Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen.

Størrelse: px
Starte visningen fra side:

Download "Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari Bjerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen."

Transkript

1 Øvelse 1.5: Spændingsdeler med belastning Udført af: Kari jerke Sørensen, Hjalte Sylvest Jacobsen og Toke Lynæs Larsen. Formål: Formålet med denne øvelse er at anvende Ohms lov på en såkaldt spændingsdeler, en opstilling, hvor man vha. et par modstande sænker spændingsfaldet over en eller anden brugsgenstand, som i vores tilfælde gøres af en variabel modstand. Vi er interesserede i at undersøge hvordan den afsatte effekt i den variable modstand varierer med modstandens størrelse. Teori: Den opstilling vi er interesserede i at måle på er følgende: Her er V ind indgangsspændingen, som strømforsyningen leverer. 1 og er to faste modstande og er modstanden af den variable modstand (brugsenheden). Tilsvarende er I strømmen gennem den variable modstand. Hvis vi kalder spændingsfaldet over den variable modstand for U er effekten P afsat i denne naturligvis givet ved: P =U I = I Hvor omskrivningen følger af Ohms lov. Ved at benytte additionsformlerne for spændingsfald, strømstyrker og modstande i serie- og parallelkredsløb på ovenstående opstilling finder vi, at den afsatte spænding i den variable modstand er givet ved: P = V t ( + ) Hvor V t er spændingsfaldet over når er uendelig stor og er gangsmodstanden. De to størrelser er givet ved: Vt = Vind = 1 + Det ses, at den afsatte effekt i den variable modstand kan formuleres som en funktion af alene modstandene 1, og samt spændingsfaldet V ind. Ved således at måle disse størrelser, kan den afsatte effekt bestemmes. For fastholdt V ind, 1 og er V t og konstanter og den afsatte effekt bliver således en funktion af. Ved først at differentiere denne funktion med hensyn til : ( +) -( +) t ( ) ( ) dp - =V =V d + + t 4 3

2 Og dernæst sætte denne lig med nul finder vi, at den har et ekstremum i: - V t =0 3 =, fordi Vt 0 ( +) Og det ses let, at dette ekstremum er et maksimum. Maksimumsværdien for funktionen opnås i dette punkt og maksimumsværdien er således: 1 P,max = Vt 4 Fremgangsmåde: Den forsøgsopstilling vi benyttede os af er ikke helt så simpel, som den forrige tegning foregiver. I stedet lavede vi nedenstående opstilling: Øverste del af denne opstilling svarer til en spændingsdeler med de specifikke værdier af 1, og V ind, som er angivet på tegningen. Modstanden på de 100Ω kalder vi i det følgende for 4. Den variable modstand er indrettet således, at summen af de to modstande, man kan lave af den kaldet og er en konstant på ca. 0Ω, vi i det følgende kalder 3. På ovenstående illustration er indskt et amperemeter, der måler den før definerede strømstyrke I. Der er også et voltmeter, med hvilket man kan måle størrelsen V, som vi også har defineret før. Endnu et voltmeter findes i opstillingen (ACH0) som måler spændingsfaldet U 0 over modstanden. Vi havde kun to multimetre, det ene brugte vi som amperemeter i opstillingen og det andet brugte vi som voltmeter og skiftede det frem og tilbage mellem de to positioner, hvor vi havde behov for at måle spændingen. Spændingskilden i det andet kredsløb leverer en potentialforskel vi kalder V e og fra en målt værdi af U 0 kan bestemmes ved: 4 U0 =3- V-U e 0

3 Data: Ved at indstille den variable modstand på forskellige værdier og flytte voltmetret frem og tilbage mellem de to målepositioner målte vi forskellige samhørende værdier af størrelserne I, V og U 0, som er definerede i de forrige afsnit. Vi førte først en måleserie, hvor vi startede ved den mindst mulige værdi for og jævnt regulerede denne opad, indtil vi opnåede den maksimale værdi for i alt 0 målinger. Dernæst førte vi en anden måleserie, hvor vi begyndte med lidt større end og justerede den ned med mindst muligt mellemrum til en værdi lidt lavere end værdien for i alt målinger (som konkleret i teori-afsnittet er det nemlig her, at det mest interessante forekommer). Usikkerhederne på de målte størrelser estimerede vi fra hvor meget multimetrene stod og skiftede mellem forskellige værdier, mens vi foretog den enkelte måling. esultaterne af de i alt 4 (!) målinger med anslåede absolutte usikkerheder er angivet her: Nr. I [A] V [V] U 0 [V] Nr. I [A] V [V] U 0 [V] 1 0,60±0,006 0,365±0,00 3,570±0,00 1 0,101±0,005 7,560±0,00,933±0,00 0,63±0,006 0,45±0,00 3,460±0,00 0,106±0,005 7,355±0,00,93±0,00 3 0,10±0,006,610±0,00 3,411±0,00 3 0,108±0,005 7,70±0,00 3,006±0,00 4 0,158±0,005 4,86±0,00 3,330±0,00 4 0,113±0,005 7,059±0,00 3,067±0,00 5 0,131±0,005 6,059±0,00 3,189±0,00 5 0,10±0,005 6,736±0,00 3,131±0,00 6 0,108±0,005 7,100±0,00 3,043±0,00 6 0,16±0,005 6,45±0,00 3,148±0,00 7 0,097±0,004 7,60±0,00,99±0,00 7 0,131±0,005 6,04±0,00 3,166±0,00 8 0,087±0,004 8,097±0,00,778±0,00 8 0,136±0,005 5,996±0,00 3,1±0,00 9 0,078±0,004 8,491±0,00,616±0,00 9 0,141±0,005 5,770±0,00 3,4±0, ,071±0,004 8,807±0,00,464±0, ,145±0,005 5,588±0,00 3,4±0, ,065±0,004 9,116±0,00,7±0, ,151±0,005 5,78±0,00 3,44±0,00 1 0,06±0,004 9,43±0,00 1,995±0,00 3 0,155±0,005 5,113±0,00 3,50±0, ,057±0,004 9,484±0,00 1,83±0, ,159±0,005 4,944±0,00 3,6±0, ,056±0,004 9,543±0,00 1,506±0, ,170±0,005 4,434±0,00 3,33±0, ,053±0,004 9,674±0,00 1,5±0, ,174±0,005 4,53±0,00 3,37±0, ,050±0,004 9,78±0,00 0,910±0, ,178±0,005 4,051±0,00 3,360±0, ,049±0,004 9,857±0,00 0,643±0, ,183±0,005 3,89±0,00 3,365±0, ,047±0,004 9,919±0,00 0,3±0, ,190±0,005 3,505±0,00 3,38±0, ,046±0,004 9,989±0,00 0,133±0, ,0±0,006,977±0,00 3,400±0,00 0 0,045±0,004 10,00±0,00 0,196±0, ,1±0,006,49±0,00 3,439±0, ,19±0,006,190±0,00 3,437±0,00 4 0,37±0,006 1,355±0,00 3,445±0,00 I vores formler indgår over disse målte størrelse også nogle størrelser, der ikke varieres fra måling til måling. Det drejer sig om modstandene 1,, 3 og 4 på omtrent henholdsvis 56Ω, 0Ω, 0Ω og 100Ω samt spændingsforskellene V ind på omkring 15V og V e på omkring 5V. For at få nogle bedre værdier for disse størrelser samt en omtrentlig usikkerhed på værdierne, har vi foretaget nogle målinger.

4 For de to spændingsforskelle tilsluttede vi simpelthen voltmetret til spændingskilden, foretog en enkelt måling og estimerede usikkerheden til det sidste ciffer. esultaterne heraf var: Vind = 15,0 ± 0,01V = 15,0V ± 0,07% Ve = 5,057 ± 0,001V = 5,057V ± 0,0% Hver af de fire modstande satte vi i parallelforbindelse med et voltmeter og sluttede dem i serieforbindelse med et amperemeter til den gule kasse dvs. en variabel spændingsforsyning. Derefter foretog vi omtrent fire samhørende værdier af strømmen I gennem modstanden og spændingsfaldet U over modstanden ved at variere den spænding den gule kasse leverede. Disse resultater er: 1 I [A] U [V] I [A] U [V] 0,019±0,0001 0,70±0,00 0,0174±0,0001 3,908±0,00 0,0307±0,0001 1,707±0,00 0,0350±0,0001 7,841±0,00 0,0570±0,0001 3,180±0,00 0,050±0, ,73±0,00 0,0711±0,0001 3,965±0,00 0,0601±0, ,494±0,00 0,0913±0,0001 5,095±0, I [A] U [V] I [A] U [V] 0,0159±0,0001 3,458±0,00 0,0586±0,0001 5,980±0,00 0,0309±0,0001 6,703±0,00 0,031±0,0001 3,77±0,00 0,0463±0, ,056±0,00 0,0187±0,0001 1,905±0,00 0,0540±0, ,70±0,00 0,0757±0,0001 7,7±0,00 0,0983±0, ,009±0,00 0,150±0,0001 1,448±0,00 Databehandling: Vores første mål er at bestemme værdier af 1,, 3 og 4 med usikkerheder fra målingerne på de fire modstande. Vi antager at sammenhængen mellem de målte værdier af U og I er på formen: U =I +C Hvor er værdien af modstanden og C er en konstant, som vi kan tilskrive en indre modstand i spændingskilden, som vi ikke er yderligere interesseret i. De bedste b på de fire forskellige har vi fundet vha. formel 8.11 i Taylor. Vha har vi set, at C er en meget lille størrelse, således at der omtrentligt gælder: U = I Dvs. at en maksimumsværdi for usikkerheden i kan fås fra de relative usikkerheder i U og I vha. 3.8 i Taylor, hvis vi vælger den måling, hvor den relative usikkerhed på U er størst og den måling, hvor den relative usikkerhed på I er størst. Værdierne for sammen med usikkerhederne er således: Nr. Modstand [Ω]

5 1 55,8±0,8% 4,61±0,6% 3 16,97±0,6% 4 99,79±0,% Fra teori-afsnittet ved vi, at V t er givet ved: Vt = Vind 1 + Og da vi nu kender de indgående størrelser og deres usikkerheder, kan vi beregne V t og dens usikkerhed: Vt=1,17±0,03V=1,17V±0,% Fra samme sted ved vi, at er givet ved: 1 = 1 + Og her fås værdien så: =44,7±0,3 Ω=44,7 Ω ±0,7% Da vi nu kender størrelserne af 3, 4, V e med usikkerheder og har målt 4 værdier af U 0 med usikkerheder kan vi fra formlen: 4 U0 =3- V-U e 0 eregne de 4 tilhørende værdier af med usikkerheder. Tilsvarende kan vi, idet vi kender, V t og de forskellige værdier af alle med usikkerheder beregne P med usikkerheder vha. formlen: P = Vt + ( ) esultaterne er: Nr. [Ω] P [W] 1 -,6±1,5 6,9±1,4 0,8±1,4 0,05±0, ,±1,4 0,50±0,04 4 4,5±1,4 0,758±0, ,6±1,4 0,88±0, ,±1,4 0,798±0, ,6±1,3 0,763±0, ,3±1,3 0,70±0, ,0±1,3 0,681±0, ,1±1,3 0,650±0, ,4±1,3 0,61±0, ,9±1,3 0,58±0, ,7±1,3 0,564±0, ,6±1,3 0,538±0, ,1±1,3 0,50±0,004

6 16 195,1±1,3 0,503±0, ,4±1,3 0,491±0, ,±1,3 0,477±0, ,3±1,3 0,473±0, ,9±1,3 0,475±0, ,±1,3 0,765±0,006 79,3±1,3 0,764±0, ,7±1,4 0,787±0, ,±1,4 0,804±0, ,7±1,4 0,80±0, ,4±1,4 0,84±0, ,9±1,4 0,86±0, ,9±1,4 0,88±0, ,4±1,4 0,88±0, ,4±1,4 0,86±0, ,4±1,4 0,84±0, ,5±1,4 0,8±0, ,6±1,4 0,818±0, ,7±1,4 0,768±0, ,1±1,4 0,763±0, ,4±1,4 0,70±0, ,5±1,4 0,69±0, ,5±1,4 0,63±0, ,±1,4 0,56±0, ,9±1,4 0,9±0, ,±1,4 0,31±0,07 4 3,7±1,4 0,3±0,08 Den første måling kan tydeligvis ikke bruges til ret meget, idet dens værdier er en fysisk mening. For de resterende 41 målepunkter har vi i GnuPlot plottet P som funktion af begge angivet med usikkerheder. Derved får vi grafen:

7 'x.txt' Af ovenstående tabel har vi samlet følgende punkter, hvor P antager den største værdi: Nr. [Ω] P [W] 5 46,6±1,4 0,88±0, ,9±1,4 0,88±0, ,4±1,4 0,88±0,007 Vi kan hermed konklere, at P har maksimum i intervallet mellem =40,0Ω og =48,0Ω og at den på dette interval antager værdien 0,88±0,007W. Ud fra grafens facon kan vi konklere, idet grafen er ret flad omkring maksimumsværdien, at det bedste b for maksimumsstedet er midt i intervallet I teori-afsnittet har vi vist, at maksimumspunktet burde ligge i: = =44,7 ± 0,3Ω Hvilket ligger nogenlunde midt i ovennævnte interval. I teori-afsnittet har vi også fået vist, at maksimumsværdien for P er: 1 ( ) 1 P,max=V t = 1,17V =0,89W ,7Ω Hvilket passer aldeles fremragende med den eksperimentelt bestemte værdi. Ud fra de målte værdier af I og V, som vi hidtil slet ikke har benyttet, kan den afsatte effekt P simpelthen beregnes som: P =I V Og som: V = I

8 Vi har beregnet disse værdier for de 4 målepunkter og sammenlignet dem grafisk med punkterne fundet med den anden metode. esultatet ses i grafen nedenfor, hvor de røde punkter er de gamle værdier med usikkerheder, og de grønne punkter er de nye værdier. 0.9 'x.txt' 0.8 'y.txt' Det ses, at de nye beregninger beskriver samme sammenhæng mellem P og, dog ligger de nye værdier generelt en anelse lavere end de gamle. Idet beregningerne fra den første metode stemte fuldstændig overens med de teoretisk forventede værdier, antager vi at denne metode også er den mest præcise sammenlignet med den anden, som undervurderer værdierne for P.

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd.

Ohms lov. Formål. Princip. Apparatur. Brug af multimetre. Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Ohms lov Nummer 136050 Emne Ellære Version 2017-02-14 / HS Type Elevøvelse Foreslås til 7-8, (gymc) p. 1/5 Formål Vi undersøger sammenhængen mellem spænding og strøm for en metaltråd. Princip Et stykke

Læs mere

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4

El-Teknik A. Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen. Klasse 3.4 El-Teknik A Rasmus Kibsgaard Riehn-Kristensen & Jonas Pedersen Klasse 3.4 12-08-2011 Strømstyrke i kredsløbet. Til at måle strømstyrken vil jeg bruge Ohms lov. I kredsløbet kender vi resistansen og spændingen.

Læs mere

Fysik rapport. Elektricitet. Emil, Tim, Lasse og Kim

Fysik rapport. Elektricitet. Emil, Tim, Lasse og Kim Fysik rapport Elektricitet Emil, Tim, Lasse og Kim Indhold Fysikøvelse: Ohms lov... 2 Opgave 1... 2 Opgave 2... 2 Opgave 3... 2 Opgave 4... 3 Opgave 5... 3 Opgave 6... 3 Opgave 7... 4 Opgave 8... 4 Opgave

Læs mere

Øvelses journal til ELA Lab øvelse 4: Superposition

Øvelses journal til ELA Lab øvelse 4: Superposition Øvelses journal til ELA Lab øvelse 4: Navn: Thomas Duerlund Jensen, Jacob Christiansen, Kristian Krøier Øvelsesdato: 8/10-2002 Side 1 af 5 Formål: Eksperimentelt at eftervise superpositionsprincippet og

Læs mere

Materialer: Strømforsyningen Ledninger. 2 fatninger med pære. 1 multimeter. Forsøg del 1: Serieforbindelsen. Serie forbindelse

Materialer: Strømforsyningen Ledninger. 2 fatninger med pære. 1 multimeter. Forsøg del 1: Serieforbindelsen. Serie forbindelse Formål: Vi skal undersøge de egenskaber de 2 former for elektriske forbindelser har specielt med hensyn til strømstyrken (Ampere) og spændingen (Volt). Forsøg del 1: Serieforbindelsen Materialer: Strømforsyningen

Læs mere

Indre modstand og energiindhold i et batteri

Indre modstand og energiindhold i et batteri Indre modstand og energiindhold i et batteri Side 1 af 10 Indre modstand og energiindhold i et batteri... 1 Formål... 3 Teori... 3 Ohms lov... 3 Forsøgsopstilling... 5 Batteriets indre modstand... 5 Afladning

Læs mere

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold.

Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Formål Formålet med dette forsøg er at lave en karakteristik af et 4,5 V batteri og undersøge dets effektforhold. Teori Et batteri opfører sig som en model bestående af en ideel spændingskilde og en indre

Læs mere

Daniells element Louise Regitze Skotte Andersen

Daniells element Louise Regitze Skotte Andersen Louise Regitze Skotte Andersen Fysikrapport. Morten Stoklund Larsen - Lærer K l a s s e 1. 4 G r u p p e m e d l e m m e r : N i k i F r i b e r t A n d r e a s D a h l 2 2-0 5-2 0 0 8 2 Indhold Indledning...

Læs mere

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber

MODUL 5 ELLÆRE: INTRONOTE. 1 Basisbegreber 1 Basisbegreber ellæren er de mest grundlæggende størrelser strøm, spænding og resistans Strøm er ladningsbevægelse, og som det fremgår af bogen, er strømmens retning modsat de bevægende elektroners retning

Læs mere

Resonans 'modes' på en streng

Resonans 'modes' på en streng Resonans 'modes' på en streng Indhold Elektrodynamik Lab 2 Rapport Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Formål 2. Teori 3.

Læs mere

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning.

Når enderne af en kobbertråd forbindes til en strømforsyning, bevæger elektronerne i kobbertråden sig (fortrinsvis) i samme retning. E2 Elektrodynamik 1. Strømstyrke Det meste af vores moderne teknologi bygger på virkningerne af elektriske ladninger, som bevæger sig. Elektriske ladninger i bevægelse kalder vi elektrisk strøm. Når enderne

Læs mere

Elektrodynamik Lab 1 Rapport

Elektrodynamik Lab 1 Rapport Elektrodynamik Lab 1 Rapport Indhold Fysik 6, EL Bo Frederiksen (bo@fys.ku.dk) Stanislav V. Landa (stas@fys.ku.dk) John Niclasen (niclasen@fys.ku.dk) 1. Transienter og RC-kredsløb 1.1 Formål 1. Teori 1.3

Læs mere

Benjamin Franklin Prøv ikke at gentage forsøget! hvor er den passerede ladning i tiden, og enheden 1A =

Benjamin Franklin Prøv ikke at gentage forsøget! hvor er den passerede ladning i tiden, og enheden 1A = E3 Elektricitet 1. Grundlæggende Benjamin Franklin Prøv ikke at gentage forsøget! I E1 og E2 har vi set på ladning (som måles i Coulomb C), strømstyrke I (som måles i Ampere A), energien pr. ladning, også

Læs mere

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted

Mini SRP. Afkøling. Klasse 2.4. Navn: Jacob Pihlkjær Hjortshøj, Jonatan Geysner Hvidberg og Kevin Høst Husted Mini SRP Afkøling Klasse 2.4 Navn: Jacob Pihlkjær Lærere: Jørn Christian Bendtsen og Karl G Bjarnason Roskilde Tekniske Gymnasium SO Matematik A og Informations teknologi B Dato 31/3/2014 Forord Under

Læs mere

Projektopgave Observationer af stjerneskælv

Projektopgave Observationer af stjerneskælv Projektopgave Observationer af stjerneskælv Af: Mathias Brønd Christensen (20073504), Kristian Jerslev (20072494), Kristian Mads Egeris Nielsen (20072868) Indhold Formål...3 Teori...3 Hvorfor opstår der

Læs mere

Transienter og RC-kredsløb

Transienter og RC-kredsløb Transienter og RC-kredsløb Fysik 6 Elektrodynamiske bølger Joachim Mortensen, Edin Ikanovic, Daniel Lawther 4. december 2008 (genafleveret 4. januar 2009) 1. Formål med eksperimentet og den teoretiske

Læs mere

Undersøgelse af flow- og trykvariation

Undersøgelse af flow- og trykvariation Undersøgelse af flow- og trykvariation Formål Med henblik på at skabe et kalibrerings og valideringsmål for de opstillede modeller er trykniveauerne i de 6 observationspunkter i sandkassen undersøgt ved

Læs mere

Figur 1 Energetisk vekselvirkning mellem to systemer.

Figur 1 Energetisk vekselvirkning mellem to systemer. Energibånd Fysiske fænomener er i reglen forbundet med udveksling af energi mellem forskellige systemer. Udvekslingen af energi mellem to systemer A og B kan vi illustrere grafisk som på figur 1 med en

Læs mere

a og b. Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole

a og b. Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole 3.1.2. a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole Udført d. 15.04.08 Deltagere Kåre Stokvad Hansen Max Berg Michael Ole Olsen 1 Formål: Formålet med øvelsen er at måle/beregne

Læs mere

a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole

a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole 3.1.2. a og b Den magnetiske kraftlov Og måling af B ved hjælp af Tangensboussole Udført d. 15.04.08 Deltagere Kåre Stokvad Hansen Max Berg Michael Ole Olsen 1 Formål: Formålet med øvelsen er at måle/beregne

Læs mere

2 Erik Vestergaard www.matematikfysik.dk

2 Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk Erik Vestergaard www.matematikfysik.dk 3 Lineære funktioner En vigtig type funktioner at studere er de såkaldte lineære funktioner. Vi skal udlede en række egenskaber

Læs mere

1. Installere Logger Pro

1. Installere Logger Pro Programmet Logger Pro er et computerprogram, der kan bruges til at opsamle og behandle data i de naturvidenskabelige fag, herunder fysik. 1. Installere Logger Pro Første gang du installerer Logger Pro

Læs mere

1 v out. v in. out 2 = R 2

1 v out. v in. out 2 = R 2 EE Basis 200 KRT3 - Løsningsforslag 2/9/0/JHM Opgave : Figur : Inverterende forstærker. Figur 2: Ikke-inverterende. Starter vi med den inverterende kobling så identificeres der et knudepunkt ved OPAMP

Læs mere

Analog Øvelser. Version. A.1 Afladning af kondensator. Opbyg følgende kredsløb: U TL = 70 % L TL = 50 %

Analog Øvelser. Version. A.1 Afladning af kondensator. Opbyg følgende kredsløb: U TL = 70 % L TL = 50 % A.1 Afladning af kondensator Opbyg følgende kredsløb: U TL = 70 % L TL = 50 % Når knappen har været aktiveret, ønskes lys i D1 i 30 sekunder. Brug formlen U C U start e t RC Beskriv kredsløbet Find komponenter.

Læs mere

1 Lysets energi undersøgt med lysdioder (LED)

1 Lysets energi undersøgt med lysdioder (LED) Solceller og Spektre Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 26. august 2010 Formål Formålet med øvelsen

Læs mere

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V.

Når strømstyrken ikke er for stor, kan batteriet holde spændingsforskellen konstant på 12 V. For at svare på nogle af spørgsmålene i dette opgavesæt kan det sagtens være, at du bliver nødt til at hente informationer på internettet. Til den ende kan oplyses, at der er anbragt relevante link på

Læs mere

Studieretningsopgave

Studieretningsopgave Virum Gymnasium Studieretningsopgave Harmoniske svingninger i matematik og fysik Vejledere: Christian Holst Hansen (matematik) og Bodil Dam Heiselberg (fysik) 30-01-2014 Indholdsfortegnelse Indledning...

Læs mere

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb

Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Projekt 7.4 Kvadratisk programmering anvendt til optimering af elektriske kredsløb Indledning: I B-bogen har vi i studieretningskapitlet i B-bogen om matematik-fsik set på parallelkoblinger af resistanser

Læs mere

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16

Tak for kaffe! 17-10-2004 Tak for kaffe! Side 1 af 16 Tak for kaffe! Jette Rygaard Poulsen, Frederikshavn Gymnasium og HF-kursus Hans Vestergaard, Frederikshavn Gymnasium og HF-kursus Søren Lundbye-Christensen, AAU 17-10-2004 Tak for kaffe! Side 1 af 16 Tak

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 01 Kapitel 3 Ligninger & formler 016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

Magnetens tiltrækning

Magnetens tiltrækning Magnetens tiltrækning Undersøg en magnets tiltrækning. 3.1 5.1 - Stangmagnet - Materialekasse - Stativ - Sytråd - Clips Hvilke materialer kan en magnet tiltrække? Byg forsøgsopstillingen med den svævende

Læs mere

Impuls og kinetisk energi

Impuls og kinetisk energi Impuls og kinetisk energi Peter Hoberg, Anton Bundgård, and Peter Kongstad Hold Mix 1 (Dated: 7. oktober 2015) 201405192@post.au.dk 201407987@post.au.dk 201407911@post.au.dk 2 I. INDLEDNING I denne øvelse

Læs mere

Der påvises en acceptabel kalibrering af kameraet, da det værdier kun er lidt lavere end luminansmeterets.

Der påvises en acceptabel kalibrering af kameraet, da det værdier kun er lidt lavere end luminansmeterets. Test af LMK mobile advanced Kai Sørensen, 2. juni 2015 Indledning og sammenfatning Denne test er et led i et NMF projekt om udvikling af blændingsmåling ved brug af et LMK mobile advanced. Formålet er

Læs mere

Thevenin / Norton. 1,5k. Når man går rundt i en maske, vil summen af spændingsstigninger og spændingsfald være lig med 0.

Thevenin / Norton. 1,5k. Når man går rundt i en maske, vil summen af spændingsstigninger og spændingsfald være lig med 0. Maskeligninger: Givet følgende kredsløb: 22Vdc 1,5k 1Vdc Når man går rundt i en maske, vil summen af spændingsstigninger og spændingsfald være lig med. I maskerne er der sat en strøm på. Retningen er tilfældig

Læs mere

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47

Harmonisk oscillator. Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 Harmonisk oscillator Dan Elmkvist Albrechtsen, Edin Ikanović, Joachim Mortensen Hold 4, gruppe n + 1, n {3}, uge 46-47 28. november 2007 Indhold 1 Formål 2 2 Teori 2 3 Fremgangsmåde 3 4 Resultatbehandling

Læs mere

Fremstil en elektromagnet

Fremstil en elektromagnet Fremstil en elektromagnet Fremstil en elektromagnet, og find dens poler. 3.1 5.6 -Femtommersøm - Isoleret kobbertråd, 0,5 mm -2 krokodillenæb - Magnetnål - Afbryder - Clips Fremstil en elektromagnet, der

Læs mere

Brydningsindeks af luft

Brydningsindeks af luft Brydningsindeks af luft Øvelsesvejledning til brug i Nanoteket Udarbejdet i Nanoteket, Institut for Fysik, DTU Rettelser sendes til Ole.Trinhammer@fysik.dtu.dk 14. marts 2012 1 Introduktion Alle kender

Læs mere

NOGLE OPGAVER OM ELEKTRICITET

NOGLE OPGAVER OM ELEKTRICITET NOGLE OPGAVER OM ELEKTRICITET I det følgende er der 12 opgaver om elektriske kredsløb, og du skal nok bruge 1 time til at besvare dem. I nogle af opgaverne er der forskellige svarmuligheder der hver er

Læs mere

Måling af turbulent strømning

Måling af turbulent strømning Måling af turbulent strømning Formål Formålet med at måle hastighedsprofiler og fluktuationer i en turbulent strømning er at opnå et tilstrækkeligt kalibreringsgrundlag til modellering af turbulent strømning

Læs mere

SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER

SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER SUPPLERENDE AKTIVITETER GYMNASIEAKTIVITETER De supplerende aktiviteter er ikke nødvendige for at deltage i Masseeksperimentet, men kan bruges som et supplement til en undervisning, der knytter an til Masseeksperimentet

Læs mere

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål.

Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. Labøvelse 2, fysik 2 Uge 47, Kalle, Max og Henriette Tallene angivet i rapporten som kronologiske punkter refererer til de i opgaven stillede spørgsmål. 1. Vi har to forskellige størrelser: a: en skive

Læs mere

ELLÆRENS KERNE- BEGREBER (DC) Hvad er elektrisk: Ladning Strømstyrke Spændingsforskel Resistans Energi og effekt

ELLÆRENS KERNE- BEGREBER (DC) Hvad er elektrisk: Ladning Strømstyrke Spændingsforskel Resistans Energi og effekt ELLÆRENS KERNE- BEGREBER (DC) Hvad er elektrisk: Ladning Strømstyrke Spændingsforskel Resistans Energi og effekt Atomets partikler: Elektrisk ladning Lad os se på et fysisk stof som kobber: Side 1 Atomets

Læs mere

Lærervejledning. Lærervejledning til el-kørekortet. El-kørekortet er et lille undervisningsforløb beregnet til natur/teknikundervisningen

Lærervejledning. Lærervejledning til el-kørekortet. El-kørekortet er et lille undervisningsforløb beregnet til natur/teknikundervisningen Lærervejledning EVU El- og Vvs-branchens Uddannelsessekretariat 2007 Højnæsvej 71, 2610 Rødovre, tlf. 3672 6400, fax 3672 6433 www.evu.nu, e-mail: mail@sekretariat.evu.nu Lærervejledning El-kørekortet

Læs mere

Dæmpet harmonisk oscillator

Dæmpet harmonisk oscillator FY01 Obligatorisk laboratorieøvelse Dæmpet harmonisk oscillator Hold E: Hold: D1 Jacob Christiansen Afleveringsdato: 4. april 003 Morten Olesen Andreas Lyder Indholdsfortegnelse Indholdsfortegnelse 1 Formål...3

Læs mere

Øvelse i kvantemekanik Måling af Plancks konstant

Øvelse i kvantemekanik Måling af Plancks konstant Øvelse i kvantemekanik Måling af Plancks konstant Tim Jensen og Thomas Jensen 2. oktober 2009 Indhold Formål 2 2 Teoriafsnit 2 3 Forsøgsresultater 4 4 Databehandling 4 5 Fejlkilder 7 6 Konklusion 7 Formål

Læs mere

Øvelsesvejledning RG Stående bølge. Individuel rapport. At undersøge bølgens hastighed ved forskellige resonanser.

Øvelsesvejledning RG Stående bølge. Individuel rapport. At undersøge bølgens hastighed ved forskellige resonanser. Stående bølge Individuel rapport Forsøgsformål At finde resonanser (stående bølger) for fiskesnøre. At undersøge bølgens hastighed ved forskellige resonanser. At se hvordan hastigheden afhænger af belastningen

Læs mere

Supplerende PCB-målinger efter iværksættelse

Supplerende PCB-målinger efter iværksættelse PCB M Å L I N G E R Supplerende PCB-målinger efter iværksættelse af afværgetiltag Frederiksberg Skole Sorø 1. måleserie 2014 Projektnr.: 103118-0008-P003 Udarbejdet af: Dorte Jørgensen kemiingeniør, MEM

Læs mere

Modellering af elektroniske komponenter

Modellering af elektroniske komponenter Modellering af elektroniske komponenter Formålet er at give studerende indblik i hvordan matematik som fag kan bruges i forbindelse med at modellere fysiske fænomener. Herunder anvendelse af Grafregner(TI-89)

Læs mere

El-Fagets Uddannelsesnævn

El-Fagets Uddannelsesnævn El-Fagets Uddannelsesnævn El-kørekort Lærervejledning El-kørekortet er et lille undervisningsforløb beregnet til natur/teknik første fase. Ved at arbejde med elementær el-lære er det vores håb, at eleverne

Læs mere

Emneopgave: Lineær- og kvadratisk programmering:

Emneopgave: Lineær- og kvadratisk programmering: Emneopgave: Lineær- og kvadratisk programmering: LINEÆR PROGRAMMERING I lineær programmering løser man problemer hvor man for en bestemt funktion ønsker at finde enten en maksimering eller en minimering

Læs mere

Personlig stemmeafgivning

Personlig stemmeafgivning Ib Michelsen X 2 -test 1 Personlig stemmeafgivning Efter valget i 2005 1 har man udspurgt en mindre del af de deltagende, om de har stemt personligt. Man har svar fra 1131 mænd (hvoraf 54 % har stemt personligt

Læs mere

Øvelse i kvantemekanik Elektron-spin resonans (ESR)

Øvelse i kvantemekanik Elektron-spin resonans (ESR) 14 Øvelse i kvantemekanik Elektron-spin resonans (ESR) 3.1 Spin og magnetisk moment Spin er en partikel-egenskab med dimension af angulært moment. For en elektron har spinnets projektion på en akse netop

Læs mere

Øvelsesvejledning FH Stående bølge. Individuel rapport

Øvelsesvejledning FH Stående bølge. Individuel rapport Teori Stående bølge Individuel rapport Betragt en snøre udspændt mellem en vibrator og et fast punkt. Vibratorens svingninger får en bølge til at forplante sig hen gennem snøren. Så snart bølgerne når

Læs mere

Hårde nanokrystallinske materialer

Hårde nanokrystallinske materialer Hårde nanokrystallinske materialer SMÅ FORSØG OG OPGAVER Side 54-59 i hæftet Tegnestift 1 En tegnestift er som bekendt flad i den ene ende, hvor man presser, og spids i den anden, hvor stiften skal presses

Læs mere

Funktion af flere variable

Funktion af flere variable Funktion af flere variable Preben Alsolm 24. april 2008 1 Funktion af flere variable 1.1 Differentiabilitet for funktion af én variabel Differentiabilitet for funktion af én variabel f kaldes differentiabel

Læs mere

Strålingsbalance og drivhuseffekt - en afleveringsopgave

Strålingsbalance og drivhuseffekt - en afleveringsopgave LW 014 Strålingsbalance og drivhuseffekt - en afleveringsopgave FORMÅL: At undersøge den aktuelle strålingsbalance for jordoverfladen og relatere den til drivhuseffekten. MÅLING AF KORTBØLGET STRÅLING

Læs mere

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens.

Rapport Bjælken. Derefter lavede vi en oversigt, som viste alle løsningerne og forklarede, hvad der gør, at de er forskellige/ens. Rapport Bjælken Indledning Vi arbejdede med opgaverne i grupper. En gruppe lavede en tabel, som de undersøgte og fandt en regel. De andre grupper havde studeret tegninger af bjælker med forskellige længder,

Læs mere

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011

Matematik A. Højere teknisk eksamen. Forberedelsesmateriale. htx112-mat/a-26082011 Matematik A Højere teknisk eksamen Forberedelsesmateriale htx112-mat/a-26082011 Fredag den 26. august 2011 Forord Forberedelsesmateriale til prøverne i matematik A Der er afsat 10 timer på 2 dage til

Læs mere

Den frie og dæmpede oscillator

Den frie og dæmpede oscillator Ida Nissen - 80385 Maria Wulff - 140384 Jacob Bjerregaard - 7098 Morten Badensø - 40584 Fysik Lab.øvelser Uge Den frie og dæmpede oscillator Formål Formålet med denne øvelse er at studere den harmoniske

Læs mere

Brombærsolcellens Fysik

Brombærsolcellens Fysik Brombærsolcellens Fysik Søren Petersen En brombærsolcelle er, ligesom en almindelig solcelle, en teknologi som udnytter sollysets energi til at lave elektricitet. I brombærsolcellen bliver brombærfarvestof

Læs mere

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet

Matematik A. Studentereksamen. Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet Matematik A Studentereksamen Forberedelsesmateriale til de digitale eksamensopgaver med adgang til internettet st131-matn/a-6513 Mandag den 6 maj 13 Forberedelsesmateriale til st A Net MATEMATIK Der skal

Læs mere

Af: Valle Thorø Fil.: Oscilloscopet Side 1 af 10

Af: Valle Thorø Fil.: Oscilloscopet Side 1 af 10 Oscilloscopet Kilde: http://www.doctronics.co.uk/scope.htm Følgende billede viser forsiden på et typisk oscilloskop. Nogle af knapperne og deres indstillinger forklares i det følgende.: Blokdiagram for

Læs mere

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer.

Statistik. Kvartiler og middeltal defineres forskelligt ved grupperede observationer og ved ikke grupperede observationer. Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

Opgaver med hjælp Funktioner 2 - med Geogebra

Opgaver med hjælp Funktioner 2 - med Geogebra Opgaver med hjælp Funktioner 2 - med Geogebra Nulpunkter, monotoniforhold og ekstrema Formålet med denne note er at tegne os frem til nulpunkter, monotoniforhold og ekstrema for en funktion ved hjælp af

Læs mere

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11:

Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Matematik A-niveau - bestemmelse af monotoniforhold (EKSEMPEL 1): Side 94 opgave 11: Opgave a) Ligningen for tangenten bestemmes. Dog defineres funktionen. Tangent-formlen er pr. definition. (1) Altså

Læs mere

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012.

MATEMATIK A-NIVEAU. Anders Jørgensen & Mark Kddafi. Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012. MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Kapitel 6 Differentialregning og modellering med f 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver

Læs mere

Lineære sammenhænge, residualplot og regression

Lineære sammenhænge, residualplot og regression Lineære sammenhænge, residualplot og regression Opgave 1: Er der en bagvedliggende lineær sammenhæng? I mange sammenhænge indsamler man data som man ønsker at undersøge og afdække eventuelle sammenhænge

Læs mere

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP()

Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() Gennemsnit og normalfordeling illustreret med terningkast, simulering og SLUMP() John Andersen, Læreruddannelsen i Aarhus, VIA Et kast med 10 terninger gav følgende udfald Fig. 1 Result of rolling 10 dices

Læs mere

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium

Deskriptiv statistik. Version 2.1. Noterne er et supplement til Vejen til matematik AB1. Henrik S. Hansen, Sct. Knuds Gymnasium Deskriptiv (beskrivende) statistik er den disciplin, der trækker de væsentligste oplysninger ud af et ofte uoverskueligt materiale. Det sker f.eks. ved at konstruere forskellige deskriptorer, d.v.s. regnestørrelser,

Læs mere

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium

Taylorudvikling I. 1 Taylorpolynomier. Preben Alsholm 3. november Definition af Taylorpolynomium Taylorudvikling I Preben Alsholm 3. november 008 Taylorpolynomier. Definition af Taylorpolynomium Definition af Taylorpolynomium Givet en funktion f : I R! R og et udviklingspunkt x 0 I. Find et polynomium

Læs mere

Generelle kommentarer omkring løsning af fysikopgaver

Generelle kommentarer omkring løsning af fysikopgaver Generelle kommentarer omkring løsning af fysikopgaver Det skal tydeligt fremgå af besvarelsen hvilken tankegang, der ligger bag løsningen. Dvs. fyldestgørende og præcis forklaring, men samtidig så kort

Læs mere

Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test

Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test Øvelse 7: Aktuar-tabeller, Kaplan-Meier kurver og log-rank test Formålet med øvelsen er at analysere risikoen for død forbundet med forskelligt alkoholforbrug. I denne øvelse skal analyserne foretages

Læs mere

Teknologi & kommunikation

Teknologi & kommunikation Elektricitet Elektricitet, ordet stammer fra det græske ord elektron, der betyder rav. Elektricitet er et fysisk fænomen, der knytter sig til elektriske ladninger i hvile (elektrostatik) eller i bevægelse

Læs mere

Sammenhæng mellem variable

Sammenhæng mellem variable Sammenhæng mellem variable Indhold Variable... 1 Funktion... 2 Definitionsmængde... 2 Værdimængde... 2 Grafen for en funktion... 2 Koordinatsystem... 3 Koordinatsæt... 4 Intervaller... 5 Løsningsmængde...

Læs mere

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1

Statistik. Peter Sørensen: Statistik og sandsynlighed Side 1 Statistik Formålet... 1 Mindsteværdi... 1 Størsteværdi... 1 Ikke grupperede observationer... 2 Median og kvartiler defineres ved ikke grupperede observationer således:... 2 Middeltal defineres ved ikke

Læs mere

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale

MATEMATIK A-NIVEAU-Net Forberedelsesmateriale STUDENTEREKSAMEN SOMMERTERMIN 13 MATEMATIK A-NIVEAU-Net Forberedelsesmateriale 6 timer med vejledning Forberedelsesmateriale til de skriftlige prøver sommertermin 13 st131-matn/a-6513 Forberedelsesmateriale

Læs mere

3.3 overspringes. Kapitel 3

3.3 overspringes. Kapitel 3 M4ELT1 Lektion 2 3.3 overspringes Kapitel 3 3.1 Elektromotorisk kraft. Klemspænding Fysisk betydning af E og r i Tegn sted/potential-graf Vælg nulpunkt for potentialet Belastningsforsøg R varieres I måles

Læs mere

E l - Fagets Uddannelsesnævn

E l - Fagets Uddannelsesnævn E l - Fagets Uddannelsesnævn El-kørekort Lærervejledning El-kørekortet er et lille undervisningsforløb beregnet til natur/teknik første fase. Ved at arbejde med elementær el-lære er det vores håb, at eleverne

Læs mere

Måleteknik Effektmåling

Måleteknik Effektmåling Måleteknik Effektmåling Formål: Formålet med øvelsen er at indøve brugen af wattmetre til enfasede og trefasede målinger. Der omtales såvel analog som digitale wattmeter, men der foretages kun målinger

Læs mere

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen

Oscillator. Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator Af: Alexander Rosenkilde Alexander Bork Christian Jensen Oscillator øvelse Formål Øvelse med oscillator, hvor frekvensen bestemmes, for den frie og dæmpede svingning. Vi vil tilnærme data fra

Læs mere

Ohms Lov Ohms lov beskriver sammenhæng mellem spænding, strømstyrke og modstand.

Ohms Lov Ohms lov beskriver sammenhæng mellem spænding, strømstyrke og modstand. Ellære Ohms Lov Ohms lov beskriver sammenhæng mellem spænding, strømstyrke og modstand. Spænding [V] Strømstyrke [A] Modstand [W] kan bruge følgende måde til at huske hvordan i regner de forskellige værdier.

Læs mere

Projekt 4.9 Bernouillis differentialligning

Projekt 4.9 Bernouillis differentialligning Projekt 4.9 Bernouillis differentialligning (Dette projekt dækker læreplanens krav om supplerende stof vedr. differentialligningsmodeller. Projektet hænger godt sammen med projekt 4.0: Fiskerimodeller,

Læs mere

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger

MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver i matematik, 2012 Differentialligninger 2016 MATEMATIK A-NIVEAU Vejledende eksempler på eksamensopgaver og eksamensopgaver

Læs mere

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT

STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 2007 2010 MATEMATIK A-NIVEAU. MATHIT Prøvesæt 2010. Kl. 09.00 14.00 STXA-MATHIT STUDENTEREKSAMEN MATHIT PRØVESÆT MAJ 007 010 MATEMATIK A-NIVEAU MATHIT Prøvesæt 010 Kl. 09.00 14.00 STXA-MATHIT Opgavesættet er delt i to dele. Delprøve 1: timer med autoriseret formelsamling Delprøve

Læs mere

Graph brugermanual til matematik C

Graph brugermanual til matematik C Graph brugermanual til matematik C Forord Efterfølgende er en guide til programmet GRAPH. Programmet kan downloades gratis fra nettet og gemmes på computeren/et usb-stik. Det betyder, det også kan anvendes

Læs mere

Eksempel på logistisk vækst med TI-Nspire CAS

Eksempel på logistisk vækst med TI-Nspire CAS Eksempel på logistisk vækst med TI-Nspire CAS Tabellen herunder viser udviklingen af USA's befolkning fra 1850-1910 hvor befolkningstallet er angivet i millioner: Vi har tidligere redegjort for at antallet

Læs mere

Undervisningsbeskrivelse

Undervisningsbeskrivelse Undervisningsbeskrivelse Stamoplysninger til brug ved prøver til gymnasiale uddannelser Termin August 2016-juni 2018 Institution Hotel- og Restaurantskolen Uddannelse Fag og niveau Lærer(e) Hold HTX Gastro-science

Læs mere

PARTIELT MOLÆRT VOLUMEN

PARTIELT MOLÆRT VOLUMEN KemiF1 laboratorieøvelser 2008 ØvelseF1-2 PARTIELT MOLÆRT VOLUMEN Indledning I en binær blanding vil blandingens masse være summen af komponenternes masse; men blandingens volumen vil ikke være summen

Læs mere

Bestemmelse af dispersionskoefficient ved sporstofforsøg

Bestemmelse af dispersionskoefficient ved sporstofforsøg Bestemmelse af dispersionskoeffiient ved sporstofforsøg Formål Der er den 09.09.04 udført et storstofforsøg i Østerå med det formål at bestemme den langsgående dispersionskoeffiient for vandløbet. Dispersionskoeffiienten

Læs mere

Referencelaboratoriet for måling af emissioner til luften

Referencelaboratoriet for måling af emissioner til luften Referencelaboratoriet for måling af emissioner til luften Rapport nr.: 77 Titel Hvordan skal forekomsten af outliers på lugtmålinger vurderes? Undertitel - Forfatter(e) Arne Oxbøl Arbejdet udført, år 2015

Læs mere

2 Risikoaversion og nytteteori

2 Risikoaversion og nytteteori 2 Risikoaversion og nytteteori 2.1 Typer af risikoholdninger: Normalt foretages alle investeringskalkuler under forudsætningen om fuld sikkerhed om de fremtidige betalingsstrømme. I virkelighedens verden

Læs mere

Modellering af balance på en vippe

Modellering af balance på en vippe Modellering af balance på en vippe Dette er en beskrivelse af et undervisningsforløb i Fysik/Kemi og matematik i 8. klasse på Tingkærskolen i Odense. Deltagerne i forløbet var lærer Thor Hansen og de to

Læs mere

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet

Salt 2. ovenfor. x = Tid (minutter) y = gram salt i vandet Projekt om medicindosering Fra http://www.ruc.dk/imfufa/matematik/deltidsudd_mat/sidefagssupplering_mat/rap_medicinering.pdf/ Lav mindst side 1-4 t.o.m. Med 7 Ar b ejd ssed d el 0 Salt 1 Forestil Jer at

Læs mere

I. Deskriptiv analyse af kroppens proportioner

I. Deskriptiv analyse af kroppens proportioner Projektet er delt i to, og man kan vælge kun at gennemføre den ene del. Man kan vælge selv at frembringe data, fx gennem et samarbejde med idræt eller biologi, eller man kan anvende de foreliggende data,

Læs mere

Kapital- og rentesregning

Kapital- og rentesregning Rentesregning Rettet den 28-12-11 Kapital- og rentesregning Kapital- og rentesregning Navngivning ved rentesregning I eksempler som Niels Oles, hvor man indskyder en kapital i en bank (én gang), og banken

Læs mere

Forsyn dig selv med energi

Forsyn dig selv med energi Lærervejledning Formål I denne aktivitet skal eleverne vha. en ombygget kondicykel få konkrete erfaringer med at forsyne sig selv med energi, dvs. mærke energibehovet til at dække forskellige belastninger

Læs mere

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium

Udledning af den barometriske højdeformel. - Beregning af højde vha. trykmåling. af Jens Lindballe, Silkeborg Gymnasium s.1/5 For at kunne bestemme cansatsondens højde må vi se på, hvorledes tryk og højde hænger sammen, når vi bevæger os opad i vores atmosfære. I flere fysikbøger kan man læse om den Barometriske højdeformel,

Læs mere

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager

Fysikrapport: Rapportøvelse med kalorimetri. Maila Walmod, 1.3 HTX, Rosklide. I gruppe med Ulrik Stig Hansen og Jonas Broager Fysikrapport: Rapportøvelse med kalorimetri Maila Walmod, 1.3 HTX, Rosklide I gruppe med Ulrik Stig Hansen og Jonas Broager Afleveringsdato: 30. oktober 2007* *Ny afleveringsdato: 13. november 2007 1 Kalorimetri

Læs mere

Opgaver til solceller

Opgaver til solceller Opgaver til r I forbindelse med MasterClass Junior camp 3, arbejdede talenterne med r. De lavede hver deres egen og hver skole udformede et dyr med på og 1-2 vibratorer koblet på rne. Talenterne blev opdelt

Læs mere

FYSIKEMNE 1: SOLPANELER INTRODUKTION AKTIVITETEN I NATURV IDENSKABERNES HUS ORGANISERING TEORI

FYSIKEMNE 1: SOLPANELER INTRODUKTION AKTIVITETEN I NATURV IDENSKABERNES HUS ORGANISERING TEORI FYSIKEMNE 1: SOLPANELER INTRODUKTION En af udfordringerne ved at gennemføre en rumrejse til Mars er at skaffe strøm til alle instrumenterne ombord. En mulighed er at medbringe batterier, men da de både

Læs mere