktionen voksende og ved negativ hældning aftagende. Hvis man skal finde en x-værdi hvor hældningen er 0, skal man således løse lignignen f (x) = 0. Peter Sørensen: Skriftlig matematik B på hf SIDE 5 dato

6 Regler for differentiation (Se lektion 21 24): Regler Eksempler f f f f f f f f x n n 0 ax n n 0 nx n-1 x 2 2x 1 = 2x x 1 x 5 5x 4 anx n-1-2x 2-2 2x 1 = -4x 8x 8 7x 5 7 5x 4 =35x 4 ax a 5x 5 a x ½ ½x -½ 6x ½ 3x -½ = ½ 6 6 = = 3x -½ e x e x ke x ke x 5e x 5e x e nx ne nx e 3x 3e 3x ke nx k ne nx 5e 3x 15e 3x a x ln(a) a x 5 x ln(5) 5 x ba x b ln(a) a x 7 5 x 7 ln(5) 5 x ln(x), x > 0 En sum eller differens differentieres ledvis 1 / x, x > 0 7 ln x, x > 0-2x² + 8x 1 7 / x, x > 0-4x = -4x + 8 Reglerne skal kunnes til delprøven uden hjælpemidler. Øv dig på: CAS-værktøj Det mest enkle er at bruge Guide i RegneRobot. På TI-89 og Voyage 200 kan man finde differentialkvotienten til en funktion, fx f(x) = 3x², ved at taste F3 og vælge d( Derefter skrives 3x^2, x), så der kommer til at stå: d(3x^2, x) (x til sidst betyder, at den uafhængige variable er x). F6 Enter Enter F3 1 3 x ^ 2, x ) Enter I TI-interactive klikkes i d/dx og d(, hvorefter man skriver: 3x^2,x) og taster Enter. Peter Sørensen: Skriftlig matematik B på hf SIDE 6 dato

7 Tangent til et grafpunkt er en linje gennem punktet med samme hældning som grafens hældning i punktet. Ligning for tangent gennem grafpunkt (x o, y o ): (y y o ) = f (x o ) (x x o ) Til højre er tegnet funktionen f(x) = -2x² + 8x 1 og en tangent. Man kan se af tegningen, at hældningen er -4. Hældningen kan også beregnes: f (x) = -4x + 8 f (3) = = = -4 Af tegningen ses, at tangentens røringspunkt er (3, 5) Tangentens ligning bliver: (y 5) = 4(x 3) Monotoniforhold kan ses af grafen men også beregnes: f (x) = 0-4x + 8 = 0 8 = 4x 2 = x Maksimum (størsteværdi) antages for x = 2 og er f(2) = -2 2² = = 7 f (0) = -8 så x < 2 betyder at f (x) er negativ f (3) = = = -4, så x>2 betyder at f(x) er negativ Fortegnsvariation for f : f + 0 > x 2 f er monoton og voksende i [0; 2] f er monoton og aftagende i [2; 5] f har maksimum (størsteværdi) 7, som antages i 2 Minimum (mindsteværdi) antages i dette tilfælde i et af definitionsmængdens endepunkter 0 eller 5 Peter Sørensen: Skriftlig matematik B på hf SIDE 7 dato

8 f(0) = = -1 f(5) = -2 5² = = -11 f har minimum (mindsteværdi) -11, som antages i 5 Grafpunkter uden hældning Til højre ses to grafer, der ikke ikke overalt har en hældning. Den blå graf her ingen hældning i punkterne (3, 2) og (7, 2.) Den røde graf har ingen hældning i Grafounktet (2,4). De to tilsvarende funktioner er ikke differentiable i hele ders definitionsmængder. Stamfunktion og integral En funktion F kaldes stamfunktion til en funktion f hvis F = f. Fx: F(x) = x² og f(x) = 2x. Der findes uendelig mange stamfunktioner til 2x, bl.a også (x²+7) idet (x²+7) = 2x Der gælder at alle stamfunktioner til x² er (2x+k) hvor k er et tal, der med et fint ord kaldes en arbitrær konstant. Arbitrær betyder tilfældig. Ehver af disse stamfunktioner kan betegnes med den særlige skrivemåde: x² dx, som udtales integralet af x² med hensy til x. Nogen gange siger man det ubestemte integral. Der gælder således x² dx = 2x + k, hvor k er en arbitrær konstant At integrere en funktion vil sige at finde stamfunktionerne. Peter Sørensen: Skriftlig matematik B på hf SIDE 8 dato

9 Regler for integration Regler k er den arbitrære konstant Eksempler f (x) f(x) dx f (x) (fx) dx f(x) f(x ) dx x n n -1 ax n n -1 x n+1 + k x 2 x 3 + k x 5 x 6 +k x n+1 + k -2x 2 x 3 + k 17x 5 x 6 +k ax ax 2 + k 8x 4x 2 + k a ax + k 5 5x + k = x -1 x>0 = x ½ x>0, x>0 ln x + k e x e x + k a ln x + k, x>0 - ln x + k ae x ae x + k 5e x 5e x + k e nx e nx + k e 3x + k a x + k 5 x + k ba x + k 7 5 x + k En sum eller differens integreres ledvis -2x² + 8x 1 - x 3 + 4x 2 x + k Peter Sørensen: Skriftlig matematik B på hf SIDE 9 dato

10 Det bestemte integral [ F ( x)] betyder F(b) F(a) og b a Det bestemte integral af f fra a til b betyder er en stamfunktion til f. b Der gælder således: a f x) dx ( = b b [ F ( x)] a og betegnes a [ F ( x)] = F(b) F(a) b a f ( x) dx Idet F CAS-værktøj Det mest enkle er at bruge Guide i RegneRobot. På TI-89 og Voyage 200 kan man finde integralet til en funktion, fx: f(x) = 2x, ved at taste F3 og vælge ( Derefter skrives 2x, x), så der kommer til at stå: (3x^2, x) (x til sidst betyder, at den uafhængige variable er x). F6 Enter Enter F3 2 2 x, x ) Enter I TI-interactive klikkes i og, hvorefter man skriver: 2x og x, så der kommer til at stå 2x dx 3 2xdx fås på TI-89 og Voyage 200 ved at taste: 1 F6 Enter Enter F3 2 2 x, x, 1, 3 ) Enter I TI-interactive klikkes i og, hvorefter man skriver: 1, 3, 2x og x, så der kommer 3 til at stå 2xdx 1 Peter Sørensen: Skriftlig matematik B på hf SIDE 10 dato

11 Areal og integral Hvis en graf for en funktion f ligger over x-aksen på stykket fra a til b, kan man beregne arealet af det område, der ligge mellem x- aksen og grafen således: Arealet af området af fra a til b mellem 2 grafer for funktionerne f og g, hvor f(x)>g(x) kan beregnes således: Eksempel: f(x) = 2x, F(x) = x 2 g(x)= x², G(x) = Arealet mellem de to grafer er Peter Sørensen: Skriftlig matematik B på hf SIDE 11 dato

12 Geometri Ensvinklede trekanter 3 k 1,5 2 b1 = 1,5 4 = 6 12 c = 8 1,5 Retvinklede trekanter 5² = 4² + 3² Sin( v) v Sin ( ) Cos ( v) v Cos ( ) Tan( v) v Tan ( ) Vilkårlige trekanter Højden Fra B: h B Medianen fra B: m B (linjestykket fra B til midten af b) Areal: ½ hb b = ½ ab Sin C SinA = a SinB SinC = b c c 2 = a 2 + b 2 2ab Cos C For vinkel B=20, b=4 og c=5 fås: Sin20 SinC = Sin20 = SinC 4 Vinkel C er 25,3 eller (180-25,3) Peter Sørensen: Skriftlig matematik B på hf SIDE 12 dato

PeterSørensen.dk : Differentiation

PeterSørensen.dk : Differentiation PeterSørensen.dk : Differentiation Betydningen af ordet differentialkvotient...2 Sekant...2 Differentiable funktioner...3 Bestemmelse af differentialkvotient i praksis ved opgaveløsning...3 Regneregler:...3

Læs mere

Betydningen af ordet differentialkvotient...2. Sekant...2

Betydningen af ordet differentialkvotient...2. Sekant...2 PeterSørensen.dk Differentiation Indold Betydningen af ordet differentialkvotient... Sekant... Differentiable funktioner...3 f (x) er grafens ældning i punktet med første-koordinaten x....3 Ikke alle grafpunkter

Læs mere

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4

Løsninger til eksamensopgaver på B-niveau maj 2016: Delprøven UDEN hjælpemidler 4 4 Opgave 1: Løsninger til eksamensopgaver på B-niveau 016 4. maj 016: Delprøven UDEN hjælpemidler 4 3x 6 x 3x x 6 4x 4 x 1 4 Opgave : f x x 3x P,10 Punktet ligger på grafen for f, hvis dets koordinater indsat

Læs mere

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen.

Differentialregning. Supplerende opgaver til HTX Matematik 1 Nyt Teknisk Forlag. Opgaverne må frit benyttes i undervisningen. Differentialregning Side 1 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5) b) Find ud fra aflæsning på figuren fortegnet for hvert af tallene f (1,5), f

Læs mere

Løsningsforslag MatB December 2013

Løsningsforslag MatB December 2013 Løsningsforslag MatB December 2013 Opgave 1 (5 %) a) En linje l går gennem punkterne: P( 2,3) og Q(2,1) a) Bestem en ligning for linjen l. Vi ved at linjen for en linje kan udtrykkes ved: y = αx + q hvor

Læs mere

Løsningsforslag Mat B August 2012

Løsningsforslag Mat B August 2012 Løsningsforslag Mat B August 2012 Opgave 1 (5 %) a) Løs uligheden: 2x + 11 x 1 Løsning: 2x + 11 x 1 2x x + 1 0 3x + 12 0 3x 12 Divideres begge sider med -3 (og husk at vende ulighedstegnet!) x 4 Opgave

Læs mere

MATEMATIK A-NIVEAU. Kapitel 1

MATEMATIK A-NIVEAU. Kapitel 1 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 1 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 01

Læs mere

MATEMATIK B. Videooversigt

MATEMATIK B. Videooversigt MATEMATIK B Videooversigt 2. grads ligninger.... 2 CAS værktøj... 3 Differentialregning... 3 Eksamen... 5 Funktionsbegrebet... 5 Integralregning... 5 Statistik... 6 Vilkårlige trekanter... 7 71 videoer.

Læs mere

Differentialregning ( 16-22)

Differentialregning ( 16-22) Differentialregning ( 16-22) 16-22. Side 1 Opgaver med rødt nummer er opgaver der går ud over B-niveauet. 0401 Figuren viser grafen for en funktion f. a) Find ud fra aflæsning på figuren f (3) og f (5)

Læs mere

Løsningsforslag MatB Juni 2012

Løsningsforslag MatB Juni 2012 Løsningsforslag MatB Juni 2012 Opgave 1 (5 %) a) Isolér t i følgende udtryk: I = I 0 e k t t = I = I 0 e k t I I 0 = e k t ln( I I 0 ) = k t ln(e) ln( I I 0 ) k = ln(i) ln(i 0) k Opgave 2 (5 %) En funktion

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Matematik B-niveau 31. maj 2016 Delprøve 1

Matematik B-niveau 31. maj 2016 Delprøve 1 Matematik B-niveau 31. maj 2016 Delprøve 1 Opgave 1 - Ligninger og reduktion (a + b) (a b) + b (a + b) = a 2 ab + ab b 2 + ab + b 2 = a 2 + ab Opgave 2 - Eksponentiel funktion 23 + 2x = 15 2x 2 = 8 x =

Læs mere

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6.

Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. Der er facit på side 7 i dokumentet. Til opgaver mærket med # er der vink eller kommentarer på side 6. 1. Figuren viser grafen for en funktion f. Aflæs definitionsmængde og værdimængde for f. # Aflæs f

Læs mere

Mujtaba og Farid Integralregning 06-08-2011

Mujtaba og Farid Integralregning 06-08-2011 Indholdsfortegnelse Integral regning:... 2 Ubestemt integral:... 2 Integrationsprøven:... 3 1) Integration af potensfunktioner:... 3 2) Integration af sum og Differens:... 3 3) Integration ved Multiplikation

Læs mere

Løsninger til eksamensopgaver på B-niveau 2015

Løsninger til eksamensopgaver på B-niveau 2015 Løsninger til eksamensopgaver på B-niveau 2015 22. maj 2015: Delprøven UDEN hjælpemidler Opgave 1: Ligningen løses ved at isolere x i det åbne udsagn: 4 x 7 81 4 x 88 88 x 22 4 Opgave 2: y 87 0,45 x Det

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2015-2016 Institution Vestegnen HF & VUC Uddannelse Fag og niveau Lærer Hold HF: E-learning Matematik

Læs mere

Løsningsforslag Mat B 10. februar 2012

Løsningsforslag Mat B 10. februar 2012 Løsningsforslag Mat B 10. februar 2012 Opgave 1 (5 %) En linje er givet ved: y = 3 4 x + 3 En trekant er afgrænset af linjen og koordinatakserne i første kvadrant. a) Beregn trekantens sider og areal.

Læs mere

Løsningsforslag 27. januar 2011

Løsningsforslag 27. januar 2011 Løsningsforslag 27. januar 2011 Opgave 1 (5%) Isolér t i udtrykket: 3x + 4 = 2x + t t 3x + 4 = 2x + t t og t 0 t(3x + 4) = 2x + t 3tx + 4t t = 2x t(3x + 4 1) = 2x t = 2x 3x + 3 og G = R\{-1} Opgave 2 (5%)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2015 Institution VUC Fredericia Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Susanne Holmelund

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui opåasdfghjklæøzxcvbnmqwertyuiopå Polynomier Kort gennemgang af polynomier og deres asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.

Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over. Opsamling Hvis man ønsker mere udfordring, kan man springe den første opgave af hvert emne over.. Brøkregning, parentesregneregler, kvadratsætningerne, potensregneregler og reduktion Udregn nedenstående

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/juni 2015 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hf-enkeltfag Matematik B Gert

Læs mere

Matematik B1. Mike Auerbach. c h A H

Matematik B1. Mike Auerbach. c h A H Matematik B1 Mike Auerbach B c h a A b x H x C Matematik B1 2. udgave, 2015 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle formål. Noterne er skrevet

Læs mere

Løsninger til eksamensopgaver på B-niveau 2014

Løsninger til eksamensopgaver på B-niveau 2014 Løsninger til eksamensopgaver på B-niveau 014. maj 014: Delprøven UDEN hjælpemidler Opgave 1: Algekoncentrationen målt i mio. pr. L betegnes med A. Tiden måles i antal timer fra start og angives med t.

Læs mere

11. Funktionsundersøgelse

11. Funktionsundersøgelse 11. Funktionsundersøgelse Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen,Matematik for adgangskursus, B-niveau 2, 2. udg. 11.1 Generelt om funktionsundersøgelse Formålet med

Læs mere

Kapitel 2. Differentialregning A

Kapitel 2. Differentialregning A Kapitel 2. Differentialregning A Indhold 2.2 Differentiabilitet og tangenter til grafer... 2 2.3 Sammensat funktion, eksponential-, logaritme- og potensfunktioner... 7 2.4 Regneregler for differentiation

Læs mere

GL. MATEMATIK B-NIVEAU

GL. MATEMATIK B-NIVEAU GL. MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 29. maj 2013 2016 Opgave 1 Opgave 2 Opgave 3 Opgave 4 Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2011 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj/Juni 2017 Institution Vestegnen HF & Vuc Uddannelse Fag og niveau Lærer Hold Hf-enkeltfag Matematik B

Læs mere

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier.

Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister. 1. Polynomier. 2. Polynomier. Eksamensspørgsmål til matematik B på HF Den 3.-4. juni 2014 22 eller 23 kursister 1. Polynomier. Redegør for andengradspolynomiets graf og udled en formel for koordinatsættet til parablens toppunkt. 2.

Læs mere

Differentialregning. Ib Michelsen

Differentialregning. Ib Michelsen Differentialregning Ib Michelsen Ikast 2012 Forsidebilledet Tredjegradspolynomium i blåt med rød tangent Version: 0.02 (18-09-12) Denne side er (~ 2) Indholdsfortegnelse Introduktion...5 Definition af

Læs mere

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1

gudmandsen.net 1 Parablen 1.1 Grundlæggende forhold y = ax 2 bx c eksempelvis: y = 2x 2 2x 4 y = a x 2 b x 1 c x 0 da x 1 = x og x 0 = 1 gudmandsen.net Ophavsret Indholdet stilles til rådighed under Open Content License[http://opencontent.org/openpub/]. Kopiering, distribution og fremvisning af dette dokument eller dele deraf er fuldt ud

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 14/15 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette

Læs mere

Eksempler på problemløsning med differentialregning

Eksempler på problemløsning med differentialregning Eksempler på problemløsning med differentialregning 004 Karsten Juul Opgave 1: Monotoniforhold = 1+, x 3 3 x Bestem monotoniforholdene for f Besvarelse af opgave 1 Først differentierer vi f : (3 x) (3

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2018 Rybners

Læs mere

1 monotoni & funktionsanalyse

1 monotoni & funktionsanalyse 1 monotoni & funktionsanalyse I dag har vi grafregnere (TI89+) og programmer på computer (ex.vis Derive og Graph), hvorfor det ikke er så svært at se hvordan grafen for en matematisk funktion opfører sig

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 15/16 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Mette

Læs mere

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion

Tekst Notation og layout Redegørelse og dokumentation Figurer Konklusion 1 Indledning Dette afsnit omhandler første delprøve, den uden hjælpemidler. Dette afsnit bygger på vejledningen til lærerplanen og lærerplanen for matematik b-niveau, samt eksamensopgaverne fra 2014-2012,

Læs mere

Differentialregning 2

Differentialregning 2 Differentialregning Hvis man ønsker mere udfordring, kan man springe de første 7 opgaver over. Opgave 1 Udregn monotoniintervallerne for funktionerne f 1 () = + 4, f () = 4 3 f 3 () = 3 6 + 9 +, f 4 ()

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 15/16 Institution Horsens HF og VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Bodil

Læs mere

10. Differentialregning

10. Differentialregning 10. Differentialregning Hayati Balo,AAMS Følgende fremstilling er baseret på 1. Nils Victor-Jensen, Matematik for adgangskursus, B-niveau 2, 2. udg. 10.1 Grænseværdibegrebet I afsnit 7. Funktioner på side

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Hold Termin hvori undervisningen afsluttes: Maj-juni 14/15 Hf

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Skoleår 2016/2017, eksamen maj-juni 2017 Institution Kolding HF & VUC Uddannelse Fag og niveau Lærer(e) Hold

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold Hfe / GSK Matematik B Kirsten

Læs mere

Undervisningsbeskrivelse & Oversigt over rapporter

Undervisningsbeskrivelse & Oversigt over rapporter Undervisningsbeskrivelse & Oversigt over rapporter Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b

13 -Integralregning. Hayati Balo, AAMS,Århus. 1. Det ubestemte integrale som betegnes med f (x)dx. 2. Det bestemte integrale som betegnes med b 3 -Integralregning Hayati Balo, AAMS,Århus 3. Stamfunktioner Der er to slags integralregning:. Det ubestemte integrale som betegnes med f (x)dx. Det bestemte integrale som betegnes med b a f (x)dx Det

Læs mere

matx.dk Differentialregning Dennis Pipenbring

matx.dk Differentialregning Dennis Pipenbring mat.dk Differentialregning Dennis Pipenbring 0. december 00 Indold Differentialregning 3. Grænseværdi............................. 3. Kontinuitet.............................. 8 Differentialkvotienten

Læs mere

MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010

MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 2016 MATEMATIK B-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2010 Dette

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Hold Vinter 2016/17 Thy-Mors HF & VUC Hfe Matematik,

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2017/Januar 2018 Institution Skolenr.: 173249 VUC Lyngby Uddannelse HFE Fag og niveau Matematik B

Læs mere

Løsningsforslag MatB Juni 2013

Løsningsforslag MatB Juni 2013 Løsningsforslag MatB Juni 2013 Opgave 1 (5 %) Et andengradspolynomium er givet ved: f (x) = x 2 4x + 3 a) Bestem koordinatsættet til toppunktet for parablen givet ved grafen for f Løsning: a) f (x) = x

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Line Dorthe

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Som 2014 Institution VUC Vestegnen Uddannelse Fag og niveau Lærer(e) Hold Hf/hfe Mat B Niels Johansson 7Bma1S14

Læs mere

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Funktioner

Eksamensspørgsmål mabe, sommer Spørgsmål 1: Funktioner Eksamensspørgsmål mabe, sommer 014 Spørgsmål 1: Funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne a ud fra to

Læs mere

Matematik B. Studentereksamen

Matematik B. Studentereksamen Matematik B Studentereksamen 1stx111-MAT/B-18052011 Onsdag den 18. maj 2011 kl. 9.00-13.00 Opgavesættet er delt i to dele. Delprøven uden hjælpemidler består af opgave 1-6 med i alt 6 spørgsmål. Delprøven

Læs mere

Oversigt over undervisningen i matematik - 1x 04/05

Oversigt over undervisningen i matematik - 1x 04/05 Oversigt over undervisningen i matematik - 1x 04/05 side 14 Der undervises efter: TGF Claus Jessen, Peter Møller og Flemming Mørk : Tal, Geometri og funktioner. Gyldendal 1997 EKS Knud Nissen : TI-84 familien

Læs mere

Indhold Carstensen, Frandsen, Studsgaard, MAT B HF, Systime 2006, s , 92.

Indhold Carstensen, Frandsen, Studsgaard, MAT B HF, Systime 2006, s , 92. Undervisningsbeskrivelse Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Vivi Carstensen VICA@kvuc.dk Christine Gråkilde CHGR@kvuc.dk (eksaminator)

Læs mere

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT.

Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projekt 1.4 Tagrendeproblemet en instruktiv øvelse i modellering med IT. Projektet kan bl.a. anvendes til et forløb, hvor en af målsætningerne er at lære om samspillet mellem værktøjsprogrammernes geometriske

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold hfe Matematik B Edel-Elise

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj juni 2012 Institution Campus Vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B Ejner Husum

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold Hfe Matematik B Louise Jakobsen,

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2017 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik A Angela

Læs mere

Løsningsforslag MatB Juni 2014

Løsningsforslag MatB Juni 2014 Løsningsforslag MatB Juni 2014 Opgave 1 (5 %) a) Bestem en ligning for den rette linje l, der indeholder punkterne P( 2,4) og Q(4, 1) Løsning: Da de to punkter er givet kan vi beregne hældningen på følgende

Læs mere

Løsning til aflevering - uge 12

Løsning til aflevering - uge 12 Løsning til aflevering - uge 00/nm Opg.. Længden af kilerem til drejebænk. Hjælp mig med at beregne den udvendige, længde af kileremmen, der er anvendt på min ældre drejebænk. Største diameter på det store

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2015-2016 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab1 Oversigt over gennemførte undervisningsforløb

Læs mere

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple

Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Løsningsvejledning til eksamenssæt fra juni 2008 udarbejdet af René Aagaard Larsen i Maple Opgave 1 1a - Reducering Reducér følgende udtryk: Vi ganger dividerer med i både nævner og begge led i tælleren:

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj / Juni 2016 Institution Den Jyske Håndværkerskole Uddannelse Fag og niveau Lærer Hold EUX - Tømre Matematik

Læs mere

Eksaminationsgrundlag for selvstuderende

Eksaminationsgrundlag for selvstuderende Eksaminationsgrundlag for selvstuderende Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Selvstuderende Lærer Maj-juni 2014 Skoleår 2013/2014

Læs mere

Eksamensspørgsmål net B, vinter 2012-sommer Spørgsmål 1: Lineære funktioner

Eksamensspørgsmål net B, vinter 2012-sommer Spørgsmål 1: Lineære funktioner Eksamensspørgsmål net B, vinter 0-sommer 03 Spørgsmål : Lineære funktioner Gør rede for sætninger vedrørende lineære funktioner. Du skal herunder behandle betydningen af a og b samt formlen til at beregne

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj 2013/2014 Institution Frederiksberg hf-kursus Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B (hf-enkeltfag)

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold e-hf Matematik B Ashuak Jakob France

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik B Angela

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer(e) Hold HFe Mat C-B Henrik Jessen

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Vinter 2017 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold e-hf Matematik B Ashuak Jakob France

Læs mere

Integralregning Infinitesimalregning

Integralregning Infinitesimalregning Udgave 2.1 Integralregning Infinitesimalregning Noterne gennemgår begreberne integral og stamfunktion, og anskuer dette som et redskab til bestemmelse af arealer under funktioner. Noterne er supplement

Læs mere

Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag:

Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag: Eksaminationsgrundlag for selvstuderende Skolens eksaminationsgrundlag: Jeg ønsker at gå til eksamen i nedennævnte eksaminationsgrundlag (pensum), som skolen har lavet. Du skal ikke foretage dig yderligere

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin December 2016/Januar 2017 Institution HF & VUC Nordsjælland Helsingør-afdelingen Uddannelse Fag og niveau

Læs mere

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå

qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå qwertyuiopåasdfghjklæøzxcvbnmqw ertyuiopåasdfghjklæøzxcvbnmqwert yuiopåasdfghjklæøzxcvbnmqwertyui Polynomier opåasdfghjklæøzxcvbnmqwertyuiopå Kort gennemgang af polynomier og deres egenskaber. asdfghjklæøzxcvbnmqwertyuiopåasd

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2014, skoleår 13/14 Institution Frederiksberg HF Uddannelse Fag og niveau Lærer(e) Hold HF Matematik

Læs mere

Eksamensspørgsmål. Spørgsmål 1: Funktioner

Eksamensspørgsmål. Spørgsmål 1: Funktioner . Spørgsmål 1: Funktioner Gør rede for udvalgte sætninger vedrørende andengradsfunktioner. Du skal herunder redegøre for differentiation af en andengradsfunktion, samt formlen til at beregne nulpunkterne

Læs mere

Løsningsforslag MatB Jan 2011

Løsningsforslag MatB Jan 2011 Løsningsforslag MatB Jan 2011 Opgave 1 (5 %) Funktionen f er givet ved forskriften f (x) = ln(x 2) + x 2. a) Bestem definitionsmængden for f. b) Beregn f (x). Løsning: a) f (x) = ln(x 2) + x 2 Da den naturlige

Læs mere

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler

Løsninger til eksamensopgaver på A-niveau 2014. 22. maj 2014. 22. maj 2014: Delprøven UDEN hjælpemidler Opgave 1: Løsninger til eksamensopgaver på A-niveau 014 f x x 4x 6. maj 014. maj 014: Delprøven UDEN hjælpemidler Koordinatsættet til parablens toppunkt bestemmes ved først at udregne diskriminanten for

Læs mere

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller

1 Ligninger. 2 Ligninger. 3 Polynomier. 4 Polynomier. 7 Vækstmodeller 1 Ligninger a. Fortæl om algebraisk og grafisk løsning af ligninger ud fra ét eller flere eksempler. b. Gør rede for algebraisk løsning af andengradsligningen ax 2 + bx + c = 0. 2 Ligninger a. Fortæl om

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin maj-juni 2015 Institution VUC Lyngby Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B Ashuak Jakob France

Læs mere

matx.dk Enkle modeller

matx.dk Enkle modeller matx.dk Enkle modeller Dennis Pipenbring 28. juni 2011 Indhold 1 Indledning 4 2 Funktionsbegrebet 4 3 Lineære funktioner 8 3.1 Bestemmelse af funktionsværdien................. 9 3.2 Grafen for en lineær

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer(e) Termin hvori undervisningen afsluttes: maj-juni 2011 Uddannelsescenter

Læs mere

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold

Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Institution Uddannelse Fag og niveau Lærer Hold Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution 414 Københavns VUC Uddannelse Fag og niveau Lærer Hold Hf Matematik C-B Pia Hald ph@kvuc.dk

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-Juni 2014 Institution Frederiksberg HF-kursus Uddannelse Fag og niveau Lærer(e) Hold HF Matematik B Kasper

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni 2016 Institution Marie Kruses Skole Uddannelse Fag og niveau Lærer(e) Hold Stx Matematik B Angela

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Maj-juni, 16/17 Institution Hf i Nørre Nissum VIA UC Uddannelse Fag og niveau Lærer(e) Hold Hf Matematik B

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik 2012 Dette

Læs mere

Oversigt over undervisningen i matematik 2y 07/08

Oversigt over undervisningen i matematik 2y 07/08 Oversigt over undervisningen i matematik 2y 07/08 side Der undervises efter: AB Nielsen & Fogh: Vejen til Matematik AB ( Forlaget HAX) B2 Nielsen & Fogh: Vejen til Matematik B2 ( Forlaget HAX) EKS Knud

Læs mere

M A T E M A T I K A 2

M A T E M A T I K A 2 M A T E M A T I K A 2 M I K E A U E R B A C H WWW.MATHEMATICUS.DK (2) f 4 () Matematik A2 2. udgave, 206 Disse noter er skrevet til matematikundervisning på stx og kan frit anvendes til ikke-kommercielle

Læs mere

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning

Opgave 1 - Lineær Funktioner. Opgave 2 - Funktioner. Opgave 3 - Tredjegradsligning Sh*maa03 1508 Matematik B->A, STX Anders Jørgensen, delprøve 1 - Uden hjælpemidler Følgende opgaver er regnet i hånden, hvorefter de er skrevet ind på PC. Opgave 1 - Lineær Funktioner Vi ved, at år 2001

Læs mere

Matematik B. Anders Jørgensen

Matematik B. Anders Jørgensen Matematik B Anders Jørgensen Løste opgaver: Juni 2015 Dette opgavesæt er givet til FriViden Dette opgavesæt blev lavet til en terminsprøve d. 7. april af Anders Jørgensen, VUC Vestsjælland Syd Karakteren

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2015 Institution Campus vejle Uddannelse Fag og niveau Lærer(e) Hold HHX Matematik B (Valghold) PEJE

Læs mere

Løsning MatB - januar 2013

Løsning MatB - januar 2013 Løsning MatB - januar 2013 Opgave 1 (5%) a) Løs uligheden: 2 x > 5x 6. a) 2 x > 5x 6 2 + 6 > 5x + x 8 > 4x Divideres begge sider med 4 og uligheden vendes. Dvs. 8 4 < x x > 2 Løsningsmængden bliver L =]

Læs mere

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo

Supplerende opgaver. 0. Opgaver til første uge. SO 1. MatGeo SO 1 Supplerende opgaver De efterfølgende opgaver er supplerende opgaver til brug for undervisningen i Matematik for geologer. De er forfattet af Hans Jørgen Beck. Opgaverne falder i fire samlinger: Den

Læs mere

UNDERVISNINGSBESKRIVELSE

UNDERVISNINGSBESKRIVELSE UNDERVISNINGSBESKRIVELSE Termin Maj-juni 2014-2015 Institution Horsens HF & VUC Uddannelse Fag og niveau Lærer(e) Hold HF2 Matematik B Ineta Sokolowski mab2 Oversigt over gennemførte undervisningsforløb

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin Sommer 2016 Institution Uddannelse Fag og niveau Lærer(e) Hold VUC Lyngby GSK Matematik GSK C->B Steffen Jørgensen

Læs mere